12 research outputs found

    SuperNet in Neural Architecture Search: A Taxonomic Survey

    Full text link
    Deep Neural Networks (DNN) have made significant progress in a wide range of visual recognition tasks such as image classification, object detection, and semantic segmentation. The evolution of convolutional architectures has led to better performance by incurring expensive computational costs. In addition, network design has become a difficult task, which is labor-intensive and requires a high level of domain knowledge. To mitigate such issues, there have been studies for a variety of neural architecture search methods that automatically search for optimal architectures, achieving models with impressive performance that outperform human-designed counterparts. This survey aims to provide an overview of existing works in this field of research and specifically focus on the supernet optimization that builds a neural network that assembles all the architectures as its sub models by using weight sharing. We aim to accomplish that by categorizing supernet optimization by proposing them as solutions to the common challenges found in the literature: data-side optimization, poor rank correlation alleviation, and transferable NAS for a number of deployment scenarios

    Neural architecture search: A contemporary literature review for computer vision applications

    Get PDF
    Deep Neural Networks have received considerable attention in recent years. As the complexity of network architecture increases in relation to the task complexity, it becomes harder to manually craft an optimal neural network architecture and train it to convergence. As such, Neural Architecture Search (NAS) is becoming far more prevalent within computer vision research, especially when the construction of efficient, smaller network architectures is becoming an increasingly important area of research, for which NAS is well suited. However, despite their promise, contemporary and end-to-end NAS pipeline require vast computational training resources. In this paper, we present a comprehensive overview of contemporary NAS approaches with respect to image classification, object detection, and image segmentation. We adopt consistent terminology to overcome contradictions common within existing NAS literature. Furthermore, we identify and compare current performance limitations in addition to highlighting directions for future NAS research

    Towards Continual Reinforcement Learning: A Review and Perspectives

    Full text link
    In this article, we aim to provide a literature review of different formulations and approaches to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We begin by discussing our perspective on why RL is a natural fit for studying continual learning. We then provide a taxonomy of different continual RL formulations and mathematically characterize the non-stationary dynamics of each setting. We go on to discuss evaluation of continual RL agents, providing an overview of benchmarks used in the literature and important metrics for understanding agent performance. Finally, we highlight open problems and challenges in bridging the gap between the current state of continual RL and findings in neuroscience. While still in its early days, the study of continual RL has the promise to develop better incremental reinforcement learners that can function in increasingly realistic applications where non-stationarity plays a vital role. These include applications such as those in the fields of healthcare, education, logistics, and robotics.Comment: Preprint, 52 pages, 8 figure

    Minimizing Computational Resources for Deep Machine Learning: A Compression and Neural Architecture Search Perspective for Image Classification and Object Detection

    Get PDF
    Computational resources represent a significant bottleneck across all current deep learning computer vision approaches. Image and video data storage requirements for training deep neural networks have led to the widespread use of image and video compression, the use of which naturally impacts the performance of neural network architectures during both training and inference. The prevalence of deep neural networks deployed on edge devices necessitates efficient network architecture design, while training neural networks requires significant time and computational resources, despite the acceleration of both hardware and software developments within the field of artificial intelligence (AI). This thesis addresses these challenges in order to minimize computational resource requirements across the entire end-to-end deep learning pipeline. We determine the extent to which data compression impacts neural network architecture performance, and by how much this performance can be recovered by retraining neural networks with compressed data. The thesis then focuses on the accessibility of the deployment of neural architecture search (NAS) to facilitate automatic network architecture generation for image classification suited to resource-constrained environments. A combined hard example mining and curriculum learning strategy is developed to minimize the image data processed during a given training epoch within the NAS search phase, without diminishing performance. We demonstrate the capability of the proposed framework across all gradient-based, reinforcement learning, and evolutionary NAS approaches, and a simple but effective method to extend the approach to the prediction-based NAS paradigm. The hard example mining approach within the proposed NAS framework depends upon the effectiveness of an autoencoder to regulate the latent space such that similar images have similar feature embeddings. This thesis conducts a thorough investigation to satisfy this constraint within the context of image classification. Based upon the success of the overall proposed NAS framework, we subsequently extend the approach towards object detection. Despite the resultant multi-label domain presenting a more difficult challenge for hard example mining, we propose an extension to the autoencoder to capture the additional object location information encoded within the training labels. The generation of an implicit attention layer within the autoencoder network sufficiently improves its capability to enforce similar images to have similar embeddings, thus successfully transferring the proposed NAS approach to object detection. Finally, the thesis demonstrates the resilience to compression of the general two-stage NAS approach upon which our proposed NAS framework is based
    corecore