2,750 research outputs found

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Multimodal Human Group Behavior Analysis

    Get PDF
    Human behaviors in a group setting involve a complex mixture of multiple modalities: audio, visual, linguistic, and human interactions. With the rapid progress of AI, automatic prediction and understanding of these behaviors is no longer a dream. In a negotiation, discovering human relationships and identifying the dominant person can be useful for decision making. In security settings, detecting nervous behaviors can help law enforcement agents spot suspicious people. In adversarial settings such as national elections and court defense, identifying persuasive speakers is a critical task. It is beneficial to build accurate machine learning (ML) models to predict such human group behaviors. There are two elements for successful prediction of group behaviors. The first is to design domain-specific features for each modality. Social and Psychological studies have uncovered various factors including both individual cues and group interactions, which inspire us to extract relevant features computationally. In particular, the group interaction modality plays an important role, since human behaviors influence each other through interactions in a group. Second, effective multimodal ML models are needed to align and integrate the different modalities for accurate predictions. However, most previous work ignored the group interaction modality. Moreover, they only adopt early fusion or late fusion to combine different modalities, which is not optimal. This thesis presents methods to train models taking multimodal inputs in group interaction videos, and to predict human group behaviors. First, we develop an ML algorithm to automatically predict human interactions from videos, which is the basis to extract interaction features and model group behaviors. Second, we propose a multimodal method to identify dominant people in videos from multiple modalities. Third, we study the nervousness in human behavior by a developing hybrid method: group interaction feature engineering combined with individual facial embedding learning. Last, we introduce a multimodal fusion framework that enables us to predict how persuasive speakers are. Overall, we develop one algorithm to extract group interactions and build three multimodal models to identify three kinds of human behavior in videos: dominance, nervousness and persuasion. The experiments demonstrate the efficacy of the methods and analyze the modality-wise contributions

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost

    Convolutional Neural Network on Three Orthogonal Planes for Dynamic Texture Classification

    Get PDF
    Dynamic Textures (DTs) are sequences of images of moving scenes that exhibit certain stationarity properties in time such as smoke, vegetation and fire. The analysis of DT is important for recognition, segmentation, synthesis or retrieval for a range of applications including surveillance, medical imaging and remote sensing. Deep learning methods have shown impressive results and are now the new state of the art for a wide range of computer vision tasks including image and video recognition and segmentation. In particular, Convolutional Neural Networks (CNNs) have recently proven to be well suited for texture analysis with a design similar to a filter bank approach. In this paper, we develop a new approach to DT analysis based on a CNN method applied on three orthogonal planes x y , xt and y t . We train CNNs on spatial frames and temporal slices extracted from the DT sequences and combine their outputs to obtain a competitive DT classifier. Our results on a wide range of commonly used DT classification benchmark datasets prove the robustness of our approach. Significant improvement of the state of the art is shown on the larger datasets.Comment: 19 pages, 10 figure

    Network Model Selection for Task-Focused Attributed Network Inference

    Full text link
    Networks are models representing relationships between entities. Often these relationships are explicitly given, or we must learn a representation which generalizes and predicts observed behavior in underlying individual data (e.g. attributes or labels). Whether given or inferred, choosing the best representation affects subsequent tasks and questions on the network. This work focuses on model selection to evaluate network representations from data, focusing on fundamental predictive tasks on networks. We present a modular methodology using general, interpretable network models, task neighborhood functions found across domains, and several criteria for robust model selection. We demonstrate our methodology on three online user activity datasets and show that network model selection for the appropriate network task vs. an alternate task increases performance by an order of magnitude in our experiments

    Cross validation of bi-modal health-related stress assessment

    Get PDF
    This study explores the feasibility of objective and ubiquitous stress assessment. 25 post-traumatic stress disorder patients participated in a controlled storytelling (ST) study and an ecologically valid reliving (RL) study. The two studies were meant to represent an early and a late therapy session, and each consisted of a "happy" and a "stress triggering" part. Two instruments were chosen to assess the stress level of the patients at various point in time during therapy: (i) speech, used as an objective and ubiquitous stress indicator and (ii) the subjective unit of distress (SUD), a clinically validated Likert scale. In total, 13 statistical parameters were derived from each of five speech features: amplitude, zero-crossings, power, high-frequency power, and pitch. To model the emotional state of the patients, 28 parameters were selected from this set by means of a linear regression model and, subsequently, compressed into 11 principal components. The SUD and speech model were cross-validated, using 3 machine learning algorithms. Between 90% (2 SUD levels) and 39% (10 SUD levels) correct classification was achieved. The two sessions could be discriminated in 89% (for ST) and 77% (for RL) of the cases. This report fills a gap between laboratory and clinical studies, and its results emphasize the usefulness of Computer Aided Diagnostics (CAD) for mental health care

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure
    corecore