12,450 research outputs found

    A Novel Image Similarity Measure Based on Greatest and Smallest Eigen Fuzzy Sets

    Get PDF
    A novel image similarity index based on the greatest and smallest fuzzy set solutions of the max–min and min–max compositions of fuzzy relations, respectively, is proposed. The greatest and smallest fuzzy sets are found symmetrically as the min–max and max–min solutions, respectively, to a fuzzy relation equation. The original image is partitioned into squared blocks and the pixels in each block are normalized to [0, 1] in order to have a fuzzy relation. The greatest and smallest fuzzy sets, found for each block, are used to measure the similarity between the original image and the image reconstructed by joining the squared blocks. Comparison tests with other well-known image metrics are then carried out where source images are noised by applying Gaussian filters. The results show that the proposed image similarity measure is more effective and robust to noise than the PSNR and SSIM-based measures

    Evaluation of Wirelessly Transmitted Video Quality Using a Modular Fuzzy Logic System

    Get PDF
    Video transmission over wireless computer networks is increasingly popular as new applications emerge and wireless networks become more widespread and reliable. An ability to quantify the quality of a video transmitted using a wireless computer network is important for determining network performance and its improvement. The process requires analysing the images making up the video from the point of view of noise and associated distortion as well as traffic parameters represented by packet delay, jitter and loss. In this study a modular fuzzy logic based system was developed to quantify the quality of video transmission over a wireless computer network. Peak signal to noise ratio, structural similarity index and image difference were used to represent the user's quality of experience (QoE) while packet delay, jitter and percentage packet loss ratio were used to represent traffic related quality of service (QoS). An overall measure of the video quality was obtained by combining QoE and QoS values. Systematic sampling was used to reduce the number of images processed and a novel scheme was devised whereby the images were partitioned to more sensitively localize distortions. To further validate the developed system, a subjective test involving 25 participants graded the quality of the received video. The image partitioning significantly improved the video quality evaluation. The subjective test results correlated with the developed fuzzy logic approach. The video quality assessment developed in this study was compared against a method that uses spatial efficient entropic differencing and consistent results were observed. The study indicated that the developed fuzzy logic approaches could accurately determine the quality of a wirelessly transmitted video

    Objective View Synthesis Quality Assessment

    Get PDF
    International audienceView synthesis brings geometric distortions which are not handled efficiently by existing image quality assessment metrics. Despite the widespread of 3-D technology and notably 3D television (3DTV) and free-viewpoints television (FTV), the field of view synthesis quality assessment has not yet been widely investigated and new quality metrics are required. In this study, we propose a new full-reference objective quality assessment metric: the View Synthesis Quality Assessment (VSQA) metric. Our method is dedicated to artifacts detection in synthesized view-points and aims to handle areas where disparity estimation may fail: thin objects, object borders, transparency, variations of illumination or color differences between left and right views, periodic objects... The key feature of the proposed method is the use of three visibility maps which characterize complexity in terms of textures, diversity of gradient orientations and presence of high contrast. Moreover, the VSQA metric can be defined as an extension of any existing 2D image quality assessment metric. Experimental tests have shown the effectiveness of the proposed method

    A saliency dispersion measure for improving saliency-based image quality metrics

    Get PDF
    Objective image quality metrics (IQMs) potentially benefit from the addition of visual saliency. However, challenges to optimising the performance of saliency-based IQMs remain. A previous eye-tracking study has shown that gaze is concentrated in fewer places in images with highly salient features than in images lacking salient features. From this, it can be inferred that the former are more likely to benefit from adding a saliency term to an IQM. To understand whether these ideas still hold when using computational saliency instead of eyetracking data, we first conducted a statistical evaluation using 15 state of the art saliency models and 10 well-known IQMs. We then used the results to devise an algorithm which adaptively incorporates saliency in IQMs for natural scenes, based on saliency dispersion. Experimental results demonstrate this can give significant improvement
    • …
    corecore