2,289 research outputs found

    Stochastic Attraction-Repulsion Embedding for Large Scale Image Localization

    Full text link
    This paper tackles the problem of large-scale image-based localization (IBL) where the spatial location of a query image is determined by finding out the most similar reference images in a large database. For solving this problem, a critical task is to learn discriminative image representation that captures informative information relevant for localization. We propose a novel representation learning method having higher location-discriminating power. It provides the following contributions: 1) we represent a place (location) as a set of exemplar images depicting the same landmarks and aim to maximize similarities among intra-place images while minimizing similarities among inter-place images; 2) we model a similarity measure as a probability distribution on L_2-metric distances between intra-place and inter-place image representations; 3) we propose a new Stochastic Attraction and Repulsion Embedding (SARE) loss function minimizing the KL divergence between the learned and the actual probability distributions; 4) we give theoretical comparisons between SARE, triplet ranking and contrastive losses. It provides insights into why SARE is better by analyzing gradients. Our SARE loss is easy to implement and pluggable to any CNN. Experiments show that our proposed method improves the localization performance on standard benchmarks by a large margin. Demonstrating the broad applicability of our method, we obtained the third place out of 209 teams in the 2018 Google Landmark Retrieval Challenge. Our code and model are available at https://github.com/Liumouliu/deepIBL.Comment: ICC

    Detection-by-Localization: Maintenance-Free Change Object Detector

    Full text link
    Recent researches demonstrate that self-localization performance is a very useful measure of likelihood-of-change (LoC) for change detection. In this paper, this "detection-by-localization" scheme is studied in a novel generalized task of object-level change detection. In our framework, a given query image is segmented into object-level subimages (termed "scene parts"), which are then converted to subimage-level pixel-wise LoC maps via the detection-by-localization scheme. Our approach models a self-localization system as a ranking function, outputting a ranked list of reference images, without requiring relevance score. Thanks to this new setting, we can generalize our approach to a broad class of self-localization systems. Our ranking based self-localization model allows to fuse self-localization results from different modalities via an unsupervised rank fusion derived from a field of multi-modal information retrieval (MMR).Comment: 7 pages, 3 figures, Technical repor

    Divide and Fuse: A Re-ranking Approach for Person Re-identification

    Full text link
    As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a "Divide and use" re-ranking framework for person re-ID. It exploits the diversity from different parts of a high-dimensional feature vector for fusion-based re-ranking, while no other features are accessible. Specifically, given an image, the extracted feature is divided into sub-features. Then the contextual information of each sub-feature is iteratively encoded into a new feature. Finally, the new features from the same image are fused into one vector for re-ranking. Experimental results on two person re-ID benchmarks demonstrate the effectiveness of the proposed framework. Especially, our method outperforms the state-of-the-art on the Market-1501 dataset.Comment: Accepted by BMVC201

    Active Object Localization in Visual Situations

    Get PDF
    We describe a method for performing active localization of objects in instances of visual situations. A visual situation is an abstract concept---e.g., "a boxing match", "a birthday party", "walking the dog", "waiting for a bus"---whose image instantiations are linked more by their common spatial and semantic structure than by low-level visual similarity. Our system combines given and learned knowledge of the structure of a particular situation, and adapts that knowledge to a new situation instance as it actively searches for objects. More specifically, the system learns a set of probability distributions describing spatial and other relationships among relevant objects. The system uses those distributions to iteratively sample object proposals on a test image, but also continually uses information from those object proposals to adaptively modify the distributions based on what the system has detected. We test our approach's ability to efficiently localize objects, using a situation-specific image dataset created by our group. We compare the results with several baselines and variations on our method, and demonstrate the strong benefit of using situation knowledge and active context-driven localization. Finally, we contrast our method with several other approaches that use context as well as active search for object localization in images.Comment: 14 page

    Spatial patterns of knowledge-intensive business services in cities of various sizes, morphologies and economies

    Get PDF
    We compare intra-urban localization patterns of advertising and IT companies in three large Czech cities. The main aim of our analysis is an empirically-based contribution to the question to what extent do knowledge bases affect the spatial distribution of various knowledge-intensive business industries. The central research question is: To what extent is the localization of these two industries influenced by different modes of innovation/knowledge bases (symbolic vs. synthetic) and to what extent by contextual factors, such as urban size, morphology, position in the urban hierarchy and economic profile of the given city. We found that the urban contexts shape the localization patterns of advertising and IT companies more than differences in knowledge bases-both industries cluster primarily in the inner cities and urban cores. Formation of more suburban IT "scientific neighborhoods" is limited.Web of Science125art. no. 184
    • …
    corecore