391 research outputs found

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    Gateway Positioning in Flying Networks

    Get PDF
    Nos últimos anos, o uso de Veículos Aéreos Não Tripulados (UAVs) para uma infinidade de aplicações, tanto civis como militares, tem aumentado. Como eles apresentam capacidade de operarem praticamente qualquer lugar, a capacidade de pairar sobre o solo e sua crescente capacidade de transportar carga tornaram-os plataformas perfeitas para o transporte de nós de comunicação abordo. Existe um interesse crescente em UAVs no contexto de Redes Voadoras (FNs), tanto para estabelecer novas redes de comunicações ou reforçar conexões existentes, quanto para permitir o acesso de banda larga à internet em Eventos Temporários Lotados (TCEs). No entanto, a alta mobilidade inerente aos UAVs leva a frequentes alterações na topologia da rede, o que, por sua vez, pode causar quebra das ligações entre os UAVs, aumentando a dificuldade em garantir a Qualidade de Serviço (QoS) esperada pelos utilizadores da rede.Um problema que surge com a implementação de FNs é a quantidade total de tempo que os UAVs podem permanecer operacionais, pois os UAVs possuem baterias com capacidade limitada,cuja energia pode ser consumida rapidamente, pois é necessária para comunicações e movimento.Para ligar a FN à Internet, é necessário uma Gateway (GW), que pode ser implementada numUAV. Assim, é importante garantir o posicionamento óptimo do GW UAV para obter o desempenho máximo da rede. Na literatura, algumas soluções foram propostas para o posicionamento dos UAVs que atuam como Pontos de Acesso (APs); no entanto, o problema do posicionamento do GW UAV ainda não foi estudada com profundidade. Como o desempenho global da rede pode ser aprimorado se o GW UAV puder permanecer operacional pelo máximo tempo possível, o desenvolvimento de uma solução de posicionamento do GW UAV, por forma a garantir o desempenho máximo da rede e sensível à eficiência energética constitui o foco desta dissertação. Esta dissertação terá como foco o problema de um posicionamento eficiente do GW UAV do ponto de vista energético, mas, mantendo a cobertura aos restantes nós da rede. De forma a abordar este problema, será desenvolvido um algoritmo para o posicionamento não estacionário do GW UAV.Over the past few years the usage of Unmanned Aerial Vehicles (UAVs) for a myriad of applications, both civil and military, has increased. As they present capability to operate in virtually anywhere, the ability to hover over the ground, and their increasing capacity to carry cargo, has made them perfect platforms for the transport of on board communications nodes.There has been an increasing interest in UAVs in the context of Flying Networks (FNs), either to establish communication networks or reinforce telecommunications infrastructures and enable the broadband access to the Internet in Temporary Crowded Events (TCEs). However, the high mobility inherent to UAVs leads to frequent changes in the network topology, which in turn may cause connection disruptions between the UAVs, increasing the difficulty of meeting the Quality of Service (QoS) expected by the network's users.An additional problem that raises with the implementation of FNs is the total amount of time that UAVs can remain operational, as they have batteries with limited capacity, whose energy can be drained quite quickly, as it is required for both communications and movement.To connect the FN to the Internet a Gateway (GW) is required, and it can be implemented in a UAV. Thus, it is important to ensure the optimal placement of the GW UAV in order to achieve maximum network performance. In the literature, some solutions have been proposed for the placement of the UAVs that act as Access Points (APs); however, the issue of the GW UAV placement has not been studied with the desired depth. As the overall network performance can be improved if the GW UAV remains operational for the maximum amount of time, the development of an energy efficiency-aware a placement solution of the GW UAV, in order to maximize the network performance is the scope dissertation.This dissertation will focus on the issue of an energy-efficient placement of the GW UAV while maintaining coverage for the remaining nodes of the network. To tackle this issue an algorithm to the non-stationary placement of the GW UAV will be developed

    Routing for Flying Networks using Software-Defined Networking

    Get PDF
    Nos últimos anos, os Veículos Aéreos Não Tripulados (UAVs) estão a ser usados de forma crescente em inúmeras aplicações, tanto militares como civis. A sua miniaturização e o preço reduzido abriram o caminho para o uso de enxames de UAVs, que permitem melhores resultados na realização de tarefas em relação a UAVs independentes. Contudo, para permitir a cooperação entre UAVs, devem ser asseguradas comunicações contínuas e fiáveis.Além disso, os enxames de UAVs foram identificados pela comunidade científica como meio para permitir o acesso à Internet a utilizadores terrestres em cenários como prestação de socorros e Eventos Temporários Lotados (TCEs), tirando partido da sua capacidade para transportar Pontos de Acesso (APs) Wi-Fi e células Long-Term Evolution (LTE). Soluções que dependem de uma Estação de Controlo (CS) capaz de posicionar os UAVs de acordo com as necessidades de tráfego dos utilizadores demonstraram aumentar a Qualidade de Serviço (QoS) oferecida pela rede. No entanto, estas soluções introduzem desafios importantes no que diz respeito ao encaminhamento do tráfego.Recentemente, foi proposta uma solução que tira partido do conhecimento da CS sobre o estado futuro da rede para atualizar dinamicamente as tabelas de encaminhamento de modo a que as ligações na rede voadora não sejam interrompidas, em vez de se recuperar da sua interrupção, como é o caso na maioria dos protocolos de encaminhamento existentes. Apesar de não considerar o impacto das reconfigurações na rede de acesso, como consequência da mobilidade dos APs, ou o balanceamento da carga na rede, esta abordagem é promissora e merece ser desenvolvida e implementada num sistema real.Esta dissertação tem como foco a implementação de um protocolo de encaminhamento para redes voadoras baseado em Software-Defined Networking (SDN). Especificamente, aborda os problemas de mobilidade e de balanceamento da carga na rede de uma perspetiva centralizada, garantindo simultaneamente comunicações ininterruptas e de banda-larga entre utilizadores terrestres e a Internet, permitindo assim que os UAVs se possam reposicionar e reconfigurar sem interferir com as ligações dos terminais à rede.In recent years, Unmanned Aerial Vehicles (UAVs) are being increasingly used in various applications, both military and civilian. Their miniaturisation and low cost paved the way to the usage of swarms of UAVs, which provide better results when performing tasks compared to single UAVs. However, to enable cooperation between the UAVs, always-on and reliable communications must be ensured.Moreover, swarms of UAVs are being targeted by the scientific community as a way to provide Internet access to ground users in scenarios such as disaster reliefs and Temporary Crowded Events (TCEs), taking advantage of the capability of UAVs to carry Wi-Fi Access Points (APs) or Long-Term Evolution (LTE) cells. Solutions relying on a Control Station (CS) capable of positioning the UAVs according to the users' traffic demands have been shown to improve the Quality of Service (QoS) provided by the network. However, they introduce important challenges regarding network routing.Recently, a solution was proposed to take advantage of the knowledge provided by a CS regarding how the network will change, by dynamically updating the forwarding tables before links in the flying network are disrupted, rather than recovering from link failure, as is the case in most of the existing routing protocols. Although it does not consider the impact of reconfigurations on the access network due to the mobility of the APs, it is a promising approach worthy of being improved and implemented in a real system.This dissertation focuses on implementing a routing solution for flying networks based on Software-Defined Networking (SDN). Specifically, it addresses the mobility management and network load balancing issues from a centralised perspective, while simultaneously enabling uninterruptible and broadband communications between ground users and the Internet, thus allowing UAVs to reposition and reconfigure themselves without interfering with the terminals' connections to the network

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated
    corecore