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Active Object Localization in Visual Situations
Max H. Quinn, Anthony D. Rhodes, and Melanie Mitchell

Abstract—We describe a method for performing active lo-
calization of objects in instances of visual situations. A visual
situation is an abstract concept—e.g., “a boxing match”, “a
birthday party”, “walking the dog”, “waiting for a bus”—whose
image instantiations are linked more by their common spatial and
semantic structure than by low-level visual similarity. Our system
combines given and learned knowledge of the structure of a
particular situation, and adapts that knowledge to a new situation
instance as it actively searches for objects. More specifically, the
system learns a set of probability distributions describing spatial
and other relationships among relevant objects. The system uses
those distributions to iteratively sample object proposals on a
test image, but also continually uses information from those
object proposals to adaptively modify the distributions based on
what the system has detected. We test our approach’s ability to
efficiently localize objects, using a situation-specific image dataset
created by our group. We compare the results with several
baselines and variations on our method, and demonstrate the
strong benefit of using situation knowledge and active context-
driven localization. Finally, we contrast our method with several
other approaches that use context as well as active search for
object localization in images.

Index Terms—Object Detection, Active Object Localization,
Visual Situation Recognition

I. INTRODUCTION

CONSIDER the images in Fig. 1. Humans with knowledge
of the concept “Walking the Dog” can easily recognize

these images as instances of that visual situation. What objects
and relationships constitute this general situation? A simplified
description of the prototypical “Dog-Walking” situation might
consist of a human dog-walker holding a leash that is attached
to a dog, both of them walking (Fig. 2). This concept prototype
can be mapped straightforwardly onto the instances in Fig. 1.

In general, in order to recognize and understand a particular
abstract visual situation across varied instances, a perceiver
must have prior knowledge of the situation’s expected visual
and semantic structure, and must be able to flexibly adapt
that knowledge to a given input. Fig. 3 shows several images
semantically similar to those in Fig. 1, but which depart in
some way from the prototype of Fig. 2. In some instances
there are not one, but multiple dogs or dog-walkers; in some
the dog-“walkers” and dogs are not walking, but running (or
biking, or swimming, or otherwise riding wheeled vehicles);
in some, the leash is missing. In the last, the dog-walker is
not a person, but rather another dog.

In spite of these variations, most people would consider all
these (sometimes humorous) images to be instances of the
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same abstract category, roughly labeled Dog-Walking. This is
because people have the ability to quickly focus on relevant
objects, actions, groupings, and relationships in the image,
ignore irrelevant “clutter,” and allow some concepts from the
prototype to be missing, or replaced as needed by related
concepts. For example, “leash” can be missing; “dog” can
be replaced by “dog-group” ; “walking” can change to to
“running,” “swimming,” or “riding”; “dog-walker (human)”
can become “dog-walker (dog),” and so on. In [2], Hofstadter
et al. defined “conceptual slippage” as the act of modifying
concepts so as to flexibly map a perceived situation to a
known prototypical situation. Making appropriate conceptual
slippages is at the core of analogy-making, which is central
to the recognition of abstract concepts. [3]

In general, a visual situation defines a space of visual
instances (e.g., images) which are linked by an abstract
concept rather than any particular low-level visual similarity.
Two instances of Dog Walking can be visually dissimilar, but
conceptually analogous. While the notion of situation can ap-
plied to any abstract concept [6], most people would consider
a visual situation category to be—like Dog-Walking—a named
concept that invokes a collection of objects, regions, attributes,
actions, and goals with particular spatial, temporal, and/or
semantic relationships to one another.

The potential open-ended variation in components and rela-
tionships makes it difficult to model abstract situations, such
as Dog-Walking, solely by learning statistics from a large
collection of data. We believe that the process of analogy-
making, as developed in [2], is a promising, though yet
largely unexplored method for integrating prior conceptual-
level knowledge with statistical learning in order to capture
human-level flexibility in recognizing visual situations.

We are in the early stages of building a program, called
Situate, whose goal is to flexibly categorize and explain
new instances of known visual situations via analogy. In the
long term, our system will integrate object-recognition and
probabilistic-modeling methods with Hofstadter and Mitchell’s
Copycat architecture for analogy-making [7], [8]. Copycat’s
perceptual process interleaved top-down, expectation-driven
actions with bottom-up exploration in order to recognize and
make analogies between idealized situations. In Situate, we
are building on Copycat’s architecture to apply these ideas to
visual perception and analogy-making.

In our envisioned system, Situate will attempt to make sense
of a given visual image by interpreting it as an instance of
a known situation prototype. To do this, Situate will locate
objects, attributes, actions, and relationships relevant to the
situation and, when possible, map these, with appropriate
slippages, to the situation prototype. This mapping will allow
Situate to (1) decide if the given image is an instance of the
situation; and (2) if so, to explain how the system interpreted
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Fig. 1. Four instances of the “Dog-Walking” Situation. Images are from [1]. (All figures in
this paper are best viewed in color.)

Fig. 2. A simple prototype for the Dog-Walking
situation.

Fig. 3. Six “non-prototypical” Dog-Walking situations. (Images 1–4: [1]. Image 5: [4]. Image 6: [5].)

the image as such an instance. The explanation will explicitly
indicate all the components of the mapping (including concep-
tual slippages, if needed) from the given image to the known
prototype.

The problem of recognizing—and explaining—instances
of a known visual situation shares motivation but contrasts
with the widely studied tasks of “action recognition,” “event
recognition,” or general “situation recognition” that have been
explored in the computer vision literature (e.g., [9]–[13]). In
such tasks, a system is asked to classify a new image as
one of a set of possible action, event, or situation categories.
While there has been significant recent progress on particular
benchmark datasets, it is not surprising that such tasks remain
very difficult for computer vision systems, which still perform
well below humans. Moreover, even when such systems are
successful in classifying images as instances of particular
actions or events, it is not clear what such systems actually
“understand” about those kinds of situations (though as a step
in this direction, [10], [13] propose methods for assigning
“semantic roles” in instances of action categories). As Figs. 1
and 3 illustrate, even the seemingly simple situation of “Dog-
Walking” turns out to be complex and open-ended, requiring
substantial background knowledge and the ability to deal with
abstract concepts.

Thus, rather than attempting to classify scenes into one of
many situation classes, our current work on Situate focuses on
exhibiting deep knowledge of a particular situation concept.
Our goal is a system that can, via analogy, fluidly map its
knowledge of a particular abstract visual concept to a wide
variety of novel instances, while being able to both explain its
mapping and to measure how “stretched” that mapping is. We
believe that this approach is the most likely one to capture
general situation-recognition abilities. Moreover, we believe
that the ability for such analogy-based explanations may also

allow for new methods of training machine learning systems,
such as indicating to a system not only that a classification
was incorrect, but why it was incorrect.

Developing such a system is a long-term goal. In this
paper we focus on a shorter-term subtask for Situate: using
knowledge of situation structure in order to quickly locate
objects relevant to a known situation. We hypothesize that
using prior knowledge of a situation’s expected structure,
as well as situation-relevant context as it is dynamically
perceived, will allow the system to be accurate and efficient at
localizing relevant objects, even when training data is sparse,
or when object localization is otherwise difficult due to image
clutter or small, blurred, or occluded objects.

In the next section we describe this subtask in more detail.
The subsequent sections give the details of our dataset and
methods, results and discussion of experiments, an overview
of related literature, and plans for future work.

II. SITUATION STRUCTURE AND EFFICIENT OBJECT
LOCALIZATION

For humans, recognizing a visual situation is an active
process that unfolds over time, in which prior knowledge
interacts with visual information as it is perceived, in order
to guide subsequent eye movements. This interaction enables
a human viewer to very quickly locate relevant aspects of the
situation [14]–[18].

Most object-localization algorithms in computer vision do
not exploit such prior knowledge or dynamic perception of
context. The current state-of-the-art methods employ feedfor-
ward deep networks that produce and test a fixed number
of object proposals (also called region proposals)—on the
order of hundreds to thousands—in a given image (e.g., [19]–
[21]). An object proposal is a region or bounding box in the
image (sometimes associated with a particular object class).
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Assuming an object proposal defines a bounding box, the
proposal is said to be a successful localization (or detection) if
the bounding box sufficiently overlaps a target object’s ground-
truth bounding box. Overlap is measured via the intersection
over union (IOU) of the two bounding boxes, and the threshold
for successful localization is typically set to 0.5 [22].

Popular benchmark datasets for object-localization (or
object-detection, which we will use synonymously, although
they are sometimes defined distinctly) include Pascal VOC
[22] and ILSVRC [23]. In each, the detection task is the
following: given a test image, specify the bounding box of
each object in the image that is an instance of one of M
possible object categories. In the most recent Pascal VOC
detection task, the number of object categories M is 20; in
ILSVRC, M is 200. For both tasks, algorithms are typically
rated on their mean average precision (mAP) on the task:
the average precision for a given object category is the area
under its precision-recall curve, and the mean of these values
is taken over the M object categories. On both Pascal VOC
and ILSVRC, the best algorithms to date have mAP in the
range of about 0.5 to 0.70; in practice this means that they are
quite good at locating some kinds of objects, and very poor
at others.

In fact, state-of-the-art methods are still susceptible to sev-
eral problems, including difficulty with cluttered images, small
or obscured objects, and inevitable false positives resulting
from large numbers of object-proposal classifications. More-
over, such methods require large training sets for learning, and
potential scaling issues as the number of possible categories
increases.

For these reasons, several groups have pursued the more
human-like approach of “active object localization,” in which
a search for objects unfolds over time, with each subsequent
time step using information gained in previous time steps (e.g.,
[24]–[26]).

Our approach is an example of active object localization,
but in the context of specific situation recognition. Thus, only
objects specifically relevant to the given situation are required
to be located. Situate1 is provided some prior knowledge—
the set of the relevant object categories—and it learns (from
training data) a representation of the expected spatial and
semantic structure of the situation. This representation consists
of a set of joint probability distributions linking aspects of the
relevant objects. Then, when searching for the target objects
in a new test image, the system samples object proposals from
these distributions, conditioned on what has been discovered
in previous steps. That is, during a search for relevant objects,
evidence gathered during the search continually serves as
context that influences the future direction of the search.

Our hypothesis is that this localization method, by combin-
ing prior knowledge with learned situation structure and active
context-directed search, will require dramatically fewer object
proposals than methods that do not use such information.

In the next sections we describe the dataset we used and
experiments we performed to test this hypothesis.

1We refer to the system described in this paper as “Situate,” though what
we describe here is only one part of the envisioned Situate architecture.

III. DOMAIN AND DATASET

Our initial investigations have focused on the Dog-Walking
situation category: not only is it easy to find instances to
photograph, but, as illustrated by Figs. 1 and 3, it also
presents many interesting challenges for the general tasks of
recognizing, explaining, and making analogies between visual
situations. We believe that the methods developed in Situate
are general and will extend to other situation categories.

We test our system on a new image dataset, called the
“Portland State Dog-Walking Images” [1], created by our
group. This dataset currently contains 700 photographs, taken
in different locations by members of our research group. Each
image is an instance of a “Dog-Walking” situation in a natural
setting. (Figs. 1 and 3 give some examples from this dataset.)
Our group has also hand-labeled the Dog-Walker(s), Dog(s),
and Leash(es) in each photograph with tight bounding boxes
and object category labels.2.

For the purposes of this paper, we focus on a simplified
subset of the Dog-Walking situation: photographs in which
there is exactly one (human) dog-walker, one dog, one leash,
and unlabeled “clutter” (such as non-dog-walking people,
buildings, etc) as in Fig. 1. There are 500 such images in
this subset.

IV. OVERVIEW OF OUR METHOD

Our system’s task is to locate three objects—Dog-Walker,
Dog, and Leash—in a test image using as few object proposals
as possible. Here, an “object proposal” comprises an object
category (e.g., Dog), coordinates of a bounding box center,
and the bounding box’s size and aspect ratio.

We use the standard criterion for successfully locating an
object: an object proposal’s intersection over union (IOU)
with the target object’s ground-truth bounding box must be
greater than or equal to 0.5. Our main performance metric is
the median number of object-proposal evaluations per image
needed in order to locate all three objects.

In this section we give an overview of how our system
works. In the following sections we describe the details of
what the system learns, how it uses its knowledge to search
for objects, and the results of experiments that demonstrate
the effect of situation knowledge on the system’s efficiency.

A. Knowledge Given to Situate

For this task, the only knowledge given to Situate is the set
of relevant object categories {Dog-Walker, Dog, and Leash},
and the assumption that each image contains exactly one
instance of each of those categories. In future work we will
investigate less restricted situations, as well as the integration
of richer information about situations, such as additional
properties of constituent objects and more varied relationships
between objects.

2The photographs and label files can be downloaded at the URL given in [1].
Note that our collection is similar to the Stanford 40 Actions [27] “Walking
the Dog” category, but the photographs in our set are more numerous, varied,
and have bounding box labels for each relevant object.
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B. Knowledge Learned by Situate

From training data (photographs like those in Fig. 1), our
system learns the following probability models:

1) Bounding-Box Size and Shape Priors. For each of
the three object categories, Situate learns distributions
over bounding-box size, which is given as the area ratio
(box area / image area), and shape, which is given as
the aspect ratio (box width / box height). These prior
distributions are all independent of one another, and will
be used to sample bounding boxes in a test image before
any objects in that image have been localized. (Note
that our system does not learn prior distributions over
bounding-box location, since we do not want the system
to model photographers’ biases to put relevant objects
near the center of the image.)

2) Situation Model. Situate’s learned model of the Dog-
Walking situation consists of a set of probability dis-
tributions modeling the joint locations of the three
relevant objects, as well as the joint area-ratios and
aspect-ratios of bounding boxes for the three objects.
These distributions capture the expected relationships
among the three objects with respect to location and
size/shape of bounding boxes. When an object proposal
is labeled a “detection” by the system, the situation
model distributions are re-conditioned on all currently
detected proposals in order to constrain the expected
location, size, and shape of the other as-yet undetected
objects.

Details of these two learning steps are given in Sec. VI.

C. Running Situate on a Test Image

Following the Copycat architecture [7], Situate’s main data
structure is the Workspace, which contains the input test image
as well as any object proposals that have scored highly enough.
Situate uses its learned prior distributions and its conditioned
situation model to select and score object proposals in the
Workspace, one at a time.

At any time during a run on a test image, each relevant
object category (Dog-Walker, Dog, and Leash) is associated
with a particular probability distribution over locations in the
image, as well as probability distributions over aspect ratios
and area ratios for bounding boxes. Situate initializes the
location distribution for each object category to uniform over
the image, and initializes each object category’s area-ratio
and aspect-ratio distribution to the learned prior distributions
(Fig. 4).

At each time step in a run, Situate randomly chooses an
object category that has not yet been localized, and samples
from that category’s current probability distributions over
location, aspect ratio, and area ratio in order to produce a
new object proposal. (If part of the object proposal’s bounding
box lies outside of the image boundaries, the bounding box
is cropped to the part that lies inside the image boundaries.)
The resulting proposal is then given a score for that object
category, as described in Sec. IV-D.

The system has two user-defined thresholds: a provisional
detection threshold and a final detection threshold. These

thresholds are used to determine which object proposals are
promising enough to be added to the Workspace, and thus
influence the system’s subsequent search.

If an object proposal’s score is greater than or equal to the
final detection threshold, the system marks the object proposal
as “final,” adds the proposal to the Workspace, and stops
searching for that object category.

Otherwise, if an object proposal’s score is greater than
or equal to the provisional detection threshold, it is marked
as “provisional.” If its score is greater than any provisional
proposal for this object category already in the Workspace, it
replaces that earlier proposal in the Workspace. The system
will continue searching for better proposals for this object
category.

Whenever the Workspace is updated with a new object
proposal, the system modifies the current situation model to
be conditioned on all of the object proposals currently in the
Workspace.

The conditioned location distributions reflect where the
system should expect to see instances of the associated object
categories, given the detections so far. Similarly, the condi-
tioned area-ratio and aspect-ratio distributions reflect what size
and shape boxes the system should expect for the associated
object categories, given what has already been detected.

The purpose of provisional detections in our system is to use
information the system has discovered even if the system is
not yet confident that the information is correct or complete.
In Sec. VIII we describe the results of an experiment that
tests the usefulness of provisional detections for directing the
system’s search for its target objects.

D. Scoring Object Proposals
In the experiments reported here, during a run of Situate,

each object proposal is scored by an “oracle” that returns
the intersection over union (IOU) of the object proposal with
the ground-truth bounding box for the target object. The
provisional and final detection thresholds are applied to this
score to determine if the proposal should be added to the
Workspace. For the experiments described in this paper, we
used a provisional detection threshold of 0.25 and a final
detection threshold of 0.5. This oracle can be thought of as
an idealized “classifier” whose scores reflect the amount of
partial localization of a target object.

Why do we use this idealized oracle rather than an actual
object classifier? The goal of this paper is not to determine
the quality of any particular object classifier, but to assess the
benefit of using prior situation knowledge and active context-
directed search on the efficiency of locating relevant objects.
Thus, in this study, we do not use trained object classifiers to
score object proposals.

In future work we will experiment with object classifiers
that can predict not only on the object category of a proposal
but also the amount and type of overlap with ground truth
(e.g., see [28] for interesting work on this topic).

E. Main Loop of Situate
The following describes the main loop of Situate, in which

the system searches for objects in a new test image.
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Fig. 4. Situate’s initialization with a test image, before the start of a run. The Workspace is shown on the left, initialized with a test image. On the right, the
initial per-category probability distributions for location, area ratio, and aspect ratio are shown. The (two-dimensional) location distributions for each object
category are initialized as uniform (here, all black), and the area-ratio and aspect-ratio distributions are initialized to the learned prior distributions. In this
visualization, the density axis has arbitrary units to fit the plot size; the intention here is to show the general shape of these distributions. For example, as
expected, human dog-walkers tend to have higher area ratios and lower aspect ratios than dogs, and leashes have considerably more variation than either
humans or dogs.

Input: A test image
Initialization: Initialize location, area-ratio, and aspect-
ratio distributions for each relevant object category (Dog-
Walker, Dog, and Leash). The initial location distributions
are uniform; initial area-ratio and aspect-ratio distribu-
tions are learned from training data.
Main Loop: Repeat for max-num-iterations or until all
three objects are detected:

1) Choose object category c at random from non-
detected categories in {Dog-Walker, Dog, and
Leash}.

2) Sample from category-specific location, area-ratio,
and aspect-ratio distributions for category c to create
an object proposal.

3) Calculate detection score d for this object proposal.
4) If d ≥ final-detection-threshold, mark proposal as

“final,” and add it to the Workspace.
5) Else, if d ≥ provisional-detection-threshold, mark

proposal as “provisional. If d is greater than the de-
tection score of any previous provisional proposal in
the Workspace, add new proposal to the Workspace,
replacing any previous provisional proposal for cat-
egory c.

6) Update probability distributions in situation model
to be conditioned on current proposals in the
Workspace.

Return: number of iterations needed to successfully
detect all three objects (a completed situation detection),
or, if not successful, “failure”.

In our experiments we set max-num-iterations per image to
1,000.

V. A SAMPLE RUN OF SITUATE

In this section we illustrate this process with a few visu-
alizations from a run of Situate—the same run whose initial
state is shown in Fig 4. Fig. 5 shows the state of the system
after it has iteratively sampled six object proposals. The first

five scored below the provisional detection threshold, but the
sixth proposal—for Dog-Walker—has a score (0.36) that is
above the provisional detection threshold. Thus a provisional
detection (dashed red box) is added to the Workspace. This
causes the system to modify the current location, area, and
aspect ratio distributions for the other two object categories,
so that they are conditioned on this Dog-Walker proposal
according to the learned situation model (right side of Fig 5).
The new, conditioned distributions indicate where, and at what
scale, the system should expect to locate the dog and the leash,
given the (provisionally) detected dog-walker. The detected
proposal does not affect the distributions for Dog-Walker; in
our current system, an object category is not conditioned on
itself.

The modified probability distributions for Dog and Leash
allow the system to focus its search on more likely locations
and box sizes and shapes. Fig. 6 shows the state of the
system after 19 object proposals have been sampled. The
system has successfully located the dog (the IOU with ground
truth is 0.55). This final detection is added to the Workspace,
and the system will no longer search for dogs. There are
now two detections in the workspace. The Leash probability
distributions are conditioned on both of them, and the Dog
and Dog-Walker probability distributions are conditioned on
each other (right side of Fig. 6).

Fig. 7 shows the system’s state after 26 object proposals
have been sampled. The updated situation model allows a
better (and final) Dog-Walker proposal to be found quickly,
as well as a final Leash proposal.

Taken together, Figs. 4–7 give the flavor of how Situate
is able to use learned situation structure and active object
localization in order to very quickly close in on the relevant
objects in a visual situation.

VI. SITUATE’S PROBABILISTIC MODELS: DETAILS

In this section we give details of how our system learns
the probabilistic models of situations it uses to quickly locate
relevant objects.
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Fig. 5. The system’s state after six object proposals have been sampled and scored. The sixth proposal was for the Dog-Walker category and its score (0.36)
is higher than the provisional threshold, so a provisional detection was added to the Workspace (red dashed box; the samples that gave rise to this proposal are
shown in red on the various Dog-Walker probability distributions). This causes the location, area ratio, and aspect ratio distributions for Dog and Leash to be
conditioned on the provisional Dog-Walker detection, based on the learned situation model. In the location distributions, white areas denote higher probability.
The area-ratio and aspect-ratio distributions for Dog and Leash have also been modified from the initial ones, though the changes are not obvious due to our
simple visualization.

Fig. 6. The system’s state after 19 object proposals have been sampled and scored. The focused conditional distributions have led to a Dog detection at IOU
0.55 (solid red box, indicating final detection), which in turn modifies the distributions for Dog-Walker and Leash. The situation model is now conditioned
on the two detections in the Workspace. Note how strongly the Dog and Dog-Walker detections constrain the Leash location distributions.

Fig. 7. The system’s state after 26 object proposals have been sampled and scored. Final detections have been made for all three objects.
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Before learning, all images in the dataset are scaled to
have ∼250,000 pixels (preserving each image’s original aspect
ratio). The center of the image is assigned coordinates (0,0).
The coordinates of all ground-truth boxes are converted to the
new scale and coordinate system.

A. Bounding Box Size and Shape Priors

For each of the three object categories, Situate takes the
ground-truth bounding boxes from the training set, and fits
the natural logarithms of the box sizes (area ratio) and box
shapes (aspect ratio) to normal distributions. At test time, the
system uses these prior distributions to sample area ratio and
aspect ratio until one or more detections have been added to
the Workspace.

We used log-normal distributions to model these values
rather than normal distributions, because the former are always
positive and give more weight to smaller values. This made
log-normal distributions a better fit for the data.

B. Situation Model

From training data, Situate learns a situation model: a set
of joint probability distributions that capture the “situational”
correlations among relevant objects with respect to location,
area, and aspect ratio. As described above, when running
on a test image, Situate will use these distributions in order
to compute category-specific location, area, and aspect ratio
probabilities conditioned on objects that have been detected
in the Workspace.

The joint probability distributions Situate learns are the
following:

Location distributions: Let (xDog, yDog), (xDW, yDW), (xL, yL)
denote the coordinates of the bounding-box center for a Dog,
Dog-Walker, and Leash, respectively.

Situate learns the pairwise and three-way location rela-
tionships among relevant objects, by modeling them as the
following multivariate normal distributions:

(xDog, yDog, xDW, yDW) ∼ N (µDog,DW,ΣDog,DW)
(xDog, yDog, xL, yL) ∼ N (µDog,L,ΣDog,L)
(xDW, yDW, xL, yL) ∼ N (µDW,L,ΣDW,L)
(xDog, yDog, xDW, yDW, xL, yL) ∼ N (µDog,DW,L,ΣDog,DW,L).

Here µ is the multivariate mean over locations and Σ is the
covariance matrix; these parameterize the distribution.

Size and Shape Distributions: Let αDog, αDW, and αL denote
the natural logarithm of the bounding box area-ratio for a
Dog, Dog-Walker, and Leash, respectively. Similarly, let γDog,
γDW, and γL denote the natural logarithm of the bounding box
aspect-ratio for a Dog, Dog-Walker, and Leash, respectively.

Situate learns the pairwise and three-way size and shape
relationships among relevant objects by modeling them as the
following multivariate log-normal distributions over area ratio
and aspect ratio:

(αDog, γDog, αDW, γDW) ∼ N (µDog,DW,ΣDog,DW)
(αDog, γDog, αL, γL) ∼ N (µDog,L,ΣDog,L)
(αDW, γDW, αL, γL) ∼ N (µDW,L,ΣDW,L)
(αDog, γDog, αDW, γDW, αL, γL) ∼ N (µDog,DW,L,ΣDog,DW,L).

Here µ is the multivariate mean over log-area-ratio and log-
aspect-ratio and Σ is the covariance matrix.

We chose normal and log-normal distributions to use in the
Situation Model because they are very fast both to learn during
training and to condition on during a run on a test image.
Their efficiency would also scale well if we were to add new
attributes to the situation model (e.g., object orientation) and
thus increase the dimensionality of the distribution.

However, such distributions sometimes do not capture the
situation relationships very precisely. We discuss limitations
of these modeling choices in Sec. X.

All of the code for this project was written in MATLAB,
and will be released upon publication of this paper.

VII. COMPARISON METHODS

In Sec. II, we stated our hypothesis: by using prior (given
and learned) knowledge of the structure of a situation and
by employing an active context-directed search, Situate will
require dramatically fewer object proposals to locate relevant
objects than methods that do not use such information. In order
to test this hypothesis, we compare Situate’s performance with
that of four baseline methods and two variations on Situate.
These are described in this section.

A. Uniform Sampling

As the simplest baseline, we use uniform sampling of
location, area ratio, and aspect ratio to form object proposals.
Uniform sampling uses the same main loop of Situate (cf.
Sec. IV-E) but keeps the location, area ratio, and aspect ratio
distributions fixed throughout the search, as follows. Given
an object category c ∈ {Dog-Walker, Dog, Leash}, an object
proposal is formed by sampling the following values:

• Location: The coordinates (x, y) of the bounding-box
center are sampled uniformly across the entire image,
independent of c.

• Area Ratio: A value α is sampled uniformly in the range
[ln .01, ln .5]; the area ratio is set to eα. This means that
the area ratio will be between 1% and 50% of the image
size, with higher probability given to smaller values. This
gives a reasonable fit to the distribution of area ratios
(independent of c) seen in the training set.

• Aspect Ratio: A value γ is sampled uniformly in the
range [ln(.25), ln(4)]; the area ratio is set to eγ . This
gives a reasonable fit to the distribution of aspect ratios
(independent of c) seen in the training set.

B. Sampling from Learned Area-Ratio and Aspect-Ratio Dis-
tributions

A second baseline method samples location uniformly (as
in the uniform method described above), but samples area
ratio and aspect ratio from the prior (learned) per-category
distributions (cf. Sec. VI-A), keeping all these distributions
fixed throughout the search. This method tests the usefulness
of learning prior log-normal distributions of box area and
aspect ratio.
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C. Location Prior: Salience

As we mentioned above, our model does not include a
learned prior distribution on location, because we do not want
to model the photographer bias which tends to put relevant
objects in the center of a photo.

To test a baseline method with a location prior, we used a
fast-to-compute salience algorithm, similar to the one proposed
in [29] (and extended in [30]). In particular, when given an
image, our system creates a category-independent location
prior by computing a salience map on each test image,
and then normalizing it to form a probability distribution
over location—the salience prior. Each pixel is thus given
a value p ∈ [0, 1] representing the system’s assessment of the
probability that it is in the center of a foreground “object”
(independent of object category).

This method uses the main loop of Situate, but throughout
the search the location distributions are fixed to this salience
prior; the bounding box size and shape distributions are fixed
to the uniform distributions described in Sec. VII-A.

In more detail, following [29], our salience computation
decomposes an image into a set of feature maps, each indicat-
ing the presence of a low-level visual feature at a particular
scale, and then integrates the resulting feature maps into a
single salience map. The low-level features are inspired by
features known to be computed in the primary visual cortex
[31] including local intensity, color contrast, and presence of
edge orientations. Our method differs from that of [29] only in
parameter settings that allow us to decompose an image into
feature maps quickly, to avoid aliasing artifacts and bias, and to
avoid unrepresented edge orientations and spatial frequencies.
We found that much of the salience in the resulting maps is
located on the edges of objects, which is reasonable. However,
because our purpose is to select points near the center of
mass of objects, we smooth the resulting salience map with
a Gaussian kernel with standard deviation approximately 10%
of the image width. A similar variation of [29] was recently
shown to compare well with other state-of-the-art saliency
methods [32].

D. Randomized Prim’s Object Proposals

As a final baseline for comparison, we use the Randomized
Prim’s Algorithm [33], a category-independent object-proposal
method. Given an image, this method first creates a superpixel
segmentation, and then creates object proposals by repeatedly
constructing partial spanning trees of the superpixels. The
nodes of the partial spanning trees are individual superpixels,
and the edges are weights based on superpixel similarity, mea-
sured along several dimensions (e.g., color, common border
ratio, and size). The algorithm constructs a partial spanning
tree by starting with a single randomly chosen node, and then
choosing new nodes to add to the tree probabilistically based
on edge weight. A randomized stopping criterion is used to
terminate a partial spanning tree. The final object proposal
bounding-box is constructed to surround the superpixels in
the tree. This procedure is repeated N times, where the
number N of object proposals requested per image is a user-
defined parameter. The number of proposals generated is not

always equal to N since near-duplicate proposals are removed
from the set of generated proposals. Note that the proposals
produced are not ranked by the algorithm in any way. This
algorithm was found to be competitive with several other 2014
state-of-the-art object proposal methods on Pascal VOC data
[34].

To compare this method with Situate, we used the MATLAB
implementation provided at https://github.com/smanenfr/rp.
We used the value 200 for the “minimum number of super-
pixels,” and N = 10, 000. In order to get a large-enough set
of bounding boxes, we ran the algorithm four times on each
image, each time using a different color space (HSV, LAb,
Opponent, and rg) for the color similarity feature (see [33] for
details).

For each image in the test set, we randomly sampled 1,000
object proposals, one at a time (without replacement) from the
generated set. If a sampled proposal bounding box had IOU
≥ 0.5 for any of the three relevant ground truth objects, that
object was marked as “final,” indicating a final detection. If
all three objects were detected (marked as “final”) during the
sampling procedure, sampling was stopped and the number
of proposals sampled was returned. Otherwise “failure” was
returned after 1,000 proposals were sampled.

E. Combining Salience with Learned Distributions

In addition to these baselines, we also investigated two
variations on our method. In the first, we experimented with
a combination of methods, as follows. The prior location
distributions for all categories are based on salience, and
the prior distributions for bounding box size and shape are
based on the learned log-normal distributions. After one or
more detections are added to the Workspace, the conditional
distributions associated with the situation model are used
as described in previous sections, but with one change: the
conditioned location distribution for each category is combined
with the prior salience distribution by pointwise multiplication,
followed by addition of a small non-zero value to each pixel (to
avoid zero-probability locations), followed by renormalization
to produce a new location distribution.

F. No Provisional Detections

In a second variation, we removed the system’s ability
to use provisional detections to condition situation model
distributions. This means that the only kind of detections are
final detections, which require IOU ≥ 0.5. In this experi-
mental condition, partial detections (IOU ≤ 0.5) provide no
information to the system. This condition tests the usefulness
of using such partial information. We ran this using the
“Combined Learned Distributions and Salience” version of our
system, since that method exhibited the best performance, as
we show in the next section.

VIII. RESULTS

In this section we present results from running the meth-
ods described above. In reporting results, we use the term
completed situation detection to refer to a run on an image
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for which a method successfully located all three relevant
objects within 1,000 iterations; we use the term failed situation
detection to refer to a run on an image that did not result in
a completed situation detection within 1,000 iterations.

The various methods described above are characterized by:
(1) Location Prior: whether the prior distribution on location
is uniform or based on salience; (2) Box Prior: whether the
prior distributions on bounding-box size and shape are uniform
or learned; and (3) Situation Model: whether, once one or
more object detections are added to the Workspace, a learned
situation model conditioned on those detections is used instead
of the prior distributions, and whether that conditioned model
is combined with a salience prior for location.

As described above, our dataset contains 500 images. For
each method, we performed 10-fold cross-validation: at each
fold, 450 images were used for training and 50 images for test-
ing. Each fold used a different set of 50 test images. For each
method we ran the algorithm described in Sec. IV-C on the test
images, with final-detection-threshold set to 0.5, provisional-
detection-threshold set to 0.25, and maximum number of
iterations set to 1,000. In reporting the results, we combine
results on the 50 test images from each of the 10 folds and
report statistics over the total set of 500 test images.

A. Number of Iterations Per Image to Reach Completed Situ-
ation Detection

Fig. 8 gives, for each method, the median number of
iterations per image in order to reach a completed situation
detection. The medians are over the union of test images from
all 10 folds—that is for 500 images total. The median value
is given as “failure” for methods on which a majority of test
image runs resulted in failed situation detections. We used the
median instead of the mean to allow us to give a statistic that
includes the “failure” runs.

Fig. 8 shows the strong benefit of using a situation model.
The most effective method was the combination of a salience
prior, learned box priors, and a learned situation model. For
a majority of test images this method required fewer than
200 iterations to locate all three objects. The same method
without salience performed only slightly worse, indicating that
the salience prior had only a minor effect on the system’s
efficiency. It is also clear that using provisional detections
to guide search is very helpful; removing this ability (the
“No provis.” case) nearly quadrupled the median number
of iterations needed. The four comparison methods with no
situation model failed to reach a completed situation detection
on a majority of the test images.

A more detailed way to visualize results from our runs is
given in Fig. 9. This plot shows, for each method, a cumulative
count of completed situation detections as a function of num-
ber of iterations. In particular, it shows, for each number n of
iterations, how many of the 500 test images had complete situ-
ation detections within n or fewer iterations. For example, for
the best-performing method (“Salience, Learned, Learned”),
about 250 test images had complete situation detections within
200 or fewer iterations. The two top methods—those using
learned situation models that were influenced by provisional

detections—both show a steep rise in the initial part of the
curve, which means that for most of the test images only a
small number of object proposal evaluations were needed.

Fig. 9 shows that even the best method failed to reach
complete situation detections on about 75 of the 500 test
images. By looking at the final state of the Workspace on
these images, we found that the most common problem was
locating leashes. In many of the failure cases, a partial leash
was detected, but the system was unable to improve on the
partial detection.

B. Sequence of Detections

The previous plots showed results for completed situation
detections. What can we say about the sequence of object
detections within each image? For methods using a situation
model, we would expect that detecting the first object would
take the most iterations. This is because, before a first object is
detected, the system relies only on its prior distributions. But
once a first object is detected, the situation model, conditioned
on that detection, serves to constrain the search for a second
object, and it should be detected much more quickly than the
first object. Once a second object is detected, the situation
model is conditioned on two detections, constraining the
search even more, so we might expect the third detection to
occur even more quickly.

We tested these expectations by recording, for each test
image, the number of iterations to the first detection, from the
first to the second, and from the second to the third. We denote
these as t0,1, t1,2, and t2,3, respectively. Here, by “detection,”
we refer to detections at the final-detection-threshold. Each
method’s median values of t0,1, t1,2, and t2,3 over the 500
test images are shown in Fig. 10. As before, if a method
fails to achieve a first, second, or third detection within 1,000
iterations, that detection is marked as “failure”. In Fig. 10, a
bar marked as “Failure” indicates that the method failed on a
majority of the test images. (Results for Randomized Prims are
not included here because we did not collect this finer-grained
data for that method.)

Let t̃0,1 denote the median time to the first detection, t̃1,2
denote the median time from the first to the second detection,
and t̃2,3 denote the median time from the second to the third
detection, for a given method. For the three methods using a
situation model, Fig. 10 shows that, as expected, t̃1,2 and t̃2,3
are both considerably shorter than t̃0,1. However, surprisingly,
for the first two methods, t̃2,3 is larger than t̃1,2. This appears
to be because dog-walkers (i.e., humans) are usually the first
object to be detected (since they are the largest of the three
objects and also the ones that best fit the learned probability
distributions). dogs are usually detected second, and leashes
usually detected last. Leashes tend to be the most difficult
objects to detect, because they are in many cases quite small or
otherwise are outliers with respect to the normal distributions
learned from the training data. Conditioning on a learned
situation model helps a great deal in locating these objects—
after all, t̃2,3 is relatively quite low—but the difficulty of
detecting some leashes is most likely what causes t̃2,3 to be
larger than t̃1,2 for the first two methods.
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Fig. 8. Results from seven different methods, giving median number of iterations per image to reach a completed situation detection (i.e., all three objects are
detected at final detected threshold). If a method failed to reach a completed situation detection within the maximum iterations on a majority of test images,
its median is given as “Failure”.

Fig. 9. Cumulative number of completed situation detections as a function of iterations. For each value n on the x-axis, the corresponding y-axis value gives
the number of test image runs reaching completed situation detections with n or fewer object proposal evaluations. “RP” refers to the Randomized Prim’s
algorithm.

Fig. 10. Results from different methods giving median number of iterations between subsequent object detections (at the final-detection threshold. For each
method, the plot gives three bars: the first bar is t̃0,1, the median number of iterations to the first object detection in that image; the second bar is t̃1,2, the
median number of iterations from the first to the second detection; and the third bar is t̃2,3, the median number of iterations from the second to the third
detection. Results for Randomized Prims is not included here because we did not collect this finer-grained data for that method.

In the methods that do not use a situation model, t̃1,2 and
t̃2,3 are much higher than t̃0,1, which reflects the relative
difficulty of detecting the three different object categories
without the help of situational context.

C. Discussion

The results presented in this section strongly support our
hypothesis that by using knowledge of a situation’s structure
in an active search, our method will require dramatically fewer



11

object proposals than methods that do not use such informa-
tion. Situate’s active search is directed by a set of probability
models that are continually updated based on information
gained by the system as it searches. Our results show that
using information from provisional, incomplete detections is
key to closing in quickly on a complete situation detection.

Our results showed that a location prior based on a fast-to-
compute salience map only marginally improved the speed
of localization. More sophisticated salience methods might
reduce the number of iterations needed, but the computational
expense of those methods themselves might offset the benefits.
This is something we plan to explore in future work.

Since we used an idealized oracle to score object proposals,
the results we report here support our hypothesis only if
we assume that the system receives feedback about partial
detections. In future work we will experiment with using a
object classifier that is trained to provide feedback about the
proposal’s likely overlap with a target ground-truth region.

In addition, we found that, for the best-performing method,
the failures to reach completed situation detections were
largely due to the difficulty of locating leashes. This is an
example of an object category that is very hard to locate
without context, and even with strong contextual information
it is often hard to go beyond a partial detection. To do this,
it will be important to identify small object interactions, such
as a person’s hand holding a leash. Recent work in computer
vision has addressed this kind of issue (e.g., [35]–[38]) and it
will be one focus of our future research.

IX. RELATED WORK

In this section we review work that is most closely related
to our goals and methods: using context to localize objects,
and active object localization.

A. Related Work on using Context to Localize Objects

Until recently the dominant paradigm in object localization
and detection has been the exhaustive “sliding windows”
approach (e.g., [39]). In the last several years, more selective
approaches to creating category-independent object proposals
have become popular (e.g., [40]). However, in order to make
object detection more efficient and accurate, many groups have
looked at how to use contextual features.

The term “context” takes on different meanings in different
papers [41]. In some cases it refers simply to co-occurrence
of objects, possibly in the same vicinity. For example, [39]
uses co-occurrence statistics to re-score candidate bounding
boxes (“sheep” and “cow” are more likely to co-occur in an
image than ”sheep” and ”bus”). Several groups (e.g., [11],
[42]–[45]) use graphical models to capture statistics related
to co-occurrence well as some spatial relationships among
objects in an image.

Other approaches use “Gist” and other global image features
to relate overall scene statistics or categories to object loca-
tions, sometimes combining these features with co-occurrence
statistics and spatial relationships between objects (e.g., [46]–
[49]). Still other methods learn statistical relationships between
objects and features of pixel regions that surround the objects

(e.g., [50], [51]) or objects (“things”) and homogeneous image
regions (“stuff”) [52]. Going further, [53] describes a method
for learning joint distributions over scene categories (e.g.,
“street,” “office,” “kitchen”) and context-specific appearance
and layout of objects in those scenes.

More recently, several groups have combined object-
proposal methods such as R-CNN [20], [40] with graphical
models (e.g., [54]) or other CNN architectures (e.g., [10]) to
combine object-to-object context with whole scene context in
order to improve object detection.

The context-based methods described above are only a
sample of the literature on incorporating context into ob-
ject detection methods, but they give the general flavor of
techniques that have been explored. Our work shares several
goals with these approaches, but differs in at least four major
aspects. One is our focus on images that are instances of
abstract visual situations such as “Dog-Walking,” in which
“situational” context from relevant objects helps very signif-
icantly in object localization, as was shown in Sec. VIII. In
contrast, the approaches described above have been designed
and tested using image datasets in which the role of semantic
or “situational” context is limited. This means that context of
the kinds described above most often do not result in large
improvements in localization accuracy [42].

A second aspect in which our work differs from other work
on context is that we use prior situation knowledge to focus
on specific object categories relevant to the given situation.
The methods described above typically collect statistics on
contextual relationships among all possible object categories
(or at least all known to the system). The idea is that the system
will learn which object categories have useful contextual
relationships. This is an admirable but quite difficult task, and
it entails some risks: with many categories and without enough
training data, the system may learn false relationships among
unrelated categories, and as the number of known categories
increases, the amount of training data and computation needed
for training and testing may scale in an untenable way. Our
approach assumes that the system has some prior knowledge
of a situation’s relevant concepts; Situate is not meant to be a
general statistical “situation-learning” system.

A third point of difference is the importance in our system of
explanation to the user. As we described in Sec I, an key aspect
of our envisioned system is its ability to explain its reasoning
to humans via the structures it builds in the Workspace and
their mappings to (and possible slippages from) a prototype
situation. Creating an explicit situation model is part of the
system’s ability to explain itself. For example, visualizations
like those in Figs. 5-7 make it very clear how the system’s
perception of context facilities object localization. In contrast,
most other recent context-based object detection papers simply
report on the difference context makes in per-category average
precision—it is increased for some categories, decreased for
others, but it is usually not clear why this happens, or what
could be done to improve performance.

Finally, unlike our system, the approaches to context de-
scribed above are not dynamic—that is, context is used on a
test image as an added feature or variable used to optimize
object detection. In our system, contextual features change
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over time as a result of what the system perceives; there is
temporal feedback between perception of context and object
localization. This kind of feedback is the hallmark of active
object localization, which leads to our discussion in the next
subsection.

B. Related Work on Active Object Localization

Our method is an example of active object localization,
an iterative process inspired by human vision, in which the
evaluation of an object proposal at each time step provides
information that the system can use to create a new object
proposal at the next time step.

Work on active object localization has a long history in com-
puter vision, often in the context of active perception in robots
[55] and modeling visual attention [56]. The literature of this
field is large and currently growing—here we summarize a
few examples of recent work most similar to our own.

Alexe et al. [57] proposed an active, context-driven local-
ization method: given an initial object proposal (“window”)
in a test image, at each time step the system uses a nearest-
neighbor algorithm to find training image regions that similar
in position and appearance to the current object proposal.
These nearby training regions then “vote” on the next location
to propose in the test image, given each training region’s
displacement vector relative to the ground-truth target object.
These “vote-maps” are integrated from all past time steps;
the integrated vote map is used to choose the next object
proposal. The system returns the highest scoring of all the
visited windows, using an object-classifier score. The authors
found that their method increased mAP on the Pascal VOC
2010 dataset by a small amount over the state of the art
method of the time, but used only about one-fourth the window
evaluations as that method. However, the nearest-neighbor
method can be costly in terms of efficiency. A more efficient
and accurate version of this method, using R-CNN object
proposals and random forest classifiers is described in [25].

Some groups have used recurrent neural networks (RNNs)
to perform active localization. For example the work of Mnih
et al. [58] (extended in [59]) combines a feedforward“glimpse
network,” which extracts a representation of an image region,
with an RNN that inputs that representation as well as its
own previous state to produce a new state that is input to an
“action network” which outputs the next location to attend
to. the algorithms described in [58] and [59] are tested on
cluttered and translated MNIST digits as well as images of
house numbers from Google Street View.

Several groups frame active object localization as a Markov
decision process (MDP) and use reinforcement learning to
learn a search policy. The approach proposed in [28] involves
learning a search policy for a target object that consists of a
sequence of bounding-box transformations, such as horizontal
and vertical moves, and changes to scale and aspect ratio. The
algorithm starts with a bounding box containing most of the
image, and uses a deep reinforcement learning method to learn
a policy that maps bounding box features to actions, obtaining
a reward if IOU with the ground truth bounding box is reduced
by the action. Once learned, this policy is applied to new test

images to locate target objects. The authors tested this method
on the Pascal VOC 2007 dataset; it obtained competitive mAP
using on average a very small number of policy actions.

In the MDP method proposed in [60], an action consists
of running a detector for a “context class” that is meant to
help locate instances of the target “query class”. To locate
appropriate “context regions” in a test image, the system relies
on stored pairs of bounding boxes from co-occurring object
classes in training images, along with their displacement vector
and change of aspect ratio. If the policy directs the system to
detect a given context class in a test image, the system uses a
nearest-neighbor method to create a vote map similar to that
proposed in [57], as described above. This method was tested
on the Pascal VOC 2010 dataset and exhibited a small increase
in mAP over other state-of-the-art methods while requiring
significantly fewer object-proposal evaluations

Nagaraja et al. [61] proposed an MDP method in which
a search policy is learned via “imitation learning”: in a given
state, an oracle demonstrates the optimal action to take and the
policy subsequently learns to imitate the oracle. The algorithm
starts with a set of possible object proposals (generated by a
separate algorithm) and its learned policy guides exploration
of these proposals. The system was tested on a dataset of
indoor scenes and was found to improve average precision (as
a function of number of proposal evaluations) on several object
categories as compared to a simple proposal-ranking method.

Like these methods, our approach focuses on perception as
a temporal process in which information is used as it is gained
to narrow the search for objects. However, the differences be-
tween our approach and these other active localization methods
are similar to those we described in the previous subsection:
often these methods are tested on datasets in which the role of
context is limited; these methods often rely on exhaustive co-
occurrence statistics among object categories; and it is usually
hard to understand why these methods work well or fail on
particular object categories. In addition, the reinforcement-
learning based methods learn a policy that is fixed at test time;
in our method, the representation of a situation itself adapts
(via modifications to probability distributions) as information
is obtained by the system. Finally, the amount of training data
and computation time required can be quite high, especially
for reinforcement learning and RNN-based methods.

In future work, we plan to compare some of these methods
with ours on our situation-specific dataset, in order to assess
the performance of these approaches on images in which con-
text plays a large role, and to assess the relative requirements
for training data and computation time among the different
methods.

X. CONCLUSIONS AND FUTURE WORK

Our work has provided the following contributions:
• We have proposed a new approach to actively localizing

objects in visual situations, based on prior knowledge,
adaptable probabilistic models, and information from
provisional detections.

• We created a new situation-specific dataset (the Portland
State Dog-Walking Images) with human-labeled object
bounding boxes, and made it publicly available.
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• We performed experiments comparing our system with
several baselines and variations. These experiments
demonstrated the benefits of our approach in the context
of an idealized oracle classifier. We also analyzed where
and why our approach fails.

• We contrasted our approach with those of several other
research groups working on incorporating context into
object detection, and on active object localization.

The work described in this paper is an early step in our broader
research goal: to develop a system that integrates cognitive-
level symbolic knowledge with lower-level vision in order to
exhibit a deep understanding of specific visual situations. This
is a long-term and open-ended project. In the near-term, we
plan to improve our current system in several ways:

• Experimenting with probability models that better fit our
target situations, rather than the more limited univariate
and multivariate normal distributions used here. We are
currently exploring versions of kernel density estimation
and Gaussian process regression algorithms.

• Replacing the object-proposal scoring oracle with
category-specific object classifiers, based on convolu-
tional network features.

• Exploring more sophisticated salience methods to im-
prove location priors, while taking into account the trade-
off between the usefulness of the location prior and its
computational expense.

• Creating datasets of other visual situations, and evaluating
our approach on them. We would like to create a pub-
lic “situation image dataset repository” for researchers
interested in working on recognition of abstract visual
situations. While there are numerous action- and event-
recognition datasets available, we are not aware of any
that are designed specifically to include a very wide
variety of instances of specific abstract visual situations
like those our method is aimed at.

• Comparing our system with related active object local-
ization methods on situation-specific image datasets.

In the longer term, our goal is to extend Situate to incorporate
important aspects of Hofstadter and Mitchell’s Copycat archi-
tecture in order to give it the ability to quickly and flexibly
recognize visual actions, object groupings, relationships, and
to be able to make analogies (with appropriate conceptual
slippages) between a given image and situation prototypes.
In Copycat, the process of mapping one (idealized) situation
to another was interleaved with the process of building up
a representation of a situation—this interleaving was shown
to be essential to the ability to create appropriate, and even
creative analogies [8]. Our long-term goal is to build Situate
into a system that bridges the levels of symbolic knowledge
and low-level perception in order to more deeply understand
visual situations—a core component of general intelligence.
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