16 research outputs found

    Human Motion Retrieval Using Video or Drawn Sketch

    Get PDF
    The importance of motion retrieval is increasing now a days. The majority of existing motion retrieval labor intensive, there has been a recent paradigm move in the animation industry with an increasing use of pre-recorded movement of animating exclusive figures. An essential need to use motion catch data is an efficient method for listing and accessing movements. I n this work, a novel sketching interface for interpreting the problem is provided. This simple strategy allows the user to determine the necessary movement by drawing several movement swings over a attracted personality, which needs less effort and extends the users expressiveness. To support the real-time interface, a specific development of the movements and the hand-drawn question is needed. Here we are implementing the Conjugate Gradient method for retrieving motion from hand drawn sketch and video. It is an optimization and prominent iterative method. It is fast and uses a small amount of storage

    DanceMoves: A Visual Analytics Tool for Dance Movement Analysis

    Full text link
    Analyzing body movement as a means of expression is of interest in diverse areas, such as dance, sports, films, as well as anthropology or archaeology. In particular, in choreography, body movements are at the core of artistic expression. Dance moves are composed of spatial and temporal structures that are difficult to address without interactive visual data analysis tools. We present a visual analytics solution that allows the user to get an overview of, compare, and visually search dance move features in video archives. With the help of similarity measures, a user can compare dance moves and assess dance poses. We illustrate our approach through three use cases and an analysis of the performance of our similarity measures. The expert feedback and the experimental results show that 75% to 80% of dance moves can correctly be categorized. Domain experts recognize great potential in this standardized analysis. Comparative and motion analysis allows them to get detailed insights into temporal and spatial development of motion patterns and poses

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Pose-Timeline for Propagating Motion Edits

    Get PDF
    Motion editing often requires repetitive operations for modifying similar action units to give a similar effector impression. This paper proposes a system for efficiently and flexibly editing the sequence of iterative actionsby a few intuitive operations. Our system visualizes a motion sequence on a summary timeline with editablepose-icons, and drag-and-drop operations on the timeline enable intuitive controls of temporal properties of themotion such as timing, duration, and coordination. This graphical interface is also suited to transfer kinematicaland temporal features between two motions through simple interactions with a quick preview of the resultingposes. Our method also integrates the concept of edit propagation by which the manual modification of one actionunit is automatically transferred to the other units that are robustly detected by similarity search technique. Wedemonstrate the efficiency of our pose-timeline interface with a propagation mechanism for the timing adjustmentof mutual actions and for motion synchronization with a music sequence

    A hybrid approach for human motion retrieval

    Get PDF
    Cataloged from PDF version of article.Retrieving similar motions from motion databases has become an essential topic of computer animation research. The use of binary geometric features and inverted indexes is one of the efficient solutions to this problem. This approach can be used with variation and inexactness algorithms for fuzzy searches. However, close similarity searches are not possible. In addition, the process is not automatic since it needs user input for selecting binary features to use. In another efficient approach, k-d tree with medium sized numerical based feature sets and shortest path search on a directed graph are used. However, it does not propose any tool for fuzzy searches. In this thesis, we propose a hybrid approach that utilizes numerical based feature sets, k-d tree based indexing structure and inverted index based motion matching technique. Our hybrid approach does not need user input, can be used in environments requiring close similarity of motions and can be used with variation and inexactness algorithms. Our results show that our hybrid approach is useful and efficient for similarity searches on motion databases.Salor, YağızM.S

    Pattern Recognition and Quantifying Associations Within Entities of Data Driven Systems for Improving Model Interpretability

    Get PDF
    Discovering associations among entities of a system plays an important role in data science. The majority of the data science related problems have become heavily dependent on Machine Learning (ML) since the rise of computation power. However, the majority of the machine learning approaches rely on improving the performance of the algorithm by optimizing an objective function, at the cost of compromising the interpretability of the models. A new branch of machine learning focuses on model interpretability by explaining the models in various ways. The foundation of model interpretability is built on extracting patterns from the behavior of the models and the related entities. Gradually, Machine learning has spread its wing to almost every industry. This dissertation focuses on the data science application to three such domains. Firstly, assisting environmental sustainability by identifying patterns within its components. Machine learning techniques play an important role here in many ways. Discovering associations between environmental components and agriculture is one such topic. Secondly, improving the robustness of Artificial Intelligence applications on embedded systems. AI has reached our day-to-day life through embedded systems. The technical advancement of embedded systems made it possible to accommodate ML. However, embedded systems are susceptible to various types of errors, hence there is a huge scope of recovery systems for ML models deployed on embedded systems. Third, bringing the user communities of the entertainment systems across the globe together. Online streaming of entertainment has already leveraged ML to provide educated recommendations to its users. However, entertainment content can sometimes be isolated due to demographic barriers. ML can identify the hidden aspects of these contents which would not be possible otherwise. In subsequent paragraphs, various challenges concerning these topics will be introduced and corresponding solutions will be followed that can address those challenges

    On Learning, Representing and Generalizing a Task in a Humanoid Robot

    Get PDF
    We present a Programming by Demonstration (PbD) framework for generically extracting the relevant features of a given task and for addressing the problem of generalizing the acquired knowledge to different contexts. We validate the architecture through a series of experiments in which a human demonstrator teaches a humanoid robot some simple manipulatory tasks. A probability based estimation of the relevance is suggested, by first projecting the joint angles, hand paths, and object-hand trajectories onto a generic latent space using Principal Component Analysis (PCA). The resulting signals were then encoded using a mixture of Gaussian/Bernoulli distributions (GMM/BMM). This provides a measure of the spatio-temporal correlations across the different modalities collected from the robot which can be used to determine a metric of the imitation performance. The trajectories are then generalized using Gaussian Mixture Regression (GMR). Finally, we analytically compute the trajectory which optimizes the imitation metric and use this to generalize the skill to different contexts and to the robot's specific bodily constraints

    Query-by-example for motion capture data

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 57-58).Motion capture datasets are employed widely in animation research and industry, however there currently exists no efficient way to index and search this data for diversified use. Motion clips are generally searched by filename or keywords, neither of which incorporates knowledge of actions in the clip aside from those listed in the descriptions. We present a method for indexing and searching a large database of motion capture clips that allows for fast insertion and query-by-example. Over time, more motions can be added to the index, incrementally increasing its value. The result is a tool that reduces the amount of time spent gathering new data for motion applications, and increases the utility of existing motion clips.by Bennett Lee Rogers.S.M
    corecore