85 research outputs found

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams

    The SocRob Project: Soccer Robots or Society of Robots

    Get PDF

    Towards Bridging the Gap between High-Level Reasoning and Execution on Robots

    Full text link
    When reasoning about actions, e.g., by means of task planning or agent programming with Golog, the robot's actions are typically modeled on an abstract level, where complex actions such as picking up an object are treated as atomic primitives with deterministic effects and preconditions that only depend on the current state. However, when executing such an action on a robot it can no longer be seen as a primitive. Instead, action execution is a complex task involving multiple steps with additional temporal preconditions and timing constraints. Furthermore, the action may be noisy, e.g., producing erroneous sensing results and not always having the desired effects. While these aspects are typically ignored in reasoning tasks, they need to be dealt with during execution. In this thesis, we propose several approaches towards closing this gap.Comment: PhD Thesi

    Automated context aware composition of Advanced Telecom Services for environmental early warnings

    Get PDF
    This paper presents one of the main components of a framework for automated composition of Advanced Telecom Services for environmental early Warnings. The framework, called AUTO, is composed by three main modules: a request processing module that transforms natural language and context information into a planning instance; the automated planning module, based on PELEA, an architecture for planning and execution; and the Service Execution Environment Advance Telecom Services. This paper focuses on the description of the translation of the user request in natural language and his context into planning instances. These planning instances represent service composition tasks based on Automated Planning. The advantages of this approach, like the automatic inclusion of context and user preferences in the composition of services, will be presented. Also, the current implementation will be described and some experimentation will prove the viability of AUTO

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Automated Service Composition Using AI Planning and Beyond

    Get PDF
    Automated Service Composition is one of the ``grand challenges'' in the area of Service-Oriented Computing. Mike Papazoglou was not only one of the first researchers who identified the importance of the problem, but was also one of the first proposers of formulating it as an AI planning problem. Unfortunately, classical planning algorithms were not sufficient and a number of extensions were needed, e.g., to support extended (rich) goal languages to capture the user intentions, to plan under uncertainty caused by the non-deterministic nature of services; issues that where formulated (and, partially addressed) by Mike, being one of his key contributions to the service community

    A review of potential methods for monitoring rangeland degradation in Libya

    Get PDF
    Natural and human factors exert a profound impact on the degradation of rangelands, human effects being the most significant factor in increasing the severity of deterioration. This occurs through agricultural expansion at the expense of rangelands, and with the number of domestic and wildlife animals exceeding the natural carrying capacity. This raises concerns about the ongoing sustainability of these land resources, as well as the sustainability of traditional pastoral land practices. Rangelands require effective management, which is dependent upon accurate and timely monitoring data to support the assessment of rangeland deterioration. Natural rangelands provide one of the significant pillars of support for the Libyan national economy. Despite the important role of rangeland in Libya from both economic and environmental perspectives, the vegetation cover of Libyan rangeland has changed adversely qualitatively and quantitatively over the past four decades. Ground-based observation methods are widely used to assess rangeland degradation in Libya. However, multi-temporal observations are often not integrated nor repeatable, making it difficult for rangeland managers to detect degradation consistently. Field study costs are also significantly high in comparison with their accuracy and reliability, both in terms of the time and resources required. Remote-sensing approaches offer the advantage of spanning large geographical areas with multiple spatial, spectral and temporal resolutions. These data can play a significant role in rangeland monitoring, permitting observation, monitoring and prediction of vegetation changes, productivity assessment, fire extent, vegetation and soil moisture measurement and quantifying the proliferation of invasive plant species. This paper reviews the factors causing rangeland degradation in Libya, identifying appropriate remote-sensing methods that can be used to implement appropriate monitoring procedures
    • …
    corecore