20,513 research outputs found

    A Bayesian Extension of the Description Logic ALC

    Get PDF
    Description logics (DLs) are well-known knowledge representation formalisms focused on the representation of terminological knowledge. A probabilistic extension of a light-weight DL was recently proposed for dealing with certain knowledge occurring in uncertain contexts. In this paper, we continue that line of research by introducing the Bayesian extension BALC of the DL ALC. We present a tableau-based procedure for deciding consistency, and adapt it to solve other probabilistic, contextual, and general inferences in this logic. We also show that all these problems remain ExpTime-complete, the same as reasoning in the underlying classical ALC

    Towards More Useful Description Logics of Time, Change and Context

    Get PDF
    Description Logics (DLs) are a family of logic-based formalisms for the representation of and reasoning about knowledge. Classical DLs are fragments of first-order logic and therefore aim at capturing static knowledge. Alas, the lack of means of DLs to capture dynamic aspects of knowledge has been often criticized because many important DL applications depend on this kind of knowledge. As a reaction to this shortcoming of DLs, two-dimensional extensions of DLs with capabilities to represent and reason about dynamic knowledge were introduced. We further, in this thesis, the understanding and utility of two-dimensional DLs. We particularly focus on identifying two-dimensional DLs providing the right expressive power to model more accurately temporal and contextual aspects of knowledge required by certain DL applications, or providing better computational properties than other possible alternatives. We pursue three lines of research: we study branching-time temporal DLs that emerge from the combination of classical DLs with the classical temporal logics CTL* and CTL; we study description logics of change that emerge from the combination of classical DLs with the modal logic S5; we study description logics of context that emerge from the combination of classical DLs with multi-modal logics. We investigate temporal and contextual DLs based on the classical DL ALC and on members of the EL-family of DLs. Our main technical contributions are algorithms for satisfiability and subsumption, and (mostly) tight complexity bounds

    Towards More Useful Description Logics of Time, Change and Context

    Get PDF
    Description Logics (DLs) are a family of logic-based formalisms for the representation of and reasoning about knowledge. Classical DLs are fragments of first-order logic and therefore aim at capturing static knowledge. Alas, the lack of means of DLs to capture dynamic aspects of knowledge has been often criticized because many important DL applications depend on this kind of knowledge. As a reaction to this shortcoming of DLs, two-dimensional extensions of DLs with capabilities to represent and reason about dynamic knowledge were introduced. We further, in this thesis, the understanding and utility of two-dimensional DLs. We particularly focus on identifying two-dimensional DLs providing the right expressive power to model more accurately temporal and contextual aspects of knowledge required by certain DL applications, or providing better computational properties than other possible alternatives. We pursue three lines of research: we study branching-time temporal DLs that emerge from the combination of classical DLs with the classical temporal logics CTL* and CTL; we study description logics of change that emerge from the combination of classical DLs with the modal logic S5; we study description logics of context that emerge from the combination of classical DLs with multi-modal logics. We investigate temporal and contextual DLs based on the classical DL ALC and on members of the EL-family of DLs. Our main technical contributions are algorithms for satisfiability and subsumption, and (mostly) tight complexity bounds

    A Formal Context Representation Framework for Network-Enabled Cognition

    No full text
    Network-accessible resources are inherently contextual with respect to the specific situations (e.g., location and default assumptions) in which they are used. Therefore, the explicit conceptualization and representation of contexts is required to address a number of problems in Network- Enabled Cognition (NEC). We propose a context representation framework to address the computational specification of contexts. Our focus is on developing a formal model of context for the unambiguous and effective delivery of data and knowledge, in particular, for enabling forms of automated inference that address contextual differences between agents in a distributed network environment. We identify several components for the conceptualization of contexts within the context representation framework. These include jurisdictions (which can be used to interpret contextual data), semantic assumptions (which highlight the meaning of data), provenance information and inter-context relationships. Finally, we demonstrate the application of the context representation framework in a collaborative military coalition planning scenario. We show how the framework can be used to support the representation of plan-relevant contextual information

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided
    • ā€¦
    corecore