8,491 research outputs found

    Integrated Node Encoder for Labelled Textual Networks

    Full text link
    Voluminous works have been implemented to exploit content-enhanced network embedding models, with little focus on the labelled information of nodes. Although TriDNR leverages node labels by treating them as node attributes, it fails to enrich unlabelled node vectors with the labelled information, which leads to the weaker classification result on the test set in comparison to existing unsupervised textual network embedding models. In this study, we design an integrated node encoder (INE) for textual networks which is jointly trained on the structure-based and label-based objectives. As a result, the node encoder preserves the integrated knowledge of not only the network text and structure, but also the labelled information. Furthermore, INE allows the creation of label-enhanced vectors for unlabelled nodes by entering their node contents. Our node embedding achieves state-of-the-art performances in the classification task on two public citation networks, namely Cora and DBLP, pushing benchmarks up by 10.0\% and 12.1\%, respectively, with the 70\% training ratio. Additionally, a feasible solution that generalizes our model from textual networks to a broader range of networks is proposed.Comment: 7 page

    Contextual Motifs: Increasing the Utility of Motifs using Contextual Data

    Full text link
    Motifs are a powerful tool for analyzing physiological waveform data. Standard motif methods, however, ignore important contextual information (e.g., what the patient was doing at the time the data were collected). We hypothesize that these additional contextual data could increase the utility of motifs. Thus, we propose an extension to motifs, contextual motifs, that incorporates context. Recognizing that, oftentimes, context may be unobserved or unavailable, we focus on methods to jointly infer motifs and context. Applied to both simulated and real physiological data, our proposed approach improves upon existing motif methods in terms of the discriminative utility of the discovered motifs. In particular, we discovered contextual motifs in continuous glucose monitor (CGM) data collected from patients with type 1 diabetes. Compared to their contextless counterparts, these contextual motifs led to better predictions of hypo- and hyperglycemic events. Our results suggest that even when inferred, context is useful in both a long- and short-term prediction horizon when processing and interpreting physiological waveform data.Comment: 10 pages, 7 figures, accepted for oral presentation at KDD '1

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam

    Link Prediction with Mutual Attention for Text-Attributed Networks

    Full text link
    In this extended abstract, we present an algorithm that learns a similarity measure between documents from the network topology of a structured corpus. We leverage the Scaled Dot-Product Attention, a recently proposed attention mechanism, to design a mutual attention mechanism between pairs of documents. To train its parameters, we use the network links as supervision. We provide preliminary experiment results with a citation dataset on two prediction tasks, demonstrating the capacity of our model to learn a meaningful textual similarity.Comment: Added missing referenc

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc
    corecore