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Abstract

Human behaviors in a group setting involve a complex mixture of multiple modalities:

audio, visual, linguistic, and human interactions. With the rapid progress of AI,

automatic prediction and understanding of these behaviors is no longer a dream. In

a negotiation, discovering human relationships and identifying the dominant person

can be useful for decision making. In security settings, detecting nervous behaviors

can help law enforcement agents spot suspicious people. In adversarial settings such

as national elections and court defense, identifying persuasive speakers is a critical

task. It is beneficial to build accurate machine learning (ML) models to predict such

human group behaviors.

There are two elements for successful prediction of group behaviors. The first is

to design domain-specific features for each modality. Social and Psychological studies

have uncovered various factors including both individual cues and group interactions,

which inspire us to extract relevant features computationally. In particular, the group

interaction modality plays an important role, since human behaviors influence each

other through interactions in a group. Second, e↵ective multimodal ML models are

needed to align and integrate the di↵erent modalities for accurate predictions. How-

ever, most previous work ignored the group interaction modality. Moreover, they

only adopt early fusion or late fusion to combine di↵erent modalities, which is not

optimal.

This thesis presents methods to train models taking multimodal inputs in group
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interaction videos, and to predict human group behaviors. First, we develop an

ML algorithm to automatically predict human interactions from videos, which is

the basis to extract interaction features and model group behaviors. Second, we

propose a multimodal method to identify dominant people in videos from multiple

modalities. Third, we study the nervousness in human behavior by a developing

hybrid method: group interaction feature engineering combined with individual facial

embedding learning. Last, we introduce a multimodal fusion framework that enables

us to predict how persuasive speakers are.

Overall, we develop one algorithm to extract group interactions and build three

multimodal models to identify three kinds of human behavior in videos: dominance,

nervousness and persuasion. The experiments demonstrate the e�cacy of the methods

and analyze the modality-wise contributions.
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Chapter 1

Introduction

This chapter describes the motivation for identifying group human behavior followed

by the formal statement of the problems we aim to solve. Then it provides the

organization of the following chapters and lists the main contributions in the thesis.

Section 1.1

Motivation

Human group behavior is exhibited when people interact with each other, desiring

to conform to the group, to be liked by others, and to gain more information about

members of the group. For example, a manager often behaves dominantly in meetings,

a student can be nervous when others talk about him/her in class, a politician wants

to be persuasive in an election. Social scientists conduct studies to discover the factors

(e.g. facial and vocal clues) that are highly related to such group behaviors [49, 65, 45].

Moreover, with a large amount of videos such as meetings, discussions, public speech,

family activities recorded and available online, companies and governments expect

automatic and accurate prediction and analysis of group behavior, with the help of

Machine Learning (ML) technologies in audio, video and language understanding.

Automated identification of human group behavior is beneficial in many ways.

1



1.1 Motivation Introduction

Companies would like to have persuasive salespeople and advocates to gain profits

on their behalf. Robots are expected to monitor nervous response to adjust the ways

to approach humans. In a diplomatic negotiation, analyzing the dominant person on

the opposite side is helpful for strategy making. Safety agents want to detect lies to

identify suspicious people and prevent harmful events. Eventually, an ideal scheme is

to build an artificial intelligence to detect the existence of all kinds of behavior when

the people of interest interact with surroundings.

Although important, identifying such group behaviors is a challenging task. First,

datasets with rich multimodal communication signals and large-scale task-specific

annotations are needed to train the ML models. Most existing datasets are either

uni-modal ones (e.g. Image dominance data [79], text persuasion data [157]), or

support only a few tasks [84]. Conversely, the ELEA multimodal dataset [124] has

a wide range of annotations, but it only contains 102 subjects and simple group

interactions. Second, domain-specific knowledge (e.g. facial cues of nervousness) is

helpful for the model design. Without such knowledge, it is impossible to train models

via features extracted from limited annotated data. Third, computational ways to

model group interactions and extract multimodal features are essential for model

performance. For example, accurate and compact representation of facial emotions is

a key input to the model. Last, due to the heterogeneity of signals in videos, proper

multimodal fusion strategies are the key to align these audio, visual, linguistic and

communication signals together for better prediction.

Plenty of research has been conducted on human behavior prediction. Although

much work has focused on individual features such as head movements [58], speaking

turns [75], voice pitch [69], few e↵orts have paid attention to modeling the (non-)verbal

communication among a group or considered the mutual influence of individuals when

making predictions. For instance, a dominant person can gain others’ attentions when
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speaking [50], which can only be captured with group interactions. Besides, human

behavior is a complex result of events that happened in a period of time, but most

approaches (e.g.[3, 25]) simply computed the average or other simple statistics of each

feature over time, ignoring the distribution and the ordering of the features. As an

example, a nervous man may change gaze rapidly [89], taking average cannot account

for such dynamics. Moreover, these approaches combine di↵erent modalities naively

by either concatenating the features or averaging the predictions made by single-

modal models trained separately. By doing so, the importance and inter-dependency

of modalities are not taken into account.

This dissertation is motivated to address these challenges and improve the previous

methods. To sum up, we propose an algorithm to extract non-verbal communications

from videos, and study three kinds of group behavior from individual cues and group

influence. We also propose a multimodal fusion framework applicable to human-

centered videos and collect a new debate video dataset to demonstrate the framework.

Section 1.2

Problem statement

Given a video where a group of people interact with each other, the ultimate problem

is to predict di↵erent kinds of behavior of each person. Figure 1.1 shows all the

problems we aim to solve along the way.

First, comprehensive signals need to be acquired automatically. The audio and

visual signals are usually easier to acquire than the text. In this work, we rather focus

on the audiovisual signals and non-verbal interaction, including the text transcripts

if they are available. More importantly, we emphasize the problem of extracting

non-verbal interaction signals such as looking at and speaking to.

The second problem is how to design and extract features from the signals. The
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1.2 Problem statement Introduction

Figure 1.1: Roadmap for group behavior prediction. The green texts highlight the
key problems to solve.

factors uncovered by social science studies are considered and converted to mathe-

matical representations for each person with the help of pre-trained neural networks

([112, 93]) and classical signal processing methods ( [41, 123]). In particular, group

interactions can be modeled as a network, where the nodes and edges are people

and their interactions. As such, node features incorporating the network e↵ect (e.g.

[34, 88]) can be extracted. To capture the activity dynamics, temporal aggregation

of the features is also significant.

The third problem is to collect video datasets which cover dynamic human inter-

action activities and annotate them with various labels of interest. During collection,

the alignments between modalities and di↵erent people is advantageous to the training

process.

Last but not the least, given the extracted multimodal features and the labels,

we build machine learning models to (i) consider the mutual influence among people

when making the predictions for each person, and (ii) fuse the modalities with di↵erent

importance and better representation. These techniques are missing in most of the

past e↵orts.
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1.3 Overview and contributions Introduction

Table 1.1: Outline and contribution of the thesis.

Chapters Data Group in-

teraction

extraction

Group

mutual

influence

Domain

feature &

representa-

tion

Multimodal

fusion

4: Visual at-

tention focus

pred.

! ! !

5: Domi-

nance pred.

! !

6: Nervous-

ness pred.

! !

7: Persua-

sion pred.

! ! !

Section 1.3

Overview and contributions

Overall contribution To solve the problems stated in the previous section, this

thesis comes up with a suite of four methods and algorithms ranging from group in-

teraction extraction to multimodal behavior prediction. We collect a video dataset,

Qipashuo, to fill a lack of multimodal dynamic datasets with annotated human be-

haviors. We propose a scalable, lightly supervised algorithm to extract face-to-face

interaction networks from videos as the foundation to model group e↵ects. We then

develop models which make accurate predictions for the behaviors of dominance,

nervousness and persuasion by considering the multimodal individual cues and group

interactions. We also study the significant modality cues towards sdi↵erent behaviors.

Our contribution is outlined according to chapters in Table 1.1.

Chapter 3 introduces all the major datasets used in this thesis, including the

Qipashuo dataset [14] we collected, and other datasets (Resistance[16], ELEA [103],

IQ2US [14]) to evaluate our models.
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In Chapter 4, we propose an iterative collective classifier to predict the visual

focus of attention in group interaction videos. We also extract the who-look-at-whom

dynamic interaction network in Resistance data using the proposed light-supervised

model [16]. The network is the basis of richer interactions in Chapters 5,6, and

employed in other authored publications [150, 87].

Chapter 5, 6 explore the identifications of dominance and nervousness in group

interaction videos respectively. For dominance prediction, we propose a novel class

of dominance rank features based on group interaction and social science studies,

together with one multimodal system and one group prediction algorithm, to incor-

porate the visual and audio modalities of each person. For nervousness prediction, a

hybrid algorithm is developed, combing the trained individual facial emotional repre-

sentation and the proposed class of nervousness score features based on group interac-

tion. Inspired from social science theory , the nervousness scores take the audiovisual

emotions and the dominance behavior into account. The methods are evaluated on

both Resistance and ELEA data, outperforming six baselines in dominance prediction

and seven in nervousness prediction.

Chapter 7 designs an adaptive multimodal fusion framework to learn proper rep-

resentation for persuasion prediction. The framework aims to align the heterogeneous

modality inputs into a common space while learning modality-wise importance. It

outperforms three baselines on two persuasion tasks on the Qipashuo and IQ2US

datasets.

In addition to making accurate predictions, we further conduct studies of specific

modalities, features, and raw inputs that contribute to each kind of group behavior.

Our findings are highlighted below:

(a) Dominant people tend to draw more attention when speaking, although they

may not speak a lot.
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(b) Visual features are more important than audio features for nervousness predic-

tion, and nervousness of a subject is largely influenced by dominance of the

people interacting with him or her.

(c) For persuasion prediction, linguistic modality is the most significant, followed

by visual then audio modality.

Below we summarize each of the chapters 4-7 briefly.

1.3.1. Visual focus of attention prediction in videos (Chapter 4)

The task is to predict the visual focus of attention of each person (i.e. who the

person looks at) at each timestamp in a group-interaction videos. Visual focus of

attention in multi-person discussions is a crucial nonverbal indicator in tasks such as

inter-personal relation inference, speech transcription, and deception detection. How-

ever, predicting the focus of attention remains a challenge because the focus changes

rapidly, the discussions are highly dynamic, and the people’s behaviors are inter-

dependent. Moreover, the tedious training data annotation is not scalable, making

the performance drop for unseen videos and people.

To resolve these, we propose ICAF (Iterative Collective Attention Focus), a col-

lective classification model to jointly learn the visual focus of attention of all peo-

ple. Every person is modeled using a separate classifier. ICAF models the people

collectively—the predictions of all other people’s classifiers are used as inputs to each

person’s classifier. This explicitly incorporates inter-dependencies between all peo-

ple’s behaviors. We evaluate ICAF on a subset of 5 videos (35 people, 109 minutes,

7604 labels in all) on the Resistance data and a widely-studied meeting dataset with

supervised prediction. ICAF outperforms the strongest baseline by 1%–5% accuracy

in two datasets. We further propose a light supervised ICAF to create who-look-

at-whom, who-listen-to-whom, and who-speak-to-whom networks from unseen group
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interaction videos.

A demo1 screenshot of our method is shown in Figure 1.2. There are seven subjects

in the group, and our methods output the probability of who each person looks at at

time t (bottom of the Figure). A network snapshot at t consists of the subjects as

nodes and look-at predictions connecting them (upper right of the Figure). Overall,

a dynamic who-look-at-who network is constructed from the video.

Figure 1.2: Demo videos showing the predicted probabilities of people looking at each
other (bottom) and the dynamic social interaction networks built upon the predictions
(upper right).

Overall, this work makes the following contributions:

• Accurate and scalable algorithm for visual focus of attention prediction. The

supervised and light supervised algorithms achieve 0.62 and 0.55 accuracy re-

spectively on a highly dynamic testing scenario, when predicting one out of 5-8

attention targets.

1https://www.cs.dartmouth.edu/~cy/icaf/
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• Accurate visual speaking prediction model, providing sub-second speaking prob-

abilities from facial movements of people.

• Face-to-face interaction network dataset. We extract the who-look-at who dy-

namic interaction networks on the Resistance dataset, leading to 62 time series

networks, consisting of ⇠3M edges spanning ⇠0.1M seconds of videos. The

dataset is made public2.

Impact Based on the who-look-at-who network and speaking prediction, more com-

plicated non-verbal communication are modeled. Specifically, chapter 5 and [87]

create the speak-to and listen-to netowrks to study dominance and deception resp.

Chapter 6 further annotate the interaction with the emotions one wants to convey,

which contributes to nervousness prediction. The authored publication [150] builds

a general neural model upon such dynamic networks to study more group human

behaviors.

1.3.2. Dominance prediction in multi-person videos (Chapter 5)

Identifying dominant people in a group setting is desired for lots of applications. For

example, businessmen in meetings may want to find the decision maker among the

customer team to strive for a deal. In a negotiation, delegations may be interested in

identifying the most dominant person from the other side. Despite being an impor-

tant task, dominance behavior may be shown from multimodal personal cues (audio,

visual) as well as the interactions among the group, e.g., talking to each other. It is

challenging to extract relevant features and design an appropriate model considering

the multimodal and group e↵ects.

We consider the problems of predicting (i) the most dominant person in a group

of people, and (ii) the more dominant of a pair of people, from videos depicting group

2https://snap.stanford.edu/data/comm-f2f-Resistance.html
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interactions. Inspired by the dominance indicators discovered in social science studies

such as looking-while-speaking [50] and visual dominance ratio [55], we introduce a

novel family of features called Dominance Rank. Dominance ranks are the relative

dominance of people in a group induced by various measurements of group interaction.

For instance, how much more probable does person A look while listening to person

B than the opposite? Figure 1.3 visualizes this measure during 5 seconds, where an

edge exists when the amount of interaction from one person to another is larger than

a threshold. Intuitively, since people tend to look and listen to P2 and P3 more, P2

and P3 might be more dominance than others.

Figure 1.3: Visualization of the interaction network weighted by the look-while-
listening ratio di↵erence.

We also introduce features (e.g., facial action units, emotions) that are discovered

influential factors [45] but not previously used for dominance prediction. We develop

Dominance Ensemble Late Fusion (DELF) to combine multimodal features. For the

MDP problem, we further propose the Group Dominance Prediction (GDP) algorithm,

which augment our training data by over 120 times and make the prediction from

the group instead of a single person. We test our two models against four competing
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algorithms in the literature on the Resistance and ELEA datasets. We show 2.4% to

16.7% improvement in AUC compared to baselines on one dataset, and a gain of 0.6%

to 8.8% in accuracy on the other.

To summarize, the following contributions are made:

• The Dominance Rank features capturing the mutual interaction of people

• The DELF model to make the prediction from multimodal modalities

• The GDP algorithm to augment the training data and boost the MDP problem

performance.

1.3.3. Nervousness prediction in multi-person videos (Chapter 6)

Detecting nervous people in a group has many applications. Understanding that

one person is nervous in a social activity may enable others to put that person at

greater ease. The security department might identify suspicious subjects through the

nervousness clue.

On the one hand, as social science theory suggests that A might be more ner-

vous than B if B is more dominant or B conveys passive evaluation to A ([48, 104]),

we define a new class of 54 features called nervousness scores (NSs) from the audio-

visual channel to capture the external influence from the group. NSs use dominance

relationships between people, as well as gaze (who is looking at who), and speaker

(who is speaking) information. In total, 3 interaction types and 9 forms of dominance

influence are defined, and 6 (resp. 4) kinds of visual (resp. audio) emotions are consid-

ered. Intuitively, the nervousness score of a person is a summation of the evaluations

(measured by emotions and dominance) he received from the people interacting with

him,

On the other hand, as facial behavior is vital information for nervousness, we

develop a Facial Emotion Graph Convolution Network (FE-GCN) to learn facial em-
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beddings from images, which uses GCN to capture the facial landmark dynamics

together with CNN to capture the appearance. The temporal sequence of embed-

dings are then aggregated by a Temporal Convolution Network (TCN).

We solve two kinds of tasks to predict relative nervousness: Who is more nervous

given a pair of people? Is a person more nervous compared to before? Our results

show that: (i) either NSs or FE-GCN generate the best performance in head to head

comparisons with seven baselines based on past work, (ii) an ensemble that merges

NSs and FE-GCN provides high quality results in terms of both F1-score and AUC

compared to the baselines, and (iii) the learned FE-GCN identifies landmarks that are

highly relevant for nervousness prediction.

Below summarizes our contributions:

• 54 interpretable audio-visual nervousness score features that consider the human

interactions annotated by emotions and dominance.

• The FE-GCN model to learn facial embeddings for nervousness prediction.

• An ensemble model combing above outperforms seven baselines on four tasks

on the Resistance and ELEA data.

• Comprehensive experiment analysis of the important signals for nervousness

prediction, such as specific landmarks, positive and negative audio-visual emo-

tions.

1.3.4. Adaptive multimodal fusion for persuasion prediction (Chapter 7)

Identifying persuasive speakers in an adversarial environment is a critical task. In a

national election, politicians would like to have persuasive speakers campaign on their

behalf. When a company faces adverse publicity, they would like to engage persuasive

advocates for their position in the presence of adversaries who are critical of them.
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The persuasiveness depends on the combination of how a person expresses themselves

visually and vocally, as well as what the person says. Besides, the temporal dynamics

also plays a key role, e.g., change of speech speed and vocal pitch.

Debates represent a common platform for these forms of adversarial persuasion.

This paper solves two problems: the Debate Outcome Prediction (DOP) problem

predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) prob-

lem predicts the change in the number of votes before and after a speaker speaks.

Though DOP has been previously studied, we are the first to study IPP. Past stud-

ies on DOP fail to leverage two important aspects of multimodal data: 1) multiple

modalities are often semantically aligned, and 2) di↵erent modalities may provide

diverse information for prediction.

Our M2P2 (Multimodal Persuasion Prediction) framework is the first to use mul-

timodal (acoustic, visual, language) data to solve the IPP problem. To leverage the

alignment of di↵erent modalities while maintaining the diversity of the cues they

provide, M2P2 devises a novel adaptive fusion learning framework which fuses em-

beddings obtained from two modules – an alignment module that extracts shared

information between modalities and a heterogeneity module that learns the weights

of di↵erent modalities with guidance from three separately trained unimodal reference

models.

We testM2P2 on the popular IQ2US dataset designed for DOP.M2P2 significantly

outperforms three recent baselines by at least 25% Mean Squared Error (MSE) in IPP

and 3% accuracy in DOP on two datasets. The model is able to weight the three

modalities and pays attention to the relevant inputs over time.

Figure 1.4 shows a sample of how our M2P2 framework predicts speaker persua-

siveness at interim points during a debate from the QPS dataset — the reader can

readily see that the M2P2 prediction of number of votes (orange line) closely matches

13



1.3 Overview and contributions Introduction

the ground truth (green line).

Figure 1.4: Real-time prediction of debate persuasiveness (number of votes) using
M2P2. M2P2 closely predicts the ground truth number of votes.

To summarize, our key contributions are:

• Proposal of the fine-grained IPP problem.

• A novel adaptive fusion learning framework to solve the IPP and DOP problems

which is applicable to other multimodal learning tasks. It outperforms three

recent baselines on both tasks.

• A new persuasion dataset Qipashuo from the well-known Chinese debate TV

show Qipashuo.

• Model explanability: weight the modality importance and identify relevant raw

inputs (faces, words).
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Chapter 2

Background

Analysis and prediction of human group behavior is a significant field involving a

variety of topics. This chapter introduces the social science studies characterizing

di↵erent human group behaviors (Section 2.1), features calculated from multiple sig-

nals (Section 2.2), e↵orts to model mutual influence among a group (Section 2.3),

models to aggregate short-time features over time (Section 2.4), and methods to

make predictions from multimodal signals (Section 2.5).

Section 2.1

Social science studies of human group behaviors

Social scientists take data-driven methods to study human group behaviors. Nor-

mally, they design the experiments in which volunteers complete specific tasks and

report self or cross evaluations, monitor the hypothesized factors during the tasks,

and finally link the factors with the behaviors reported in evaluations.

Dominance Dominance is a strategy of social influence and power exhibited as

verbal or non-verbal communication among groups [57]. Dominance is motivated

by the intention to control or change the behavior of other group members [40].
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Dillard et al. [49] found that dominance is correlated with speaking rates and voice

characteristics (frequency, amplitude, pauses, pitch, etc.). Visual cues like people

looking at each other, body movements, gestures and facial expressions are also the

indicators of dominance in social interactions ([65, 55]). Additionally, dominance

can also be expressed in the use of personal space and the artifacts within the space

[134]. Moreover, Dovidio et al. [50] studied the relationship between dominance and

the combination of looking-while-speaking and looking-while-listening behaviors. For

example, the Visual Dominance Ratio was defined as the ratio between the total

looking-while-speaking periods to the total looking-while-listening periods for dyadic

interactions.

Nervousness Nervousness and social anxiety are closely related to each other. Ac-

cording to the Mayo Clinic [38], “In contrast to everyday nervousness, social anxiety

disorder includes fear, anxiety and avoidance that interfere with daily routine, work,

school or other activities.” In general, nervousness is viewed as a short term form

of anxiety. In fact, the terms nervousness, anxiety (and stress to a certain degree)

are often used interchangeably in social science studies ([67, 42, 39]). Messenger et

al. [104] notes that nervousness is correlated with expectations of negative social evalu-

ations. [137]’s analysis of social interactions in a community suggests that nervousness

is linked to public speaking, talking to strangers or being the center of attention –

they argue that “social fears” are linked to nervousness. This phenomenon is not

limited to Western cultures — Caballo et al. [31] suggest that communities in Latin

America exhibit similar behaviors. In group settings, nervousness is heightened by

group dynamics. Morrison et al. [105] suggest that negativity by others plays an im-

portant role in anxiety. This observation is in line with [31] which notes nervousness

is most easily identified when dealing with strangers and criticism. Dijk et al. [48]

suggest that anxious individuals are less dominant in group interactions. Morrison et
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al. [105] suggest that individuals, once anxious, will not respond to positive stimuli

and maintain their state until the end of the interactions. Maner et al. [99] also notes

this phenomenon. Moreover, nervousness is linked with facial cues, e.g. nervous in-

dividuals often avert their gaze and change their posture more frequently [45]. Using

the Hamilton Anxiety Scale, Yazici et al. [153] state that nervous individuals exhibit

actions known as “adaptors”, e.g. rubbing one’s forehead or tapping a pencil. Signs of

nervousness can also be identified by facial cues [114]. Cues such as head movements,

blink rates and gaze directions are all important considerations taken by previous

computer science papers interested in anxiety detection. DePaulo et al. [45] state

that nervous individuals raise the pitch of their voice and speak with more hesitation

(e.g. “ums” and “ahs”) and speech errors.

Persuasion Persuasion is a process to change the attitude or behavior of a person

or a group toward some ideas or objects, by using written, spoken words or visual

e↵ects to convey information [117]. In the studies of Johnson and Blair [78], the

order of messages, the comprehensibility of the content, and the validity as well as the

number of arguments presented are all related to persuasion. When it comes to voice

influence, paralinguistic features (e.g. pitch, volume) are important because they are

predictive social markers [90] and could influence the persuasiveness [27]. Towards

the visual persuasion, the related factors are facial emotions, postures, attractiveness,

etc. ([122, 79]). Clearly, persuasion is not barely in texts, but a mixture of texts,

audio and visual e↵ects.

17



2.2 Feature extraction from multiple modalities Background

Section 2.2

Feature extraction from multiple modalities

Based on the findings in Section 2.1, both high-level features and low-level represen-

tation have been extracted from audio, visual and linguistic signals.

Dominance Some earlier predictive models use discrete features based on binary

speaking variables (during a given time segment, does the person speak or not).

These features include statistics such as total speaking length, total speaking turns,

and total successful interruptions ([75, 3]). In addition, Sanchez-Cortes et al. [125]

use prosodic features such as energy and pitch variation. Other works extensively use

visual features in the form of discrete variables. Aran et al. [3] and Jayagopi et al.

[75] use statistics on the overall visual activity (binary variable - person either moves

or not). Sanchez-Cortes et al. [125] and Beyan et al. [22] analyze more fine-grained

activity such as head and body movements, and gestures. In addition to these, a set

of proposed methods uses gaze-related features such as looking at the target or at a

speaker ([4, 108, 109]).

Nervousness We summarize the computational e↵orts for nervousness as well as

anxiety and depression which are highly related to nervousness. Pediaditis et al. [114]

and Caballo et al. [63] look at facial cues of anxiety, stress, and nervousness of in-

dividuals — not group interaction videos as we do. They extract the movements of

head, gaze, mouth, and pupils through estimated facial landmarks. They also esti-

mate heart rate by assessing the frequency of the facial colors’ signal. Florea et al.

[61] leveraged findings learned from large facial expression datasets to a small anno-

tated anxiety dataset, showing a a significant boost in anxiety detection in images.

To predict depression in interview videos, Ray et al. [120] extracted the facial action
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units, head pose and eye gaze angles from video frames. Additionally, mel-frequency

cepstral coe�cients (MFCCs) [43] features and the pre-trained universal sentence

encoder [33] embeddings are also computed from audio and transcripts respectively.

Persuasion Extensive amounts of work have studied how to predict persuasion

from the text modality. [157, 119, 148, 64] explore the linguistic modality by studying

style, context, semantic features and argument-level dynamics in English transcripts.

The LIWC features [115] are used by [25] to count psychological and structural word

categories. For the visual modality, Joo et al. [79] define nine visual intents related

to persuasion (e.g. dominance, trustworthiness) and train SVMs to predict them and

persuasion using hand-crafted features. Huang et al. [71] improve these results by

fine-tuning pre-trained CNNs to learn suitable face & body representation. Brilman

et al. [25] extract facial emotions to predict the debate outcomes. In the case of

audio, many ([126, 107, 127]) use MFCC features, and Nojavanasghari et al. [107]

also employ voice quality (e.g. Normalized amplitude quotient (NAQ)) and pitch

features.

Section 2.3

Dyadic and group influence modeling

While most work extracts comprehensive features from individuals, the dyadic in-

teractions and group-level influence are essential and can be incorporated by both

feature engineering and machine learning algorithms.

Feature engineering Aran et al. [4] and Okada et al. [109] mine co-occurrent

events in the sequence of visual and audio features of individual players to predict

impression (e.g. dominance, likeness) and personality traits (e.g. openness) in a group

setting. For example, more than two people move bodies or look at a speaker, two
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people look at each other. Bai et al. [12] show that the ranks of each feature among

a group is e↵ective for deception prediction. Kumar et al. [87] define the reciprocity

of looking and speaking to measure the mutual engagements.

Learning Algorithms Sanchez-Cortes et al. [125] build a graph with the people

in a group as nodes and the speaking turns as weighted edges, and employ collective

classification, which is helpful to predict the emergent leadership. Kumar et al. [87]

build the network weighted by avoidance of gazing, and employ the belief propagation

to predict deception. To get rid of depending on domain-specific knowledge to extract

features, Wang et al. [150] build a general neural model on dynamic face-to-face

interaction networks, and demonstrate its e�cacy on multiple tasks such as prediction

of dominance, deception, nervousness.

Section 2.4

Temporal aggregation of short-time features

Since the input audiovisual sequences are usually 5-20 minutes long, temporal ag-

gregation is essential to make sequence-level predictions. This section reviews the

methods taken by the previous behavior prediction papers, and then introduces three

e↵ective techniques employed in our work.

Past work The first category [75, 3, 4, 109, 25, 157] accumulates over time the bi-

nary indicators such as speak turns, interruptions, body movements, which are then

normalized with the sequence length. However, counting can be noisy since the binary

indicators are usually obtained from probability estimations (e.g. speaking probabil-

ity). The second category computes extensive statistics such as mean, variance, min,

max, and percentiles ([125, 120, 25, 107]) of continuous valued features (e.g. emo-

tion prediction probability, prosody energy). To obtain fine-grained descriptions, the
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third category ([151, 12]) employs Fisher vector encoding [118] which computes the

bag-of-words representation of the sequence of features.

Specifically, given a sequence of feature vectors {f1, . . . ,fT}, (fi 2 RD
, 8i), the

Fisher vector encoder [118] first builds a Gaussian Mixture Model (GMM) with mean

µi, diagonal covariance �i and mixture weights wi for the ith component (1  i  N).

Then, the Fisher vector component i is computed as
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wi
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where �t(i) is the posterior probability. Finally, the 2DK dimensional Fisher vector

is the concatenation of all Gµi ,G�i .

Histogram representation To enrich the statistical description of the tempo-

ral sequence, we compute the histogram vector of each individual feature. Suppose

we take B bins, for dimension d, the histogram hd 2 RB describes the distribu-

tion of {f1,d, . . . ,fT,d}. The final histogram representation is the concatenation of

(h1, . . . ,hD). This is suitable for features with bounded, dense values (e.g. probabil-

ities), and has been successfully applied in Chapters 5, 6.

Although the above methods can summarize the sequence of features, they ignore

the temporal order and dynamics of features which neural models such as RNN and

LSTM can do. However, since the sequences are too long, even LSTM cannot handle

the long-term dependency. Below describes two alternative neural models we take.

Temporal Convolution Network (TCN) TCN is a successful adaptation of

CNN to temporal data modeling [91]. It consists of several layers of 1D convolutions
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+ max poolings. At layer l, denote F
(l) = [f (l)

1 , . . . ,f (l)
Tl
] 2 RDl⇥Tl as the feature

representation, where f (l)
t is the feature vector at time t. Note that F

(1) is the

input sequential features. Given the Dl+1 one dimensional convolution filters Wl =

{W (i)
l
}Dl+1

i=1 , each filter W
(i)
l

2 RKl⇥Tl with duration Kl, the representation of layer

l + 1, F (l+1) 2 RDl+1⇥Tl+1 , is

F
(l+1) = MaxPool(g(Wl ~ F

(l) + bl)), (2.3)

where bl is the bias, g is a non-linear activation function (e.g. ReLU). Note that the

larger Kl is, the faster Tl+1 decreases. Given the local temporal convolution filters,

TCN can learn dynamic local interaction patterns with various durations (Kl) over

the long-time span. For long sequences, the global summarization (i.e. receptive

field covering the whole sequence) is achieved by stacking several layers with pooling

and larger kernel durations. Moreover, TCN does not su↵er from the computational

dependency and memory issues of RNN or LSTM, since all computations are parallel

and local. These make TCN a good fit for capturing the dyadic interactions over

long videos. Chapter 6 and our work [150] have applied TCN successfully in group

behavior prediction.

Transformer Transformer [144] is a multi-head self-attention model which can cap-

ture long-time dependency to be learned in temporal data and can be computed

e�ciently. We will quickly shed light on the key concept, the scaled dot-product

attention, of the Transformer encoder used in Chapter 7 and leave the details in

[144].

Assume we have a matrix (value matrix) V = [v1, . . . ,vT ] denoting a sequential

feature vector (e.g., V = F
(1) or its projection), the goal is to output at each times-

tamp t 2 {1, . . . , T} the weighted average over V , where the weights are obtained
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2.5 Multimodal fusion and prediction Background

from the attention of query qt towards the keys of all timestamps km, 81  m  T ,

respectively. Q = [q1, . . . , qT ] andK = [k1, . . . ,kT ] are called query and key matrices.

Formally, the scaled dot-product attention can be defined as

Attention(Q,K, V ) = Softmax(
QK

T

p
dk

)V, (2.4)

where dk is the dimension of keys. The Softmax function serves as a normalization of

weights over timestamps. Q,K, V are all linear projections of the encoder input. The

Transformer encoder also captures local dynamics and can be computed e�ciently.

Yet di↵erent from TCN, it directly computes the long-time dependencies over all pairs

of timestamps. In other words, a single attention layer has a global receptive field,

and the model attends to the corresponding timestamps from the training process.

In Chapter 7, we apply the Transformer encoder to one each of audio, visual and

linguistic temporal input of debate videos to aggregate the temporal information.

Section 2.5

Multimodal fusion and prediction

2.5.1. Previous methods for group behavior prediction

On the one hand, early fusion concatenates the extracted features from all modalities

to train a single ML model ([108, 109, 127]). In particular, Santos et al. [127] show

that the feature-level fusion performs better than inference-level fusion for persuasion

prediction. Despite the model simplicity, early fusion fails to align the heterogeneous

data (e.g. text and audio), thus some modalities may not be fully exploited.

On the other hand, more approaches [75, 3, 4, 25, 107] use late fusion to make the

final inference from inferences made by each model from each modality separately.

The fusion strategies include averaging [107], voting [25], rank-based decision [125]
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2.5 Multimodal fusion and prediction Background

and so on.

We adopt an adaptive late fusion method in Chapters 5, 6. Formally, suppose

we have N sources of prediction scores (e.g. classification probability) S1, . . . , SN ,

including all modalities and prediction models, then the final score S is obtained by

late fusion of all predictions:

S =
NX

i=1

↵iSi

where
P

N

i=1 ↵i = 1. Values of the non-negative late fusion weights ↵i are obtained

by grid-search and cross-validation. Specifically, in each fold, we train N models in

the training set, obtain the scores Si, i = 1, . . . , N and search the optimal ↵is in the

validation set, finally apply the optimal ↵is in the test set to get the final prediction

S. The overall performance is averaged from test sets of all folds.

The late fusion methods can jointly make a decision from multiple source of in-

ferences, whereas it disables the potential cooperation between modalities before pre-

dictions.

A few other methods take more advanced fusion approach. Beyan et al. [22]

employ the multiple kernel learning for dominance prediction. It adapts the hetero-

geneous modalities by finding specific kernels, and learns the weights to average the

kernel inferences together. However, the kernels are selected from pre-defined families

which may limit the learning potential. Ray et al. [120] train a multi-level attentional

fusion model from end to end for depression prediction, which combines the modali-

ties at di↵erent levels by attention weights. Although powerful, the attentional model

has many learnable parameters, thus requires lots of labeled training data.

2.5.2. General multimodal learning methods

In this section, we discuss other methods that better utilize the relationship between

multiple modalities.
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2.5 Multimodal fusion and prediction Background

A body of multimodal learning methods defines the constraints between modal-

ities in a latent space to capture their inter-relationships. Andrew et al. [2] extend

Canonical Correlation Analysis by deep neural networks to maximize inter-modal

correlations. Such correlation constraints have since been used in sentiment classifi-

cation [54], emotion recognition [1] and semantic-visual embedding [59]. In addition

to capturing the shared relationship, [111, 130, 146] try to extract the individual com-

ponents of each modality through low-rank estimation. [77, 54] train auto-encoders

to reconstruct a modality from itself and another modality. While these e↵orts pro-

vide important insights for creating multimodal embeddings, they do not show how

to combine the learned embeddings for accurate prediction.

Another body of work explores architectures for fusing embeddings from modali-

ties. Zadeh et al. [154] introduced bimodal and trimodal tensors via cross products

to express inter-modal features. As cross products significantly increase the dimen-

sionality of the feature space, [80, 20, 32] introduced bilinear pooling techniques to

learn compact representations. Although these methods explicitly model inter-modal

relationships, they introduce additional features that require larger networks to be

learned for subsequent prediction tasks. In contrast, attention-based fusion [97, 70]

learns the weighted sum of multimodal embeddings taking the prediction task into

account. However, they require huge amounts of data to learn the optimal attention

weights.

The third body is self-supervised learning, which utilizes the natural correspon-

dence between modalities (e.g. guitar sound and guitar playing video) to pretrain a

powerful model in large-scale unlabeled data, and finetunes the model on much smaller

labeled datasets for specific tasks. Inspired by the huge success of BERT [46] in the

NLP field, the multimodal BERT methods [141, 98, 92] design two kinds of pretraining

tasks: (i) alignment prediction – predict whether the multimodal inputs are from the
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2.5 Multimodal fusion and prediction Background

same instance, and (ii) denoising autoencoder – mask a small portion of one modality

input, and predict it from the rest of inputs. Note that these pretraining tasks don’t

require any human-labeled data. The models’ backend is mostly the Transformer

encoder [144] which fully exploits the inter-moal and inter-modal dependency. An-

other direction is the Multimodal Generative Pretrained Transformer (GPT)-based

methods [95, 110], which is extended from the self-supervised autoregressive language

generation model GPT-3 [26]. For group human behavior prediction, once we col-

lect the large amount of related data (e.g. metting, interview, publish speech), the

self-supervised learners can play a big role.

Our contributions We propose a supervised adaptive fusion framework and demon-

strate its e�cacy in persuasion prediction. On one hand, inspired by the first body

of work, M2P2 encodes the primary embeddings to a shared space and enforces high

correlation among the encoded embeddings. On the other hand, M2P2 computes a

weighted concatenation of latent unimodal embeddings, where the weights are guided

by the persuasiveness loss of each embedding through interactive training. These two

innovations lead to a compact embedding that can be learned with a small dataset.
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Chapter 3

Datasets

In this chapter, we introduce four video datasets on which we study group human

behaviors: Resistance, ELEA, Qipashuo (new) and IQ2US.

Section 3.1

The Resistance dataset

The Resistance dataset [56] contains a set of videos depicting groups of 5-8 people

playing a Mafia-style social game, called the Resistance1. Figure 1.2 depicts two

views of videos captured. The upper left shows the overhead view, where all people

are seated around a table, with a laptop placed in front of each of them. The laptop

is used to capture their close-up front view videos, and to record their answers to the

survey along time. The bottom of the figure shows the concatenation of each close-up

view. The players are encouraged to interact with each other during the game.

3.1.1. The game

The game process is illustrated in Figure 3.1, and the major survey questions are

listed in Table 3.1, readers can refer to [56] for more details.

1https://en.wikipedia.org/wiki/Resistance_(video_game_series)
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Figure 3.1: The process of Resistance game.

At the beginning, the players conduct an ice-breaking session, where each player

makes a self-introduction, and one player is assigned asks a follow-up question to

that player. Note that Chapter 4 proposes a automatic annotating method from this

session to get rid of human labeling.

After that, the players answer several questions in the pre-game survey on their

laptops in front. Each player is also secretly informed by the laptop that (s)he is

either a “spy” or a member of the “resistance”. Spies know who other spies are, but

the resistance does not know any information. There are 2–3 spies in a game which

proceeds in rounds (typically 3 to 8 in a game). The two teams form an adversarial

setting.

Then the game proceeds with several rounds. Every round has three stages:

leader nomination and election, nomination of team members by the leader, and

team mission. In the leader nomination stage, players get nominated to serve as a

leader. All players vote for or against the nominee. This stage is repeated up to

three times until the team leader is elected. In the second stage of the round, the

team leader nominates team members. Note that the team size varies according to

the number of players and rounds to obtain the game fairness (Table 3.2). After a

discussion, all players vote on approval or rejection of the proposed team. This stage

28



3.1 The Resistance dataset Datasets

Table 3.1: Information collected in the Resistance game survey.

Survey Questions When to an-

swer

Please rate how much you trust each player from

1 to 5. 1 means least trustworthy, 5 means most

trustworthy.

Pre-game,

after even-

numbered

rounds

Please rate how dominant each player is from 1 to 5.

1 means least dominant, 5 means most dominant.

Pre-game,

after even-

numbered

rounds

Please rate how nervous each player is from 1 to 5.

1 means least nervous, 5 means most nervous.

Pre-game,

after even-

numbered

rounds

Please rate how likable each player is from 1 to 7. 1

means very unlikable, 7 means very likable.

Pre-game,

after the last

round

Please rate how much you think each player is a spy

from 1 to 5. 1 means least suspicious, 5 means most

suspicious.

After even-

numbered

rounds

Game role (spy or resistance). Secretely assigned to

each player, and spies know who else are spies.

Pre-game

Approval (yes or no) of the nominated team leader. Each round

Approval (yes or no) of the nominated team. Each round

(For team members) Vote for mission failure or suc-

cess.

Each round

is repeated up to three times or until the team is approved. In the first two stages,

players first vote secretly and then publicly. The third stage consists of team members

secretly voting for the success or failure of the mission. Note the spies want to fail the

mission while hiding themselves in the resistance team. Again, the minimum number

of votes to fail a mission depends on the number of players and round (Table 3.3).

If the vote is in favor of the mission going forward, the resistance team collectively
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3.1 The Resistance dataset Datasets

Table 3.2: Team size for missions for each of the group size and rounds.

Number of players R1 R2 R3 R4 R5 R6 R7 R8
6 3 3 4 4 4 5 5 5
7 3 3 4 4 5 4 4 4
8 3 3 4 4 5 5 5 5

Table 3.3: Number of fail votes required for mission failure for each of the group size
and rounds.

Number of players R1 R2 R3 R4 R5 R6 R7 R8
6 1 1 1 1 1 2 2 2
7 1 1 1 2 2 2 2 2
8 1 1 1 2 2 2 2 2

gets a point — if the vote goes the other way, the spies collectively get a point. Spies

also score a point if players fail to elect a leader or approve the proposed team three

times.

During each round, the voting for a team leader and a team are both conducted

privately in the laptop and then publicly, while the mission voting only happens

privately in the laptop by team members. The game facilitator announces the number

of favoring voting and the number of non-favoring voting. After every two rounds and

the final round, players conduct the survey on their laptops to answer the questions

in Table 3.1.

Finally, a team (spies or resistance) with the highest score at the end of the game

wins. Therefore spies have a natural incentive to get elected as team leaders and to

get on mission teams. For the Resistance team, it is advantageous to identify spies as

soon as possible and prevent them from getting on mission teams, which means spies

need to make sure they are not discovered.
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3.1.2. Dataset description

In the dataset, participants (N = 693; mean of ages = 22, standard deviation of ages

= 3.75) were primarily college students, although some participants were recruited

from the general public. Data collection took place at 8 public universities in the

Southwestern US (9 games; n = 59), Western US (11 games; n = 67), Northeastern

US (10 games; n = 74), Israel (10 games; n = 71), Singapore (12 games; n = 84),

Fiji (14 games, n = 106), Hong Kong (15 games, n = 115), and Zambia (15 games, n

= 117). Participants were recruited via email and advertisements on public message

boards. The sample was 59% female and was ethnically diverse (although this varied

by location), and the biggest groups were Asian (38%) and White (18%). They

reported nationalities representing 41 di↵erent countries. Participants were required

to be proficient English speakers.

To ensure fairness, the numbers of spies are 2, 2, 3, 3 in games of 5,6,7,8 players

respectively. The mean and standard deviation are 3.28, 0.87 for dominance ratings

and 2.93, 0.91 for nervousness ratings, respectively.

As such, there are N = 693 game videos in close-up views from 96 games, spanning

from a minimum of 29 minutes to a maximum of 66 minutes with the average duration

being 46 minutes. There are 2-8 rounds per game where each round is around 6

minutes on average. The information collected from the survey is used as labels of

group human behavior (e.g. dominance, nervousness, game role), to train predictive

models and conduct statistical analysis. Due to some data collection issues, the

labels and videos available for di↵erent tasks can be di↵erent. We will describe the

task-specific prediction problems, the number of videos and labels in Chapters 4,5,6

accordingly.
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3.2 The ELEA dataset Datasets

Section 3.2

The ELEA dataset

Figure 3.2: A screenshot of the ELEA data from [125].

The ELEA dataset is developed by Sanchez-Cortes et al. [125] to study emergent

leadership as well as other human group behaviors. It is publicly available2.

This dataset consists of videos of groups of people (3–4 persons in a group, 27

groups) participating in a winter survival task. Di↵erent from the Resistance game,

it is a cooperative setting. The 3-4 participants sit at two sides of a square desk,

and two cameras capture their close-up views as shown in Fig. 3.2. There are 102

participants and approximately 10 hours of videos.

The participants were given a list of 12 items and asked to rank their importance

for survival in the hypothetical scenario of a plane crash in a winter forest. Partici-

pants needed to have a discussion and come up with a consensus. Each video lasts

15 minutes, and the discussion lasts 14.61 minutes, ranging form 8 to 19 minutes.

Videos are accompanied by survey results measuring participants’ group behaviors

in three ways:

• In-group scores where each participant scores each behavior of every participant

2https://www.idiap.ch/dataset/elea

32



3.3 Debate datasets Datasets

from 1 to 5. The behaviors are leadership, dominance, competence, and likeness.

• External scores where each participant is rated by three independent observers

not participating in the task from 1 to 5. This includes leadership and domi-

nance.

• In-group ranks where the participants rank the dominance of each participant

from 1 to the number of participants (3 or 4).

In Chapter 5, we use three measurements as the ground truth dominance for each

player: Perceived dominance (PDom) is obtained by averaging the dominance scores

from other players. Ranked dominance (RDom) is obtained by averaging the domi-

nance ranks from other players. External dominance score is obtained by averaging

dominance scores from all the external observers.

Extension: Nervousness annotation To study nervousness behavior, we also

ask external observers to score the nervousness in the videos of ELEA. We randomly

chose five-minute video segments of every group and assign it to three external trained

observers. The rating instruction is the same as in the Resistance data: please rate

each person in the video on a 5-point scale from 1 (complete calm and relaxation) to

5 (maximal nervousness and anxiety). Di↵erently, the ratings in Resistance are made

by the participants within the game.

Section 3.3

Debate datasets

We introduce two datasets collected from two distinguish debate TV shows, on which

we study the persuasion behavior (Chapter 7).
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3.3.1. The Qipashuo dataset

The Qipashuo dataset is collected from a popular Chinese debate TV show called

Qipashuo3. A screenshot of the video is shown in Figure 3.3 (a).

Figure 3.3: Screenshots of the Qipashuo and IQ2US datasets videos.

The debate pipeline is shown in Figure 3.4 (a) (only two rounds are drawn for

simplicity). In each episode of the TV show, 100 audience members initially vote

‘for’ or ‘against’ a given debate topic. Debaters from ‘for’ and ‘against’ teams speak

3
An example can be found at https://youtu.be/P5ehhs0hpFI
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alternately, and the audience can change their votes anytime. In general, there are

6–10 speech turns. Final votes are turned in after the last speaker. The winner is

the team which has more votes at the end than at the beginning. For example, if the

initial and final ‘for’ vs. ‘against’ votes are 30:70 and 40:60, respectively, then the

‘for’ team wins because they increased their votes from 30 to 40 (even though they

still have fewer votes than the “against” team).

The videos capture the speakers, and the real-time audience vote (’for’ vs. ’against’)

is shown occasionally. In total, we collect videos of 21 Qipashuo episodes with 205

speaking clips spanning a total of 582 minutes. Note that we also extract the tran-

scripts from the video subtitles using the OCR technique. Details will be discussed

in Chapter 7

Figure 3.4: Debate flows of the Qipashuo and IQ2US datasets. The Fn and An stands
for the nth players in the ’For’ and ’Against’ team, respectively.

3.3.2. The IQ2US dataset

The IQ2US dataset comes from the popular American debate TV show, intelligence

squared US4. A screenshot of it is shown in Figure 3.3 (b). The videos have been used

4
www.intelligencesquaredus.org
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by [25, 126, 157, 119, 148] to study persuasion. This dataset was originally collected

by [25].

Figure 3.4 (b) shows the debate pipeline. Given a topic, the audience can only vote

at the beginning and at the end of the debate, and the winner is determined in the

same way as in Qipashuo. Note that we cannot use the same set of videos as [25], since

they were interested in predicting the result of the whole debate, which doesn’t require

the transcripts to be aligned within shorter clips. Of the 100 episodes we collected,

only 58 had transcripts that were correctly aligned with the visual modality at the

minute level. Finally, we get 852 one-minute single-speaker clip instances from the

58 episodes — 428 of them belong to the winning side. As transcripts are available

in the IQ2US data, no pre-processing is required for the language modality in this

dataset.
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Chapter 4

Visual Focus of Attention

Prediction in Videos

Visual focus of attention in multi-person discussions is a crucial nonverbal indicator

in tasks such as inter-personal relation inference, speech transcription, and deception

detection. However, predicting the focus of attention remains a challenge because the

focus changes rapidly, the discussions are highly dynamic, and the people’s behaviors

are inter-dependent. Here we propose ICAF (Iterative Collective Attention Focus),

a collective classification model to jointly learn the visual focus of attention of all

people. We evaluate ICAF on a annotated subset of the Resistance data containing

5 videos (35 people, 109 minutes, 7604 labels in all) of the popular Resistance game

and a widely-studied meeting dataset with supervised prediction. ICAF outperforms

the strongest baseline by 1%–5% accuracy in predicting the people’s visual focus of

attention. Further, we propose a lightly supervised technique to train models in the

absence of training labels. We show that light-supervised ICAF performs similar to the

supervised ICAF, thus showing its e↵ectiveness and generality to previously unseen

videos.
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Section 4.1

Introduction

Given a group G of people, a person P 2 G, and a short video clip v (1/3rd sec), the

Visual Focus of Attention (VFOA) problem is to automatically predict who person P

is looking at among all people in G in the video clip v. Solving the VFOA problem can

provide profound insights into a number of factors, e.g., who is the dominant person

in the group [65], who supports/opposes who in the group, who trusts/distrusts who

in the group [83].

Figure 4.1(a) illustrates some of the challenges involved. First, even within a very

short 1 second clip, a person may look at many people. The four frames shown in

Figure 4.1(a) show the pictured subject looking at three people. Second, multi-person

discussions are highly dynamic because many people may speak at the same time and

the speakers change rapidly (Figure 4.1) — and as people often look at a speaker,

solving VFOA requires the ability to rapidly estimate the VFOA. This is di↵erent

from the structured meeting setting where there is one presenter. Third, non-verbal

behaviors (e.g. eye rolling, head shaking) of people may influence another person’s

VFOA. Returning to Figure 4.1(a), one would expect people to look at the lady shown

when she is speaking — however, their gaze may turn elsewhere if some unseen person

makes a gesture. Alternatively, predicting the VFOA of person P might depend on

predicting the VFOA of person P1 as both of them might be looking at the same

person P2 who is speaking or gesturing. In short, solving VFOA requires reasoning at

the sub-second level and making rapid changes that take into account not only video

of the person P whose gaze we are trying to predict, but also that of others.

We address these challenges via a novel algorithm called ICAF (stands for Iterative

Collective Attention Focus) which: (i) reasons at the 1/3 second level that prior

38



4.1 Introduction Visual Focus of Attention Prediction in Videos

Figure 4.1: (a) An example of a person’s (Person 3) Visual Focus of Attention (VFOA)
in 4 frames out of a contiguous 4/3 second (40 frames) during a discussion. person
3’s VFOA changes rapidly within this short time period, from looking at persons 6, 1,
1, 7, in frames 25, 35, 45, and 55, respectively. Note that even though the head pose
in frames 25 and 55 are similar, the VFOA is di↵erent (6 vs 7) (b) Person 3’s ground
truth VFOA and predicted VFOA made by the proposed method, ICAF, of a 5-second
discussion clip in which frames 20–60 correspond to Figure 1 (a). We observe that
ICAF is able to e�ciently predict the rapid change in VFOA.
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research has established as the normal duration humans need to visually focus their

attention [121], (ii) incorporates collective classification [129, 85] intuitions to capture

the fact that where person P is looking might depend on where others are looking,

and simultaneously assign VFOAs to all people rather than doing so independently,

and (iii) ICAF iteratively builds a multi-layer network that captures the evolution

of the collective classification. This captures the idea that predictions of who P is

looking at depends on predictions of who others in the group are looking at. (iv)

ICAF specifically captures the temporal dependency of VFOA, e.g. the conditional

probability that P is looking at Q, given that she was looking at Q in the previous 1/3

sec. To the best of our knowledge, no prior work on gaze estimation has considered

using where others are currently looking and using this to arrive at a joint prediction

as we do.

We introduce a novel dataset (109 mins of video from 5 episodes of the Resistance

game in 3 di↵erent countries with 35 people). The data was annotated with ground

truth VFOA at the 1/3 second level (a huge task by itself leading to over 19,000

annotated 1/3 second clips). Resistance is an immensely popular, dynamic, animated

(and sometimes very noisy) party game involving 5-8 people per game. The also well-

known Mafia and Werewolf games are variants of Resistance.

We experimentally show that ICAF outperforms several strong baselines in pre-

dicting people’s next VFOA by over 1.3%, i.e. given a training video up to second t,

we predict where each person looks at second t+1/3. Moreover, ICAF outperforms the

best baseline between 1%–5% when predicting next k VFOAs. For example Figure

4.1(b) shows that even though Person 3 rapidly changes her VFOA during a 5 second

multi-person discussion, ICAF predicts her VFOA correctly in 11 out of 14 points

(78.6% accuracy), excluding a data point (frame 90-100) without VFOA. Finally,

we experimentally show that both temporal dependency and collective classification
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boost ICAF’s performance.

Since getting ground truth labels is a tedious task, we create a lightly supervised

version of ICAF that uses the speaker label to make predictions. We experimentally

show that lightly supervised ICAF has similar performance to ICAF, showing the

potential of using ICAF for previously unseen videos.

The demo, code, and predicted VFOA networks are available at: https://www.

cs.dartmouth.edu/~cy/icaf/.

Section 4.2

Related work

Below we discuss the rich literature on predicting visual focus of attention and col-

lective classification.

Predicting visual focus of attention. VFOA is determined by eye gaze. Due to

the impracticality of tracking eye gaze in video (video resolution, eye visibility, etc.),

many works use head pose as an approximation of VFOA and thus try to estimate

head pose. For example, [138], [147] and [156] trained general head pose models from

face image patches as input, and [7] employed particle filters to track head pose.

[140] experimentally proved that head pose is a good surrogate of VFOA in meet-

ing scenarios. In real cases, however, only head pose can be misleading as head pose

and VFOA may be di↵erent. Figure 4.1(a) shows an example in our dataset—while

the player’s head pose is similar in frames 25 and 55, her VFOA is di↵erent. In a

di↵erent task of continuous gaze angle prediction, [6] took face images from close-up

videos to train a Convolutional Neural Network(CNN) to estimate head pose, and

further used estimated pose as well as the appearance around eyes to compute eye

gaze. They showed that the fusion of head pose and eye gaze reduces mean prediction

error of gaze rotation angles, and trained a participant-dependent model to further
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boost performance.

Instead of modeling VFOA by static head pose, [131], [102] exploited the corre-

lation between temporal head movement and eye gaze to predict VFOA, in which

VFOAs are modeled by Gaussian distributions and their transitions probabilities.

The method in [131] needs lots of parameters to be set. [102] proposed a temporal

graphical model to e�ciently track gaze and VFOA simultaneously, which handled

cases when eyes cannot be detected. Although the algorithm is also evaluated in social

interaction settings, they assumed the eye gazes of di↵erent people as independent,

which is di↵erent from our assumption and method.

Ba et al. [9] used Gaussian Mixture Models (GMM) to model VFOA as a hidden

state, with estimated head pose as observations. The GMM is further extended to a

Hidden Markov Model (HMM) to incorporate temporal dependency of VFOA targets.

Since the relationship between VFOA and head pose can vary according to individual

habits, they used an unsupervised method to adapt Maximum A Posterior (MAP)

parameters in their model. Inspired by [10] and [6], we train player-based models for

VFOA targets prediction. Due to static seating and close-up cameras in our dataset,

we directly use the OpenFace [18] library to extract both head pose and eye gaze.

In a group setting like a meeting or social game, people’s VFOAs are influenced

by each other due to visual and verbal communications. Stiefelhagen et al. [139] first

used the prior that speakers usually draw people’s attention to predict VFOA. They

modeled VFOA predictions as a linear combination of the condition probability given

gaze and condition probability given people speaking. The first term is estimated by

GMM, and the second term is estimated using a neural network. Further, [7] took

both speaking and visual active cues(gestures, movements, etc) as priors of VFOA,

and modeled the probabilities by counting the frequency of people gazing these cues

in training data. In contrast, to allow any nonlinear relationship between gaze and
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speaker cues, we directly combine gaze and speaking features to jointly train our

model.

Besides, Ba et al. [8] and their later work [10] further employed meeting activity

context (such as slides updating), as well as a prior that people share VFOA, to predict

visual focus of attention. Ba et al. [10] created a Bayesian model with a shared prior

to incorporate similarity in participants’ behavior, but this prior is constant and the

same for all participants. In contrast, our proposed model ICAF adds the inter-player

dependency directly, which enables the classifiers to learn the weights for other inputs

and can change over time as behaviors shift during a video.

Another line of research lies on unsupervised learning of VFOA. [52] and [53]

clustered visual focus of attention by low level Histogram of Gradient (HOG) fea-

tures extracted from tracked face patches, and the parameter of VFOA transition

probability is learned incrementally. The latter further extend the clustering to a dy-

namic HMM. They don’t depend on any prior of participants and environments and

can avoid intermediate error of estimating head pose. [21] similarly use head image

histogram features, but also consider walking velocity as an observed dependency of

gaze. They optimize a Conditional Random Field to estimate gaze in surveillance

videos. We also introduce an unsupervised method to predict VFOA and show its

e�cacy by comparing with supervised results.

Collective classification. Collective classification methods are widely used in

the graph mining tasks, such as node labeling [129, 85], link prediction [143] and a

combination of both [23]. These methods are able to employ the correlated attributes

of nodes/edges in a graph structure , thus train a collection of classifiers that are

interdependent together.

Sen et al. [129] gave a brief introduction and experimentally comparison of 4

types of collective classification algorithms, iterative classification, Gibbs sampling,
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loopy belief propagation and mean-field relaxation labeling. They further discussed

various heuristics of constructing the features incorporating inter-dependent informa-

tion, which they called relational features, and di↵erent ordering strategies of node

feature update. In these methods, one group of nodes are usually modeled by a same

classifier. [143] exploited the relational Markov network framework to build a joint

probability distribution of links and related nodes. Parameters were trained to maxi-

mize link observation probability, then used to inference unknown link existence and

types. However, these models are developed for static graphs and are not applicable

to videos as they are temporal. Moreover, none of these models directly work on

predicting the visual focus of attention from videos.

Section 4.3

Problem setup

We annotated a subset of the Resistance data involving the Resistance game1 contain-

ing five games from five di↵erent locations—three from U.S.A., one from Israel, and

one from Singapore. In each game, up to eight people are seated in an octagon layout

(Figure 4.2). It has a total of 35 people whose goal is to identify deceptive people for

additional financial reward. Each person has a tablet in front of them which records

their activity. At the start of every game, all people introduce themselves, followed

by several rounds of discussion where 2-3 people are deceptive and do not want to

be identified by the other people whose goal is to unmask them. The people may

not leave their seats. The discussions are emergent as there is no pre-determined

presenter or leader.

We generated ground-truth labels for people’s VFOA for every 10 frames (1/3 sec-

onds in 30 frames per second videos), the time taken to register one’s attention [121].

1https://en.wikipedia.org/wiki/The_Resistance_(game)
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Figure 4.2: Data collection setup.

Video Number of 10-frame Number of
id seconds segments labels
1 1062 3186 1086
2 896 2688 1541
3 1435 4305 1516
4 1984 5952 2060
5 1134 3402 1401

Total 6511 19533 7604

Table 4.1: The annotated VFOA dataset.
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Figure4.1(a) is an example. An expert manually assigned one label for every 10 frame

segment of each person. For each person, there are eight possible points of focus—

one of the other 7 people and the tablet. A label is assigned if the person looks at

the object (person or tablet) for the majority of the 10 frames, otherwise, an ‘un-

known’ label is assigned. This results in a total of 7604 valid labeled segments. The

‘unknown’-labeled segments are not used for training or testing.

We extract 3 clips from each game—the entire introduction round (where at most

one person is speaking at a time), and two 5-second discussions (where multiple people

are simultaneously speaking). This gives 6511 seconds of data in total for the 5 games.

Table 4.1 shows the data distribution by game.

AMI corpus. We also used the widely-studied AMI meeting corpus [103], which

is highly structured. In this dataset, we used closeup videos of 12 meetings with

available VFOA annotation. Each meeting has 4 people and lasts 25 minutes on

average. The VOFA targets are 4 people, table, whiteboard and slide screen.

4.3.1. Feature extraction

We extract two sets of features from the clips: face-based features and speaking

probability features. As with face-based features, we extract the person’s head pose

angles and eye gaze vectors using OpenFace [18] since the tablet cameras can capture

close-up video of each person.

Speaking prediction. We use visual information to predict if a person is speaking

at an instance. First, we get 2-dimensional lip contour points X(t) = {(x(t)
i
, y

(t)
i
), i =

1, . . . , n} at frame t from OpenFace and normalize X(t) by its bounding box to avoid

the influence of head movement. Second, we compute the gradient of point positions

over time to capture mouth movement, which is ~g(t)
i

= (x(t)
i

� x
(t�1)
i

, y
(t)
i

� y
(t�1)
i

), i =
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1, . . . , n, and aggregate them as a frame feature vector ~g(t). Third, we get feature G(t)

by concatenating (~g(t�s+1)
,~g

(t�s+2)
, . . . ,~g

(t)
, . . . ,~g

(t+s)) around time t, in a window of

size 2s. This forms a sliding window over time. We use G
(t) as a feature, and the

introduction part of a game from this dataset to train a general speaking detection

model SP. Finally, the speaking probability of a person at time t is given by s =

SP(G(t)).

We do not create a new model for head pose angles or eye gaze vector extraction.

Instead, we use these as inputs to our model to improve the predictions by using

them collectively, instead of independently. ICAF takes the head-based features and

speaking probability features as inputs.

Section 4.4

Methodology

Here we describe ICAF, the collective classification methods that incorporates inter-

person dependencies and temporal consistency to jointly predict the VFOA of all

people.

Let fi,t denote the raw input feature vector of person Pi 2 {P1, . . . Pk} at time

t. The raw input features for Pi include the head pose angles vector, the eye gaze

vector and speaking probabilities vector ~s = (s1, . . . , si�1, 0, si+1, . . . , sk). Note that

we don’t use Pi’s speaking probability si in ~s , as Pi’s speaking activity doesn’t

directly influence her VFOA. Let Ci denote the VFOA prediction model for Pi. ICAF

builds separate models Ci for each person Pi. Ci outputs a vector vi,t, the probability

distribution of person Pi’s visual focus of attention at time t. This output vector

specifies the probability that Pi’s VFOA is person Pj (or the tablet) for each j. The

ground truth label for person Pi at time t is denoted by yi,t.

Figure 4.3 illustrates ICAF for k people and an L-layer network. Each person Pi
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Figure 4.3: Architecture of the iterative collective classification model, ICAF. Each
classifier Ci takes three inputs: output of its previous layer (person dependency),
previous time (temporal dependency), and other people’s output (inter-person de-
pendency). Figure is best viewed in color.

has one classifier C
(l)
i

for each layer l. Raw features fi,t are used as input for Pi at

time t. The model has multiple layers 1, . . . , L to add inter-person dependencies by

using the output of other people’s classifiers as input (shown in dotted lines). Each

classifier also takes the previous timestep’s output as input (shown in dashed lines

only for C1 for simplicity). The final output vectors are v(L)
i,t

.

ICAF has three major inputs for each classifier C
(l)
i

at every time t and layer

l as follows: (i) raw features fi,t associated with Pi, (ii) inter-person dependencies

v(l�1)
j,t

(j = 1, . . . , k, j 6= i) incorporating the influence of the behavior of other people,
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Algorithm 1: ICAF Model.

Input : Raw features fi,t 8i 2 [1, . . . k], t 2 [1, . . . T ], Number of layers L.

Output: Predictions v(L)
i,t

of all people i at all times t

1 v(l)
i,0 = ( 1

k+1 ,
1

k+1 , ..,
1

k+1)

2 v(0)
i,t

= C
(0)
i

(fi,t)
3 for t 2 [1, . . . T ] do

/* Operate on every time step t */

4 for l 2 [1, . . . L] do
/* Process every layer l */

5 for i 2 [1, . . . k] do
/* Update person Pi */

6 S(V ) =
P

j2{1,...k}�{i} v
(l�1)
j,t

7 v(l)
i,t

= C
(l)
i
(fi,t,v

(l�1)
i,t

,v(l�1)
i,t�1 , S(V ))

8 end

/* Make prediction and save C
(l)
i

*/

9 end
10 end

11 return v(L)
i,t

8i 2 [1, . . . k], t 2 [1, . . . T ]

and (iii) temporal consistency v(l�1)
i,t�1 enabling the model to make temporally consistent

predictions. Together, this results in a collective classification model that makes

predictions for all people. The overall algorithm of ICAF is shown in Algorithm 1.

4.4.1. Inter-person dependencies

In a multi-person discussion, the behavior of one person can influence the VFOA

of others. Moreover, the behavior of people is highly correlated—when a person is

speaking, other people are likely looking at him [10]. This mutual influence can be

used to make accurate predictions.

We incorporate the person-to-person influence by adding explicit connections be-

tween their classifiers (lines 4–8 in Algorithm 1). In particular, for every person Pi’s

model Ci, we use the predictions of all other people’s models Cj, 8j 2 {1, . . . , k}�{i}

as input. The resulting model is mutually-recursive. To solve this recursion, we un-
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Figure 4.4: Final formulation of ICAF to output v(l)
i,t

of person i at time t on layer l.

fold the model for multiple layers so that the output of layer l is fed as input to layer

l + 1. This is shown as layers 1, . . . L in Figure 4.3.

Thus, the input to person Pi’s model C(l)
i

at layer l is its output from layer l � 1

and an aggregation of the set V of outputs from other people’s models from layer

l�1. The aggregation is a summation represented as S(V ), which is used as an input

to the model (lines 6–7 in Algorithm 1).

To initialize for layer 1, let v(0)
i,t

= C
(0)
i

(fi,t), where C
(0)
i

is the classifier trained by

only raw features of Pi, separately.

4.4.2. Temporal consistency

The VFOA of a person at time t is linked to her VFOA at time t� 1. The temporal

consistency component of ICAF explicitly incorporates this dependency by using the

output of the predictions made during the last timestep for the person as an input.

Specifically, the output v(l�1)
i,t�1 is an input to C

(l)
i
. This is shown using the dashed

lines in Figure 4.3 and in line 7 in Algorithm 1. For each layer l, we initialize v(l)
i,0 as

a uniform probability distribution for VFOA targets.

The final formulation with all the components is shown in Figure 4.4. Overall,

ICAF uses the real time inputs along with temporal and inter-person dependencies to

jointly predict the visual focus of attention of all people.
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Model Accuracy
GMM(H,E) 0.716
HMM(H,E) 0.770
DBN(H,E,S) 0.800

G-DBN 0.782
GC(H,E,S) 0.756
PC(H,E,S) 0.818
ICAF 0.831

Table 4.2: Next VFOA Prediction: Table reports accuracy of ICAF and baselines
using all features. Note that the best results of GC, PC, and ICAF are achieved
by RF. H, E, and S denote head pose, eye gaze and speaking probability features,
respectively. All improvements of ICAF are statistically significant (p < 0.05).

Section 4.5

Experiments

We conduct several experiments on Resistance and AMI datasets to show:

• ICAF outperforms all strong baselines by 1.3% in predicting VFOA in the next

time step (i.e., 10 frames) with p = 0.046 by two-sample t-test.

• ICAF significantly outperforms the highest baseline by up to 5% when making

predictions upto k time steps in the future (p < 0.05).

• Collective classification and temporal dependencies boost the performance of

ICAF significantly.

4.5.1. Baselines

We compare with three sets of baselines that use head pose vector (H), eye gaze vector

(E), and speaking probability vector(S) for predictions. The first set of baselines are

[9, 10, 102], with comparable numbers of VFOA targets in similar settings. Specifi-

cally, GMM(H), GMM(H,E) use Gaussian Mixture Model with parameters from each

individual [9]. HMM(H), HMM(H,E) uses Hidden Markov Model [9]. DBN(H,S),

DBN(H,E,S) uses Dynamic Bayesian Network (DBN) incorporating conversational
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dynamics and a shared constant focus prior [10]. Note that the screen activity fea-

ture is removed to adapt to our dataset. G-DBN uses DBN to track VFOAs and eye

gaze simultaneously with people’s global head poses as inputs [102]. In our dataset,

people sit uniformly in a circle, so we convert their local head poses to global ones

given poses of their cameras.

Further, we created two more sets of baselines using three sets of features H, (H,E)

and (H,E,S). The second set of baselines trains one general classifier GC for all people

by including the person index as input feature vector [10]. The last set of baselines

trains a person-specific classifier PC for each person [6]. As in the case of GC, we

create three baselines PC(H), PC(H,E), and PC(H,E,S).

4.5.2. Experimental setting

To get speaking probability features, we set the sliding window size as 30 frames (1

sec) and train a Random Forest speaking detection model SP. The training data

uses people’s introductions as speaking samples, and other people’s introductions as

non-speaking samples. The introductions were not drawn from our 5 video samples.

We evaluate ICAF and baselines by respecting the temporal order of data. Instead of

doing a k-fold cross-validation, we train the model for the first T data points and test

on the T + 1th data point (each data point consists of 10 frames). T is varied from

96.3% to 99.9%, and the results are averaged. Note that we can not do a leave-one-

game-out experiment [10] as the model needs to be trained on each person specifically.

Recall that the data for each game is divided into three parts: an introduction round

and two discussion rounds.

The introduction round clips are only used for training, and the temporal evalua-

tion is done with the two discussion rounds. Both training and testing are at the frame

level. Frame VFOA probabilities are further averaged over 10 frames as probabilities

at each 10-frame segments. Given the generality of our model, we experiment with 4
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classifiers: Random Forest (RF), Logistic Regression (LR), Linear SVM (LINSVM)

and Gaussian Naive Bayes (NB). In all cases, ICAF has 3 layers. 70 trees are used in

RF. All models are compared using the accuracy metric.

4.5.3. Next VFOA prediction

We compare ICAF with all baselines using all features. All models are trained on the

first T data points and then used to predict the T + 1th data point. Note that this

means that we are predicting the visual focus of attention for each person 1/3 second

into the future. The features given to ICAF for every frame are the head pose vector

(H), eye gaze vectors (E), and speaking probability vectors (S).

Table 4.2 shows the results. For fairness, we add eye gaze features (E) to baselines

GMM, HMM and DBN. (i) Person-specific baseline models perform better than the

corresponding general-classifier baselines using the same set of features. Specifically,

PC(H,E,S) performs at least 6.2% better than GC(H,E,S). (ii) More importantly,

ICAF performs between 1.3%–11.2% better than all baseline models. (iii) Indeed, it

is 3% higher than state-of-the-art method DBN(H,E,S).

4.5.4. Longer-future predictions

We next evaluate the robustness of ICAF by predicting the T + k
th data point while

training only till the T th data point. We vary k from 1 to 10, meaning that we predict

who a person will look at between 0.3 and 3.3 seconds into the future.

Figure 4.5 shows the result. ICAF outperforms the best baseline by up to 5%.

In fact, it is better than DBN(H,E,S) by 1.5%–5.7%. Moreover, ICAF is relatively

stable as k increases, while some baselines drop rapidly. Specifically, ICAF’s prediction

accuracy varies only 7.5% over k, so it gives robust estimation of VFOA in the longer-

term future.
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Figure 4.5: Longer-Future Prediction: Accuracy of predicting k steps to the future.
ICAF is the highest over all time steps, and outperforms the best baseline by up to
5% (p < 0.05). Specifically, it outperforms state-of-the-art method, DBN(H,E,S) [10]
by 1.5% – 5.7% .

4.5.5. Contribution of collective classification

Figure 4.6 compares the results of ICAF with and without the temporal and collective

classification components. Note that ICAF without both components is equivalent to

the baseline PC(H,E,S).

We observe that each of them boost the performance of ICAF from 0.2% to 5.3%

w.r.t. all base classifiers. The combination of both components is important in

ICAF: the performance of PC(H,E,S) is lower than ICAF without either of the compo-

nents. Additionally, adding collective classification improves performance more than

the temporal component alone. In addition, it is important to note that adding the

collective component upon persons’ speaking information can further boost the per-

formance (from PC(H,E,S) of ICAF without the temporal component). Specifically,

from 0.6% to 10.8%. Hence, the collective component of our model is able to cap-
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Figure 4.6: Contribution of collective classification: The performance drops when
either the collective or the temporal components is removed and drastically when
both are removed.

ture both the verbal activities, which draw persons’ attentions, and the non-verbal

activities, with the help of inter-dependent visual focus of attention. Therefore, both

temporal and collective classification components of ICAF are essential, and the col-

lective component is more critical for good predictions.

4.5.6. Comparison with di↵erent features

We next explore the e↵ects of di↵erent features on ICAF and baselines. Note that RF

is used as the (base) classifier to obtain best results for GC, PC, and ICAF .

Table 4.3 shows the results for next VFOA prediction. First, for all models, eye

gaze features E boost the predictions. It especially boosts [10, 9] by at least 13.5%.

Second, speaking features S boost all models except for GC. These demonstrate that

both E and S contribute to prediction of VFOA. Third, using features including E

or S, ICAF outperforms all baselines.
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Model H H,E H,S H,E,S
GMM 0.525 0.716 - -
HMM 0.623 0.770 - -
DBN - - 0.665 0.800
GC 0.719 0.799 0.731 0.756
PC 0.716 0.805 0.771 0.818

ICAF 0.718 0.811 0.784 0.831

Table 4.3: Comparison between di↵erent features: Both E and S boost the accuracy
of all models except GC, and ICAF performs the best in 3 out of 4 cases. (p < 0.05)

Model Static meetings Dynamic meetings
[10] 0.556 0.520
ICAF 0.568 0.538

Table 4.4: AMI corpus experiments. Accuracy of the proposed model on static and
dynamic meetings.

4.5.7. Comparison between di↵erent base classifiers

Here we explore performance of ICAF with di↵erent kinds of base classifiers: RF, LR,

NB and LINSVM. In Figure 4.7 we compare ICAF with GC and PC in the cases of

both next VFOA prediction (k = 1) and longer-future VFOA prediction (k > 1). The

colored texts show the results for k = 1, where ICAF outperforms the corresponding

best baseline by 1.3%-11%. For k > 1, it outperforms the best baseline by up to 5%

with RF, 12% with LR, 3% with LINSVM, and 4% with NB. Thus, we observe the

generality of ICAF.

4.5.8. AMI corpus experiments

We also conducted experiments on the AMI meeting corpus [103]. 8 meetings are

dynamic, where people sit around a table and upto 1 person moves to the white-

board/screen to present. 4 meetings are static, where all people remain seated. We

use people’s closeup videos to extract head pose, eye gaze, and speaking probability.

We followed the leave-one-out protocol as in [10] and compare frame-based accuracy.
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(a) Random Forest.
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(b) Logistic Regression.
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(c) Linear SVM.
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(d) Naive Bayes.

Figure 4.7: Comparison between di↵erent (base) classifiers. In each subfigure, each
of 3 colored numbers indicates the prediction accuracy of k = 1 in the same colored
line.

Since the 4 seats over all meetings are fixed, we train seat-specific classifiers in ICAF.

Table 4.4 shows that ICAF outperforms [10] in both kinds of meetings.

Section 4.6

Lightly supervised VFOA prediction

A major challenge in VFOA prediction is the lack of labeled data for new videos.

Annotating VFOA at a second or sub-second granularity is highly time-consuming

and often not clean. We now propose to generate accurate VFOA predictions without

ground truth labels. The proposed technique is general and can be used to train both
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the baselines and ICAF.

The intuition is that people are highly likely to look at the person who is speaking

if there is a single speaker [139]. Building on this intuition, we identify continuous clip

segments where one person is speaking. This is done using the speaking prediction

model SP described in Section 4.3.1. To reduce false positives, we further average

over 10 frames’ prediction probability around the current frame and use it as the final

label to select single-speaker segments. We select two longest clips for each player as

they are supposed to do it according to the introduction rule. For a segment where

Pi is speaking, we assign i as the training label for all other people and the model

is trained with it. To evaluate the e↵ectiveness of this training method, we train

all models using the introduction (by generating its speaker labels) and use the two

discussion clips with the ground truth VFOA labels as test.

Figure 4.8 shows the results for all baselines and ICAF using RF as base classi-

fier. Since the training labels are speaking labels, we remove speaking probability

features from ICAF as well as baselines. Compared to random prediction of 14.4%,

the lightly supervised training technique generates 41.2%-54.7% results. We also

observe that ICAF performs better than the baselines. For comparison, Figure 4.8

shows the equivalent result with supervised training, where we train the models us-

ing the ground truth focus labels in the introduction round as well. We note that

the lightly supervised prediction is comparable to supervised prediction, showing the

e↵ectiveness of the proposed training technique.

Using the light supervised ICAF method, we have extracted the who-look-at-whom

networks from the videos of Resistance data, and released the networks at https:

//www.cs.dartmouth.edu/~cy/icaf/ for future research.
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Figure 4.8: Lightly supervised predictions (in blue) and supervised predictions (in
red): ‘Random’ denotes random prediction accuracy, and ICAF\S denotes ICAF with-
out speaking feature.

Section 4.7

Conclusion

We showed that by explicitly incorporating inter-person dependencies and temporal

consistency are crucial to accurately predict VFOA both in short-term future and

long-term future. The ICAF model is, therefore, able to overcome the challenges of

rapidly changing VFOA, high dynamics of the discussion, and person-person inter-

dependencies. Moreover, the lightly supervised ICAF is crucial in making the model

general to unseen videos. This opens doors to new research in e�cient extraction of

interaction networks from videos without any training labels.
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Chapter 5

Dominance Prediction in

Multi-person Videos

We consider the problems of predicting (i) the most dominant person in a group of

people, and (ii) the more dominant of a pair of people, from videos depicting group

interactions. We introduce a novel family of variables called Dominance Rank (DR).

Combined with features not previously used for dominance prediction (e.g. facial

action units, emotions), we develop an ensemble-based approach to solving these two

problems. We test our models against 4 competing algorithms in the literature on

two datasets and show that our results improve past performance. We show from

2.4% to 16.7% improvement in AUC compared to baselines on one dataset, and gain

of 0.6% to 8.8% in accuracy on the other. Ablation testing shows that DR features

play a key role.
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Section 5.1

Introduction

The problem of identifying dominant people in a group setting is important for many

applications. Businessmen in meetings with external partners or customers might

wish to identify the key decision maker. Government delegations may be interested

in identifying the most dominant person from the other side in a negotiation.

In this chapter, we study two problems: identifying the most dominant person

(MDP problem) in a group-interaction video and identifying the more dominant per-

son when looking at pairs of people in a group interaction (pairwise dominance predic-

tion or PDP). Although the MDP problem has been previously studied in pioneering

works by Jayagopi et al. [75] and Aran et al. [3], we are the first to study the PDP

problem. We look at two variants of each of these problems (MDP-All and MDP-

Distinct, PDP-All and PDP-Distinct). The chapter makes three novel contributions.

First, we propose a family of Dominance Rank features, which captures the dynamics

of interactions between participants in a group-interaction video. Second, we pro-

pose the Dominance Ensemble Late Fusion (DELF) algorithm that uses Dominance

Rank in combination with several other features to solve all 4 problems. Third, we

propose the Group Dominance Prediction (GDP) algorithm to solve MDP-All and

MDP-Distinct.

We test the DELF and GDP algorithms on two datasets. Our first setting consists

of audio-visual data of groups of people playing a variation of The Resistance game.

We used a subset of Resistance data for 33 games involving 233 players with ground

truth involving surveys on who is the most dominant. Each game involves 5–8 players.

The data was collected from six sites (three in the US, one each in Israel, Zambia, and

Singapore). The second dataset is the widely used ELEA dataset [125], which shows
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Figure 5.1: Our approach. In group G, for each player p at time t we have individual
basic short-term features (1–4) and Dominance Rank features (5) based on the group
interaction. We aggregate each kind of features over time to get long-term features
for each player. Finally, we use an ensemble late fusion approach to make the final
prediction.
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small groups (3–4 people) involved in a winter survival task. The Resistanceand the

ELEA datasets further di↵er in the nature of social interaction present in them. The

former involves an adversarial situation and models a conflict between two groups (an

informed group of spies and an uninformed group of resistance). Whereas in the ELEA

dataset, there is a cooperative element as players wish to solve a common task. We

test DELF and GDP both against each other and against several baselines and show

that DELF beats out strong baselines from past work, and GDP beats out DELF. We

should note that DELF is an improvement on past work, and hence all the excellent

body of past work contributes to this algorithm.

Figure 5.1 depicts our approach to the four problems we study in this chapter.

We first divide each game G’s videos into equal time slices of length �t seconds. For

each player p, we then create a basic short-term feature vector bst(p, t, g) showing

the values of basic features (defined in Section 5.3) for player p during time slice t.

The basic features fall into four categories: speech-related features [60], facial action

unit features [19], emotion-related features from Amazon’s Rekognition, and Mel-

Frequency Cepstral Coe�cient (MFCC) features [43]. We note that the emotion and

MFCC features have never been used in prior work on dominance prediction. Based

on bst(p, t, G), we develop a novel set of Dominance Rank features, inspired by the

PageRank algorithm, on top of basic features. We thus have five types of short-term

features, all applicable to short video segments.

The ground truth dominance labels in both datasets are provided for an entire

game. Therefore, we need to predict whether a player is the most dominant in a game

as a whole (or more dominant than another player in the game as a whole) rather

than in a short time segment �t. For this, we associate a basic long-term feature

vector blt(p,G) that aggregates the features for the short-time slices into features for

the game as a whole using Fisher vector encodings [118] and histograms. A similar
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aggregation is also applied to the Dominance Rank features to get a vector lt(p,G)

of the long-term features for player p in game G.

We then develop predictive models based on each type of long-term features and

develop an ensemble late fusion approach that merges the five predictive models to

make a final prediction. We investigate the importance of each type of features in

the ensemble predictor and show that Dominance Rank features play an important

role. We re-emphasize that DR features build on top of basic features including ones

proposed by others.

Finally, we also develop a Group Dominance Prediction (GDP) algorithm, which

relies on the intuition that considering all players in the game at once is more beneficial

than treating them independently. This naturally sets up a classification problem

where each player’s lt feature vectors are fed into the classifier for training, together

with the one-hot encoding for players (most dominant player in that game or not).

Because games can have 5–8 players, we associate with each gameG, and each possible

subset of 5 players in that game, the concatenation of the feature vectors of those 5

players, along with an indication of which player was the most dominant. We then

learn a classifier on the resulting data.

Section 5.2

Dataset and task descriptions

Resistance-dominance data The Resistance dataset is described in Chapter 3.

Every player is rated by every other player on an integer 1–5 scale (1 is not dominant

at all, 5 is very dominant). We find the median score for each player and call it

the ground truth perceived dominance score of the player in that round. The data

contains 158 rounds with complete dominance labels in all.
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ELEA data We also use the ELEA dataset ([125]) with 27 groups of videos, de-

scribed in Chapter 3. We use three variants of dominance labels: Perceived domi-

nance (PDom), Ranked dominance (RDom), and external dominance score (Chapter

3).

Most Dominant Player (MDP) The MDP problem is to find the most dominant

player in a given round. This is a binary classification task with labels 1 if a player

has the highest perceived dominance score among all the players in this round, and

0 otherwise. In our setting, however, more than one player in the group can have the

highest dominance score. We therefore consider two instances of the problem: finding

the most dominant players in all rounds (MDP-All), and finding the most dominant

player in every distinct round (MDP-Distinct). A round is distinct if there is a single

player with the highest dominance score.

Pairwise Dominance Prediction (PDP) We also consider the more fine-grained

problem of pairwise comparison. The PDP-All problem takes two players in a game

as an input and predicts which one has the higher dominance score. To pose this as a

binary classification problem, we discard pairs with equal scores. The PDP-Distinct

problem predicts which player in a pair is more dominant when the dominance scores

of the players di↵er by 1 or more. We call such pairs of players distinct pairs.

Section 5.3

DELF and GDP algorithms

We have already provided a brief overview of our architecture in Section 5.1. We first

describe our basic short-term features and then our Dominance Rank features (both

denoted further as stf), followed by the extension of the short term features to the

video as a whole.
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5.3.1. Basic short-term features

Past work has shown that speech-related cues ([49, 22]) and gazing information ([65,

125]) are closely related to perceived dominance of a person. We also use facial

expressions and emotions as additional signals for visual dominance ([55]). Our basic

short-term features use audio-visual features from the frontal videos of players. While

the use of these features is not novel, we note that emotion scores, facial action units,

and MFCC features have never been used before for dominance prediction.

• Speaking probability st(pi) is an estimate of a probability that the player pi

is speaking during time interval t. This probability is estimated from the lip

movement of the person for every �t = 0.33 seconds [60].

• Gazing probability gt(pi, pj) is an estimate of the probability that player pi looks

at player pj in time interval t ([10]). This probability is estimated for every

�t = 0.33 seconds according to Rayner et al. [121].

• Facial Action Units scores (FAUs) capture the intensity of 17 action units in

the given frame. These values are produced with the OpenFace library [19].

• Emotion scores are the estimates of intensity of eight emotions and two facial

traits (smile, open eyes) produced by Amazon’s Rekognition.

• Audio features are represented by Mel-Frequency Cepstral Coe�cients, which

are widely used in audio analysis [43].

The concatenation of the above features yields a basic short term feature vector

bst(p, g, t) for each player p in game g’s t’th time interval.

5.3.2. Dominance rank features

Previous research on dominance and leadership analysis shows that dyadic statistics

are correlated with dominance ([4, 109, 125]). We propose a family of short-term
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Table 5.1: Interaction functions for the Dominance Rank features and their Pearson
(r) and Spearman (⇢) correlation with ground truth dominance scores. All correlation
coe�cients are significant with p < 0.01.

I(pi, pj) r ⇢
G(pi, pj)�G(pj, pi) 0.21 0.23
G(pi, pj)/G(pj, pi) 0.1 0.11

LL(pj, pi)� LL(pi, pj) 0.49 0.53
LL(pj, pi)/LL(pi, pj) 0.33 0.36
LL(pi, pj)/LL(pj, pi) -0.26 -0.32
LS(pj, pi)/LS(pi, pj) -0.16 -0.16
LS(pi, pj)� LS(pj, pi) 0.24 0.23
LS(pi, pj)/LS(pj, pi) 0.2 0.19
LS(pi, pj)/LL(pi, pj) 0.50 0.52
LL(pi, pj)/LS(pi, pj) 0.29 0.30

Dominance Rank (DR) features capturing the mutual interactions between players in

the game. Suppose I(pi, pj) is a function that returns a value capturing the interaction

between players i and j (we will show several such functions shortly). The short-term

Dominance Rank Rdom(pi) of a player pi w.r.t. function I in a given time period t is

defined by the following equation:

Rdom(pi) =
1� d

N
+ d

X

j 6=i

Rdom(pj)I(pi, pj)

N � 1
, (5.1)

where N is the number of players in the game, I(pi, pj) is an interaction function,

and d 2 [0, 1] is a damping factor. Damping factor d regulates the importance of

the interaction function for the values of the Dominance Rank (the larger the d the

more important role plays the interaction function). As d increases, the interaction

function I plays an increasingly important role in determining the dominance of

players, whereas when d is small, it plays a less important role. Although we note

that Dominance Rank builds upon the idea of PageRank, unlike PageRank, Rdom is

not one function, but a family of functions one for each possible interaction function

I. Like PageRank, we set d = 0.85.
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Computation of Dominance Rank Features. We compute the Dominance Rank

the same way as the PageRank. We write Equation 5.1 in the matrix form:

Rdom =
1� d

N
1+

d

N � 1
MRdom , (5.2)

where

Rdom = [Rdom(p1), · · · , Rdom(pN)]
|
,

1 = [1, · · · , 1]|, and

Mij =

8
>><

>>:

I(pi, pj), if i 6= j.

0, otherwise.

The Equation 5.2 can be solved e�ciently as a linear system of N equations with N

unknowns. Since the number of players in a group N in the datasets is small (no more

than eight), computing Dominance Rank for all players in the game takes constant

time.

Interaction Functions. We define a family of interaction functions, each of which

yields a di↵erent dominance rank function Rdom when used in Equation 5.1. We

consider combinations of basic values defined on a slightly larger time period than

basic features, representing interactions between players: S (speaking rate), G (gazing

rate), LS (looking while speaking) and LL (looking while listening) defined as follows:
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S(pi) =
1

k

t2X

t=t1

st(pi) , (5.3)

G(pi, pj) =
1

k

t2X

t=t1

gt(pi, pj) , (5.4)

LS(pi, pj) =
1

k

t2X

t=t1

gt(pi, pj)st(pi) , (5.5)

LL(pi, pj) =
1

k

t2X

t=t1

gt(pi, pj)st(pj) , (5.6)

where k is the number of time slices of length �t, on which we define speaking and

gazing probability, that fit into the time period (t1, t2) for the Dominance Rank. In

our experiments we exploit time periods of 1 and 5 seconds for Dominance Rank

features, thus k equals to 3 or 15. Based on these values, we define a set of inter-

action functions (Table 5.1) representing how interaction between players may be

connected to distribution of dominance in the group, e.g., if less dominant players

look at more dominant players more often than the other way around (in rows 1–2).

For example, the 1st one indicates how much does person pj looks at pi more than

the opposite. These functions control the way and volume of transferring between

people’s dominance ranks during their interactions.

Normalized Dominance Ranks. To compare Dominance Rank (Equation 5.1) for

players from di↵erent games, we normalize these values to be in [0, 1]. Table 5.1 lists

some of the interaction functions we explored and the Pearson/Spearman Correlation

Coe�cients (r/⇢) of resulting Dominance Ranks with ground truth dominance scores.

We recall that correlation coe�cients lie in the [�1,+1] interval. We see that some

of the Dominance Rank Functions such as those associated with interaction functions

LL�LL and LS/LL (rows 3 and 9 respectively) demonstrate strong correlation with
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Figure 5.2: GDP algorithm. Given a dataset T , for every game G we form all possible
groups of 5 players, form labels based on the players scores in every group, and
concatenate long-term features for players to get group feature. We also augment
the dataset with all possible permutations of the players. Then we train a model for
the task of multilabel or multiclass classification on the new dataset T 0. For the final
prediction for a specific player we average predicted scores over all the groups and
permutations where that player is present.

ground truth dominance scores. Throughout the rest of this chapter, we will use the

expression “short term features” (stf) to denote the set of basic short term features

as well as normalized short term Dominance Rank features associated with any player

in a game.

5.3.3. Long term features

Since players in the game are instructed to score each other’s dominance for only the

round before the survey, to train models for our four classification tasks, we need to

produce features representing whole rounds, which last 15 minutes on average. The

features above, however, are extracted over a short-term period of time from 0.33 to

5 seconds. To aggregate these features we use two methods described below.

Fisher-Vector features. Fisher vector (FV) is a bag-of-words model heavily used

for object recognition in images [118]. Note that each round may have a di↵erent

duration and hence the number of bst features can vary from round to round. Fisher

Vectors aggregate the features of an arbitrarily long video into a fixed length encoding

— we use 256-dimensional features for our experiments. The details can be found at
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Section 2.4.

Histogram features. We compute a histogram feature for every short-term feature

(both bst features and normalized short-term Dominance Rank features). For a player

pi in a game round G and a short-term feature stf , we have a set of all feature

values for all short intervals over the round {stf(pi, t1, G), . . . , stf(pi, tT , G)}. We

build a histogram (formally described in Section 2.4) of short-term features Vstf =

hv1, v2, . . . , vbi, where vl are frequencies of values stf(pi, tj, G) falling into the lth

bin; b is the number of bins determined through cross-validation (on the training set

alone).

5.3.4. Dominance Ensemble Late Fusion (DELF)

The best classifier for feature type i returns a score Si denoting the probability of

a subject being the most dominant player in the corresponding round. DELF then

fuses the scores S1, . . . , S5 by weighted late fusion described in Section 2.5. The best

classifier for each of the five types of features is determined by exhaustive search

through all possible combinations of classifiers.

5.3.5. Group Dominance Prediction (GDP)

We propose the Group Dominance Prediction (GDP) algorithm for solving MDP-

All and MDP-Distinct. GDP’s pseudo-code is shown as Algorithm 2 and also on

Figure 5.2.

We reason that to determine the most dominant player in a game we need to

compare players within that game to each other, therefore it should be beneficial to

provide a classifier with features of all players in that game at once. In Resistance-

dominance dataset, however, the numbers of players in games vary, which prevents

us from building a single model with fixed feature length. GDP’s goal is to develop

a modified training set. The algorithm considers each game in turn and looks at all
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Algorithm 2: GDP(T : training set, ltf : long term feature type)

1 T
0 = ;

2 foreach game G 2 T do
3 G5 = set of all subsets containing 5 players from G

4 ⇧5 = set of all permutations of 5 elements
5 foreach (i1, i2, i3, i4, i5) 2 G5 do
6 foreach ⇡ 2 ⇧5 do
7 (j1, j2, j3, j4, j5) = ⇡(i1, i2, i3, i4, i5)
8 Dom = argmax

pjk
GT Dom Score(pjk)

9 input = concat (ltf(pjk) | k = 1, . . . , 5)
/* 1Dom(x) is indicator function */

10 label = concat (1Dom(pjk) | k = 1, . . . , 5)
11 T

0 = T
0 [ {(input, label)}

12 end
13 end
14 end
15 Train a classifier on T

0

possible subsets G5 of 5 players in that game (the smallest possible number of players

in any game). For each subset in G5, GDP considers the maximal ground truth

dominance score (Step 8). It then generates a new feature vector by concatenating

the long-term feature vectors of the five players (Step 9) and then assigning a label of

1 to the most dominant players in the subset and a label of 0 to the others (Step 10).

Furthermore, GDP considers all permutations of players to augment the dataset (Steps

6–7). This creates a new training set with feature vectors 5 times as long as before.

GDP then trains a classifier (multilabel for MDP-All, multiclass for MDP-Distinct).

At the inference time, GDP performs the same procedure (forming subsets of 5

players and all permutations) with the validation set. Once all the binary predictions

are made, to obtain the final probability of a player being most dominant in the game

round, we average the predictions for this player for all groups and permutations

where this player is present.
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Table 5.2: Resistance-dominance Data — binary classification results. Table reports
results of experiments with two groups of features: Dominance Ranks (DR) and
Speaking probability, aggregated with Fisher Vector (FV) or Histograms, as well as
DELF model. For Dominance Rank we use the LS/LL interaction function with
timespan of 1 and 5 seconds. Details on DELF for each task are presented in Table
5.3. Baseline is adapted from Beyan et al. [22].

Feature
MPD-All MDP-Distinct PDP-All PDP-Distinct

AUC FPR Acc. AUC FPR Acc. AUC FPR Acc. AUC FPR Acc.

DELF 0.791 0.027 0.769 0.894 0.021 0.889 0.874 0.281 0.792 0.949 0.189 0.876

DR (LS/LL, 1 sec) + FV 0.754 0.056 0.761 0.855 0.017 0.89 0.77 0.281 0.694 0.832 0.235 0.741
DR (LS/LL, 1 sec) + Hist. 0.754 0.252 0.711 0.836 0.209 0.868 0.788 0.314 0.724 0.861 0.392 0.768
DR (LS/LL, 5 sec) + FV 0.773 0.064 0.761 0.861 0.167 0.868 0.771 0.328 0.695 0.835 0.28 0.74
DR (LS/LL, 5 sec) + Hist. 0.77 0.252 0.720 0.844 0.179 0.879 0.793 0.441 0.709 0.861 0.347 0.788

Speaking + FV 0.741 0.279 0.689 0.838 0.03 0.875 0.853 0.261 0.762 0.92 0.179 0.825
Speaking + Hist. 0.756 0.066 0.77 0.821 0.15 0.879 0.847 0.258 0.778 0.91 0.164 0.86

Baseline (speak.) 0.738 0.103 0.73 0.769 0.2 0.879 0.8 0.274 0.738 0.893 0.198 0.845
Baseline (comb.) 0.767 0.252 0.716 0.764 0.214 0.879 0.828 0.29 0.759 0.906 0.168 0.863

Section 5.4

Experiments on Resistance-dominance data

This section is organized as follows. We first show the results of applying DELF and

single-ltf classifiers to four binary classifications tasks. We then show the results of

an ablation study to determine the most important feature for our ensemble model.

We also provide an analysis of how video length a↵ects the predictive performance of

models based on our proposed features. We examine the performance of two other

choices for the Dominance Rank Interaction function. Finally, we demonstrate the

performance of GDP algorithm.

Setup. We split the Resistance-dominance dataset into 10 folds by games. As each

player appears in only one game, we always make predictions about the dominance of

players in games that we have not seen before. Our classifier suite for binary prediction

tasks consists of the 5 classifiers: k-Nearest Neighbors, Logistic Regression, Gaussian

Naive Bayes, Linear SVM, and Random Forest. The tables below report the best

results among these classifiers. Since our Resistance-dominance dataset is inherently

imbalanced, we report the mean AUC over 10 folds and use it to compare models.
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Excluded Feature AUC

MDP-All

All features present 0.790
FAU (AU15, AU20, AU25) 0.790
MFCC 0.775
DR (LS/LL, 5sec) + FV 0.757
Emotions (Angry, Surprised, Calm) 0.772
Speaking+Hist. 0.775

MDP-Distinct

All features present 0.894
FAU (AU05, AU14, AU20) 0.888
MFCC 0.890
DR (LS/LL, 5sec) + FV 0.849
Emotions (Angry, Confused) 0.891
Speaking+FV 0.884

PDP-All

All features present 0.874
FAU (AU15, AU20, AU25) 0.824
MFCC 0.867
DR (LS/LL, 5sec) + Hist. 0.866
Emotions (Smile, Angry, Surprised) 0.866
Speaking+ FV 0.816

PDP-Distinct

All features present 0.949
FAU (AU14, AU15, AU25) 0.948
MFCC 0.921
DR (LS/LL, 1sec) + Hist. 0.934
Emotions (Happy, Angry, Calm) 0.945
Speaking + FV 0.949

Table 5.3: DELF ablation study. For every task we report the late fusion AUC. To
assess the importance of every feature type, we exclude one feature type at a time
and examine the AUC of DELF for the remaining feature types.
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But we also report False Positive rate (FPR) and Accuracy (Acc.) as reported in

past works ([22, 125, 108, 109, 4]).

5.4.1. Binary prediction with DELF

Table 5.2 shows the result of applying DELF to the four problems as well as single-

ltf classifiers. We compare our models with two baselines adapted from the recent

paper by Beyan et al. [22]: one model uses speaking features such as total number of

speaking turns or number of times a player gets interrupted, the other model combines

speaking features with gazing features such as number of times a player looks at other

players.

DELF produces the best AUCs in all four tasks outperforming both baselines and

out singe-ltf classifiers.

For each task, a single-ltf classifier (Dominance Rank or speaking-based feature)

outperforms the baselines. In most cases, the improvement in AUC comes with

reduced FPR and better accuracy than the baselines. We can see that Dominance

Rank features prove to be more useful in the MDP task, while speaking-based features

produce the highest AUCs on PDP among single-ltf features. We believe this happens

because speaking-based features capture individual behavior of the player thus making

it easier to compare two players, while Dominance Rank features capture the overall

dynamics of the interaction of a player with all other players, which is useful for

the most dominant player detection but introduces noise for pairwise comparison.

Additionally, we found that features exclusively based on gazing information produce

fairly poor results (not reported in the Table 5.2), which holds both for our features

and baseline features.

We further note that “nice” instances of problems (MDP-Distinct and PDP-

Distinct) are easier and get higher results, because di↵erence in dominance between

players in these cases is more prominent.
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Ablation study. To assess the importance of each group of features used in DELF,

we exclude features one at a time and perform another late fusion on the reduced

group of features We see from Table 5.3 that DR features prove to be important for

identifying the most dominant player — both for MDP-All and MDP-Distinct. For

PDP-All and PDP-Distinct most value is provided by speaking-based features and

MFCC respectively.

Figure 5.3: MDP-All: performance depending on the length of the video. For the
best performing long-term feature (LS/LL, 5 sec + FV) AUC for the entire video is
the highest, and for smaller portions of the video predictive performance drops. For
any length of the video, parts closer to the end yield better AUC.

Predictions of our models depend on how large part of the game is considered

and what part of the game is considered. In the Figure 5.3 we show how the LS/LL

76



5.4 Experiments on Resistance-dominance data Dominance Prediction

Dominance Rank feature (best performing feature in Table 5.2) performs on MDP-

All task when we process only a portion of each video from 20% to 100%. We also

vary what portion of the video is processed. We found that considering only 20% of

the video drops the predictive performance of our models for up to 0.2. Performance

grows with increased video length reaching the highest result for the entire video. For

the same length, however, it is usually advantageous to consider parts closer to the

end of the game. The last 20% of the video sometimes can yield the performance

very close to the classifiers trained on the entire video. We attribute this finding to

the fact that ground truth labels used in our work are based on players’ assessment of

each other, which is collected after every two rounds of the game, and people tend to

remember the most recent events better. Analysis shows, however, that for the best

performance it’s important to consider entire videos.

Interaction functions. In addition to Dominance Rank features w.r.t. the inter-

action function LS/LL, we examined two more interaction functions: LL(pj, pi) �

LL(pi, pj) and LS(pi, pj) � LS(pj, pi). These functions show relatively high correla-

tion with ground truth dominance scores (Table 5.1). For MDP-All these features

yield the AUC of 0.755 and 0.748 respectively, showing the results close to the best

single-ltf classifier in Table 5.2. For MDP-Distinct the AUCs are 0.795 and 0.847

respectively, which is higher than the corresponding baselines and on-par with the

best single-ltf classifiers.

5.4.2. GDP algorithm performance

We tested GDP algorithm on the Resistance-dominance dataset. We used two classi-

fiers: Multilayer Perceptron (MLP) with two layers, and Random Forest (RF) with

50 estimators. As shown in Table 5.4, GDP outperforms all the baselines as well as

the various strong settings of DELF.
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Table 5.4: GDP algorithm results. GDP in most cases improves over the corresponding
single ltf binary prediction, as well as outperforming best DELF model.

Feature Classif. AUC FPR Acc.
MDP-All

Speaking + FV MLP 0.809 0.219 0.745
Speaking + FV RF 0.817 0.133 0.77

DR (LS/LL, 5sec) + FV MLP 0.783 0.222 0.733
DR (LS/LL, 5sec) + Hist. MLP 0.772 0.157 0.746

MDP-Distinct
Speaking + FV MLP 0.936 0.048 0.917
Speaking + FV RF 0.902 0.088 0.849

DR (LS/LL, 5sec) + FV RF 0.878 0.071 0.878
DR (LS/LL, 5sec) + FV MLP 0.85 0.065 0.889

Section 5.5

ELEA corpus experiments

We conducted further tests on the ELEA dataset [125] which is a widely used bench-

mark for modeling and detecting personal traits such as leadership and dominance.

We use speaking and gazing labels provided with the dataset to produce Dominance

Rank features. Every participant in the dataset has two dominance scores: perceived

dominance (PDom) and ranked dominance (Rdom). We followed two protocols: (1)

as in [109, 4, 108] we assign every participant a binary label by thresholding her dom-

inance score by the median value, and (2) as in [125] we solve the MDP-All task, i.e.,

finding the most dominant participant in every group. As in these works we perform

leave-one-game-out strategy when training and evaluating classifiers. Table 5.5 shows

that our proposed Dominance Rank feature outperforms strong baselines in existing

work.

We used the average dominance scores assigned to participants by the independent

viewers not participating in the task as human scores. In Table 5.5 we can see that

our proposed features outperform humans on the task of detecting participants who
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Method PDom RDom

[109] 58.82 64.71
[4] 65.69 59.80
[108] 67.65 68.63
DR (LS/LL) + FV (ours) 76.47 67.65
DR (LS/LL) + Hist. (ours) 74.51 71.57
Human scores 68.63 —

Sanchez-Cortes et al. [125] 74.10 77.80
DR (LS/LL) + FV (ours) 77.50 78.40
DR (LS/LL) + Hist. (ours) 76.50 76.50
Human scores 78.43 —

Table 5.5: ELEA corpus experiments. Accuracy reported for the detection of dominant
participants. Dominance is defined based on ranks (RDom) or scores (PDom). In
rows 1–6 the median score is used as a threshold to assign labels, therefore random
guess accuracy is close to 50%. Rows 7–10 report accuracy for MDP-All task.

are more dominant than others. Humans, however, are better at detecting the most

dominant participant in a group, although our model achieves comparable accuracy.

Section 5.6

Conclusion and future work

We study two major problems: predicting the most dominant person in a group

setting, as well as the more dominant of a pair of people. We develop a novel family of

Dominance Rank features and develop two algorithms for these problems. The DELF

algorithm uses past features (plus facial action unit, emotion, and MFCC features not

previously used in dominance prediction), as well as dominance ranks combined with

a late fusion approach and beats out past work in predictive accuracy — an ablation

study additionally shows the Dominance Rank features to be the most important

ones. The GDP algorithm proposes a way to expand and augment the dataset while

retaining the group information. It beats out both past work and DELF on two tasks.

But we note that both DELF and GDP use many well-known features from the past
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literature to achieve these high AUCs.

One potential future work is the improvement of the GDP algorithm. When gen-

erating subsets of 5 players, a player in a larger group will appear in more subsets,

which will cause the unbalance of training data. One can resolve this by subsampling

the subsets or weighting the samples during training.
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Chapter 6

Predicting Relative Nervousness

from Group Interaction Videos

Given a video of a group of interacting humans, we solve three problems: (i) The

Pairwise Nervousness Prediction (PNP) problem predicts if person A is more nervous

than B even if the ground truth nervousness ratings for A and B are very close. (ii)

The PNP-Distinct problem predicts if A is more nervous than B when the ground

truth nervousness ratings for A and B di↵er by at least 1 on a 5 point scale. (iii) The

Nervousness Change Prediction (NCP) problem predicts if A’s nervousness rating

increases or decreases compared to his previous rating in the same video. Compared

to past work that looked at using emotions, facial action units (FAUs), and facial

movements, we make two new contributions: (i) As social science theory suggests

that A might be more nervous than B if B is more dominant, we define a new class

of features called nervousness scores (NSs) from the audio-visual channel. NSs use

dominance relationships between people, as well as gaze (who is looking at who), and

speaker (who is speaking) information. (ii) We develop a novel Facial Emotion Graph

Convolution Network (FE-GCN) together with an ensemble prediction architecture.

Our results show that: (i) either NSs or FE-GCN generate the best performance in
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head to head comparisons with five baselines based on past work, (ii) an ensemble

that merges NSs and FE-GCN provides high quality results in terms of both F1-score

and AUC compared to the five baselines, and (iii) the learned FE-GCN identifies

landmarks that are highly relevant for nervousness prediction.

Section 6.1

Introduction

The ability to detect nervousness in group interactions has many applications. In a

business negotiation, knowing that one party is nervous may suggest a negotiation

strategy to the other party. In a social setting, understanding that one person is

nervous may enable others to put that person at greater ease. Security agencies may

use nervousness as a cue to determine whether a subject is suspicious.

In this chapter, we study the problem of predicting pairwise nervousness (Is person

A more nervous than B? Is a person more nervous compared to his rating before?)

in a social setting where subjects are involved in a group interaction (e.g. game

or discussion). Past work by psychologists has suggested that nervousness is linked

to the setting (e.g. is A speaking in public?) [137], the response of others (e.g. is

person A listening to person B while expressing certain facial/body gestures?) [137],

and dominance (what is the relative dominance of A relative to B?) [99]. We study

this problem in 3 settings: (i) the Pairwise Nervousness Prediction (PNP) problem

looks at all pairs (A,B) of people even if their nervousness ratings are near identical,

(ii) the PNP-Distinct problem looks at all pairs of people where either A or B is

clearly more nervous by a margin of 1 or more on a 5-point rating scale, and (iii)

the Nervousness Change Prediction (NCP) problem, i.e. how a person’s nervousness

changes (increases/decreases) over time.

We leverage social science research, together with past work on emotion predic-
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tion [93] and dominance prediction [13] to make several contributions. Our first

contribution is the definition of a family of 54 new features called nervousness scores

(NSs) that combine social science theory with interactions between people in the

video. The NSs can be obtained from both audio and visual behaviors, which we call

ANS s and VNS s respectively. Our second contribution is the development of a novel

Facial Emotion based Graph Convolution Network (FE-GCN) that combines Graph

Convolutional Networks (GCN) [82] and Convolutional Neural Networks (CNN) to

generate facial embeddings based on facial landmarks. Unlike past work on GCNs

and CNNs that require huge amounts of data for training, our FE-GCN can be trained

even on the modest amount of data we have. We first predict nervousness using the

ANS/VNS features and FE-GCN, and then combine these predictions using a late

fusion step to generate results that have both high AUCs and F1-scores. We evaluate

our methods on two datasets: the Resistance social game data from [13] and the ELEA

“winter survival task” dataset from [125]. To better understand NS features, we also

explore how di↵erent emotion categories (positive vs. negative) in NSs and di↵erent

video content can influence the prediction performance.

Our experiments show that: (i) in head to head comparisons, one of our new

techniques, i.e. ANS/VNS/FE-GCN yields the best results on all three problems

beating five baselines and (ii) an ensemble that combines our ANS/VNS/FE-GCN

techniques generates the overall best result, and (iii) the trained FE-GCN can identify

the importance of facial landmarks that are relevant to nervousness.

Section 6.2

Dataset and tasks

We use two very di↵erent datasets in this chapter. The first one, Resistance-nervousness,

is a subset of the Resistance data (Section 3.1) consisting of 25 videos involving 178
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Dataset # Games # Players Kendall W

Resistance 80 564 0.150
Resistance-1 16 112 0.301
Resistance-2 15 104 0.305

ELEA 27 102 0.332
ELEA-1 10 52 0.612
ELEA-2 9 46 0.640
ELEA-3 8 40 0.664

Table 6.1: Datasets statistics and inter-annotator agreements using Kendall’s W co-
e�cient. Note that the first rows of and ELEA are original datasets.

people, which contains complete nervousness ratings among players in each group.

We use the median rating for each player as the ground truth perceived nervousness

rating of the player in a round. The dataset contains 62 rounds in all. The average

length of a round is 13.3 minutes. Second, we annotate the ELEA data (Section 3.2),

and use the median rating as the perceived nervousness rating.

We assess inter-annotator agreement via the Kendall’s W metric which turned

out to be 0.15 for and 0.332 for ELEA. The agreement is low as judgment about

nervousness is subjective. We therefore also created multiple subsets of both datasets

where the inter-annotator agreement is higher (a Kendall W of at least 0.3 for and

0.6 for ELEA) and where a su�ciently large number of players is available to train

and test on. Table 6.1 summarizes the two original datasets and five subsets with

higher inter-annotator agreement.

Pairwise Nervousness Prediction (PNP) The PNP problem takes two players

in a game (or one round in the Resistance dataset) as input and predicts which one

has the higher nervousness rating. To pose this as a binary classification problem, we

discard pairs with equal ratings. The PNP-Distinct problem predicts which player

in a pair is more nervous when the nervousness ratings of the players di↵er by more

than 1.
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Figure 6.1: Nervousness Prediction Architecture (NPA) overview. Given input audio
and video clips of several people (three in this example) interacting with each other, we
first extract pairwise interactions (looking at each other, speaking), audio emotions,
visual emotions, and dominance. To predict how nervous person P3 is, we: (i) compute
the audio nervousness scores (ANSs) and video nervousness scores (VNSs) from the
interactions between P1, P2 and P3 (details in Section 6.3.1), (ii) compute P3’s face
embeddings using our FE-GCN methods (details in Section 6.3.2), and (iii) aggregate
each of these 3 feature types over time and get three individual predictions and (iv)
use an ensemble of these three models to get the final prediction. In pairwise tasks
PNP and PNP-Distinct, for each kind of feature, we concatenate aggregated feature
vectors of two players before making individual predictions.

Nervousness Change Prediction (NCP) Because multiple questionnaires can

be filled out in the Resistance data (but not in the ELEA data), we also consider

how subjects’ nervousness levels change over time as the game proceeds. We compare

the nervousness ratings of a player in two consecutive rounds and solve the binary

classification problem of whether the rating increases or decreases from one round to

the next. To keep the problem binary, we discard samples with the same rating in

two consecutive rounds.

Section 6.3

Nervousness prediction architecture

In this section, we present the details of the Nervousness Prediction Architecture

(NPA) shown in Figure 6.1. NPA takes a raw video clip v as input and extracts: (i)
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speaker information (probability of each person being the speaker), (ii) gaze infor-

mation (probability distribution of who each person is looking at - this could include

“nobody” as an option) using the code from [13], (iii) four audio emotions (angry,

sad, happy, neutral) extracted using [36] from the clips where speaking is predicted,

and (iv) seven visual emotions (anger, disgust, fear, happy, sad, surprise, neutral)

using the techniques and code from [93]. Note that these features are estimated for

every �t seconds (�t = 1).

We use (i)–(iv) above together with results from social science linking emotions

with nervousness [104], dominance with nervousness [48], and linking being the focus

of visual attention with nervousness [137] in order to define a new class of features

called nervousness score (NS). Specifically, for each �t time window, we have a set

of video nervousness scores (or VNSs) for all video clips and audio nervousness scores

(or ANSs) in any audio clips predicted to contain speech. For each short time window

�t, each NS feature f has a value vf,t. Therefore, for a given video of length T (i.e.

with time points 1, . . . , T , we have values vf,1, . . . , vf,T for a feature f . As di↵erent

videos may vary in length, we generate a histogram (i.e. probability distribution) over

feature values vf,1, . . . , vf,T in order to generate a fixed-length vector for f . Thus, each

feature f has an associated histogram vector and the feature vector associated with

a given video clip is the concatenation of the di↵erent histogram vectors.

Recent years have witnessed huge advances in the discovery of embedding fea-

tures using neural nets [82, 145]. We therefore develop a novel model called Facial

Emotion Graph Convolution Network (FE-GCN) to extract facial embedding features

by combining GCNs with Temporal Convolutional Networks (TCN) [17] to generate

predictions based on highly representative automatically learned features. These face

embeddings intuitively capture far more complex facial features than hand-crafted

ones [114, 63]. The advantage is that embeddings may capture low-level features that
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humans may not imagine.

To solve the pairwise tasks (PNP and PNP-Distinct), we concatenate the feature

vectors of two players. These concatenated feature vectors are then fed to one of the

standard classifiers (in the case of baseline features and Nervousness Score features)

or to the final layer (in case of FE-GCN + TCN).

Our Nervousness Prediction Architecture combines these three predictions to gen-

erate a final prediction using late fusion. Because the main novelty of our work

involves: (i) Nervousness scores/ranks and (ii) FE-GCN and its combination with

Temporal CNNs, the remainder of this section focuses on these components.

6.3.1. Nervousness Scores

In this section, we first define nervousness scores on videos and then extend it natu-

rally to speech audios.

Visual Nervousness scores. Messenger et al. [104] and Stein et al. [137] state that

people are more nervous when negative attitudes are directed toward them. They

are less nervous when others exhibit positive attitudes toward them. Therefore, when

person u interacts with person v, we can use the facial expressions of u as a proxy for

u’s attitude towards v. Of the 7 visual emotions we extract, we use PE = {Happy}

and NE = {Sad,Angry,Disgusted, Surprised, Fearful} (excluding ”neutral”) as

the set of positive and negative emotions respectively. Given a short time window

�t, st(u) is the probability of person u speaking and pe,t(u) is the probability of

person u showing the emotion e 2 PE [NE.

We capture the interaction between u and v during time window �t with 3 forms

of interaction functions it(u, v):

• gt(u, v): probability of person u gazing at person v,

• lst(u, v) = st(u)gt(u, v): probability of person u looking at v while u is speaking,
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• llt(u, v) = st(v)gt(u, v): probability of person u looking at v while v is speaking.

Social science theory [99] suggests that high dominance is linked with low ner-

vousness and vice versa. Let domt(u) represent the dominance of u during time

window �t. We consider the relative dominance of u w.r.t. v in time window �t as

Rdomt(u, v) in three possible forms:

• Rdomt(u, v) = domt(u)/domt(v). Here, the relative dominance of u w.r.t. v

is the ratio of u’s dominance to v’s. Social science theory suggests that if this

ratio is small, then v should not be nervous, while u would be nervous (and vice

versa if this ratio is large).

• Rdomt(u, v) = domt(u). Here, we suggest that in an interaction between u and

v, only u’s dominance plays a role in v’s nervousness.

• Rdomt(u, v) = 1/domt(v). This suggests that only v’s dominance plays a role

in v’s behavior.

We consider two possible ways to define domt(u). First, we can use the human-

rated dominance score ds(u), which is constant over two rounds in the Resistance data

and over the whole game in the ELEA data. An inspection of the Resistance game

and ELEA data showed negative Pearson Correlation Coe�cients of -0.51 and -0.12

respectively (p < 0.05) between the human-rated dominance score of a player and

nervousness rating. That said, using only dominance scores as features yields poor

performance for nervousness prediction. However, as dominance can be dynamic and

emergent [125], the use of ds(u) to represent domt(u) may not be su�cient. Moreover,

a resulting system would not be an end-to-end automated system as it would require

human input during the processing. We therefore rejected this option.

Instead, our second option builds upon the notion of Dominance Rank from [13].

Dominance Rank is a class of features which identify the relative dominance of each
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person in a group by dynamic human interactions. Given a interaction function I(u, v)

between people u, v in a group of N , the dominance rank of u, dr(u), is recursively

defined as 1�d

N
+d

P
v 6=u

dr(v)İ(u,v)
N�1 ([13]). It is a form of PageRank weighted by I(u, v).

Various types of interaction function I(u, v) are explored by [13]. Di↵erent interaction

functions capture things such as the probability that u is looking at v while u is

speaking, the probability that v is looking at u while u is speaking, and so forth.

We use drt(u) to denote the dominance rank of u in the group during time �t —

we normalize it to ensure
P

u
drt(u) = 1. Specifically, we use two forms of dominance

rank features drt(u;LL) and drt(u;LSLL) whose mean values over time are posi-

tively correlated with ds(u) (cf. [13]). LL and LSLL are two interaction functions.

LL(u, v) = ll(v, u) � ll(u, v) represents the relative looking-while-listen di↵erence,

and LSLL(u, v) = ls(u, v)/ll(u, v) is the ratio between looking-while-speaking and

looking-while-listening (cf. [13]).

We now combine the visual attitudinal information (positive/negative) of a person

u towards a person v with the relative dominance and interaction between u and v

by defining a class NSt(v) of visual nervousness scores of a person v as follows:

NSt(v) = ↵NSpos,t(v) + (1� ↵)NSneg,t(v) , (6.1)

where ↵ denotes the balance between the positive and negative attitudes of people

interacting with v (0  ↵  1),

NSpos,t(v) =

P
e2PE,u 6=v

Rdomt(u, v)it(u, v) (1� pe,t(u))

|PE|
P

u 6=v
it(u, v)

,

NSneg,t(

P
e2NE,u 6=v

Rdomt(u, v)it(u, v)pe,t(u)

|NE|
P

u 6=v
it(u, v)

.

Intuitively, NSpos,t(v) summarizes the positive attitudes expressed by other peo-
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Functions Forms

it(u, v) gt(u, v), lst(u, v), llt(u, v)
domt(u) dst(u), drt(u;LL), drt(u;LSLL)
Rdomt(u, v) domt(u), 1/domt(v), domt(u)/domt(v)

Table 6.2: Di↵erent forms of nervousness scores. Note that drt(u;LL) and
drt(u;LSLL) are two types of dominance ranks [13] which are positively correlated
with the dominance score ds(u).

ple toward v based on their interactions and relevance dominance, while NSneg,t(v)

summarizes the negative ones.

Table 6.2 summarizes all the possible forms of functions in the definition of ner-

vousness scores. Overall, we have 27 visual nervousness score (VNS) features.

Audio Nervousness Scores. Audio Nervousness Scores are computed in a similar

manner. We let PE = {Happy} be the set of positive audio emotions and NE =

{Sad,Angry} be the set of negative audio emotions. The three audio emotions are

the most common emotional descriptors found in the literature ([29, 30]). Given a

short speech clip �t, we calculate the ANSs from Equation 6.1 by replacing the visual

emotions with audio emotions thus obtaining 27 forms of ANSs.

6.3.2. FE-GCN

Since nervousness is a complex emotion/expression whose visual manifestation can

vary dramatically from person to person, we explore the possibility of learning such

models using embeddings. CNNs have recently been used to learn facial embeddings

from images [113, 142] and videos [152, 35]. However, as convolutions only process

local neighborhoods, they have to be stacked repeatedly (to create deep CNNs) in

order to get non-local summaries of faces. Unfortunately, it is not feasible to learn

such embeddings from the limited volume of data in our two nervousness datasets.

To solve these challenges, we propose a lightweight model called Facial Emotion-

oriented Graph Convolution Networks (FE-GCN), to learn a facial emotion oriented
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Figure 6.2: FE-GCN Structure. Given a face image I, the CNN layers extract local
features and obtain the spatial size of output feature map F . We use the locations of
68 landmarks and the feature map F to build a facial landmark graph. This graph is
then fed into GCN layers to learn node representations {gi} and apply mean pooling
to get the final embedding g.

embedding given a face image. Graph Convolution Networks (GCN) [82] are non-

local networks that have significantly improved the quality of many prediction models,

e.g. multi-label image recognition [37] and person re-identification [94]. Our FE-

GCN model uses GCNs to learn long-range dependencies in a face from the graph

built from facial landmarks. The local features of facial landmarks are learned by

using a shallow CNN. To the best of our knowledge, we are the first to leverage GCNs

to learn facial embeddings.

In order to learn representative embeddings, we first pre-train the FE-GCN on

the SFEW2.0 dataset [47] consisting of high-resolution images depicting seven basic

emotions. To fine-tune the model for our nervousness video datasets, we aggregate
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the embeddings over time through the use of a lightweight Temporal Convolutional

Network (TCN) [17]. FE-GCN is a lightweight model which only has 120K param-

eters compared to 25M in ResNet50 and 134M in VGGFace. Despite this, FE-GCN

outperforms the VGGFace architecture on emotion recognition tasks on SFEW2.0.

As emotion prediction is not a goal of this chapter, we omit the details.

Figure 6.2 shows our FE-GCN architecture. Given an input image I 2 RH⇥W⇥C

where H,W, and C denote height, width and channels resp.:

(a) We extract the set V = {Vi} = {(xi, yi)}, i = 1 . . . N of I’s facial landmarks

(68 in all) using OpenFace [19] and build a facial landmark graph through the

pre-defined weighted and undirected edges (as shown in Fig. 6.2). The (xi, yi)’s

shown are coordinates in the image space. First, we create the following con-

nected components: face profile, eyes, eyebrows, nose and mouth. Second, we

add component-wise edges: eye-eyebrow, eye-profile, eye-nose, nose-mouth, and

mouth-profile. Each edge is the shortest among all possible connections between

components. The edges enable e↵ective message passing between landmarks.

Edge weights are set as the Euclidean distances between facial landmarks.

(b) The input I is then passed to three convolutional layers with kernel size 3⇥ 3,

stride and padding 1. These layers preserve the spatial size of I and extract

a low-level feature map F 2 RH⇥W⇥C
0
, which is used for point-wise matching

with facial landmark coordinates. C 0 = 128 is the number of channels of F .

(c) For each node Vi, we get the embedding fi = F (xi, yi) 2 RC
0
. We then feed

the graph into two GCN layers to learn a non-local node representation gi, 8i

from the global face structure.

(d) Finally, mean pooling is applied to get the final face embedding g, i.e., g =

1
N

P
N

i
gi.
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T 60 70 80 90 100

AUC 0.756 0.775 0.768 0.751 0.769

Table 6.3: Prediction AUC on ELEA with di↵erent numbers T of sampled frames for
TCN. We randomly choose 20% games for testing and the rest for training.

The CNN in FE-GCN captures latent local information around each landmark,

while the GCN captures a global representation by coalescing features between neigh-

bouring facial landmarks, thus combining all the local descriptions generated by CNN

into a global embedding that captures long-range interactions between landmarks.

Pre-training Procedure. After the mean-pooling layer, we add an output layer to

FE-GCN, which learns to predict probabilities of the 7 emotions mentioned above. We

train our network on the SFEW2.0 training set, generating a model that performs

best on the validation set.

Fine-Tuning Procedure. Once the FE-GCN model is pre-trained on SFEW2.0, we

remove the output layer and extract a sequence of facial embeddings from a video.

The facial embeddings are fed to the Temporal Convolutional Network (TCN) to

get a sequence of output embeddings. We feed the last output embedding g0 to a

fully connected (FC) layer to learn a predictive model of nervousness for the three

problems addressed in this chapter. Note that for the PNP and PNP-distinct tasks,

given a pair of people’s videos (i, j), the final outputs g0(i) and g0(j) are concatenated

and fed to the FC layer. We illustrate the configuration of TCN in Section 6.4.

Sampling long videos for TCN. Since our videos last for 300–800 seconds (with

one face embedding per second), it is impractical to feed the entire sequences to TCN.

During each training epoch, we sample T frames (60  T  100) uniformly at random

as the input of TCN. The average prediction from multiple sampled sequences is used

during the test stage. In practice, we find that T = 70 yields the best results (Table

6.3).
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Section 6.4

Experimental results

6.4.1. Experiment setup

We split both datasets into 10 folds by games. As each player appears in only one

game, we always make predictions about players never seen before. Since results vary

for di↵erent classifiers and features, we report the best results from seven classifiers:

k-Nearest Neighbor, Logistic Regression, Gaussian Naive Bayes, Linear SVM, and

Random Forest. We test our proposed ANS and VNS feature types as well as 3

baseline feature types with each of these 5 classifiers. We also train and test the

FE-GCN + TCN. We report the best results for each method in Table 6.4.

We compare our method with seven baselines that lie in two categories. All

baselines are evaluated in the same setup as our methods.

FE-GCN and TCN configurations We use Batch Normalization [73] following

each convolution layer, and dropout rate 0.5 in each GCN layer. ReLU activation

is applied after each layer except for the output. We use 32, 64, and 128 channels

respectively for the 3 convolutional layers. The node embedding dimensions of the

two GCN layers are both 128 and the other hyper-parameters are the same as in [82].

We use the Adam optimizer [81] with default settings to train the cross-entropy loss.

We pre-train the FE-GCN on SFEW2.0 for 100 epochs with a batch size of 96. We

adopt 6 layers of TCN, with kernel sizes 3, dilation factors 2,4,8,16,32,64, and channel

sizes 128, 128, 96, 96, 64, 64 respectively. Under this setting, the receptive field of the

output layer of the TCN is 127. Hence, the last timestep of the output sequence

aggregates the whole input sequence.
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6.4.2. Baselines

High-level features baselines extract features related to nervousness and use them

to train classifiers. Specifically, Giannakakis et al. [63] extract facial cues from

images including aperture change, blink rates, pupil variation, head movements, non-

speaking mouth movements, and heart rate estimated from the facial color change

frequency. Hung et al. [72] extract speaking cues such as numbers of interruptions

and turns. Jayagopi et al. [76] consider non-verbal activities such as visual activity

turns estimated from visual motion vectors and speaking turns estimated from audio

signals. Bai et al. [13] consider facial expressions by computing histogram features

of facial action units (FAUs) and emotions. All these features are fed into the same

classifiers as our new methods and trained in the same manner.

Neural network baselines. We also consider two neural network baselines: VG-

GFace+TCN and ResNet50+TCN, which replace the FE-GCN with the state-of-art

VGGFace [113] and ResNet50 [66] architectures respectively, and are both combined

with TCN for nervousness prediction. The last dense layers of both networks are

removed. For fairness, both VGGFace and ResNet50 are pre-trained and fine-tuned

in the same way as FE-GCN. These two baselines serve as a direct evaluation of our

FE-GCN embeddings.

We now report the results of eight sets of experiments. Experiments A–C provide

detailed AUC and F1-score comparison among di↵erent methods. Experiments D-

E explore the NS features: the impact of emotion categories in NSs (positive vs.

negative), and the impact of di↵erent video content to compute NSs. Experiment F

visualizes the relevant facial landmarks and faces learned by FE-GCN with regard to

nervousness. Experiment G compares the importance of individual ANS and VNS

features (cf. Table 6.2). Experiment H compares the prediction AUC in datasets

with di↵erent annotation agreements (cf. Table 6.1).
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6.4.3. Head to head feature comparisons

Table 6.4 summarizes the best results in terms of AUC and F1-score for our new

approaches and the baselines. The results show that the new techniques introduced

in this chapter provide the best performance on all tasks. All improvements over

baselines are statistically significant based on a t-test (p-val < 0.01).

Dataset Resistance Resistance Resistance ELEA
Task PNP PNP-Distinct NCP PNP

Methods F1 AUC F1 AUC F1 AUC F1 AUC

ANSs + Hist. 0.596 0.635 0.746 0.723 0.688 0.724 0.640 0.623
VNSs + Hist. 0.624 0.668 0.733 0.765 0.568 0.667 0.622 0.760

Ours FE-GCN + TCN [17] 0.633 0.681 0.742 0.744 0.657 0.634 0.710 0.802
Late Fusion 0.678 0.703 0.773 0.807 0.681 0.733 0.664 0.813

Facial Cues [63] 0.520 0.535 0.531 0.469 0.420 0.587 0.568 0.580
Speaking Cues [72] 0.526 0.532 0.538 0.598 0.521 0.573 0.596 0.603
Non-verbal Activities [76] 0.561 0.584 0.585 0.612 0.594 0.607 0.589 0.610

Baselines FAU + Hist. [13] 0.589 0.656 0.672 0.707 0.481 0.632 0.674 0.763
Emotion + Hist. [13] 0.592 0.649 0.658 0.687 0.579 0.605 0.557 0.749
ResNet50 [66] + TCN [17] 0.676 0.522 0.573 0.633 0.583 0.617 0.674 0.758
VGGFace [113] + TCN [17] 0.590 0.621 0.696 0.695 0.599 0.511 0.650 0.724

Table 6.4: Nervousness prediction comparison. We compare the F1 scores and AUCs
for all methods in all datasets and tasks. The top four lines represent our new
methods and an ensemble of them, while the other seven lines present the baseline
approaches. Note the underscored bold numbers are the best in each column, and
bold-only numbers are the second best. In all cases, our best methods outperform
all the baselines. All of these improvements are statistically significant via a Student
t-test (p-val < 0.01).

(a) PNP: In this task (for the Resistance dataset) where two subjects may have very

close nervousness ratings, FE-GCN yields the best performance with AUC=68.1%

which beats the best baseline which has AUC= 65.6%. For F1-score, the best

baseline yields the best F1-score of 67.6% (our best algorithm yields an F1-score

of 63.3%).

(b) PNP-Distinct: Using VNSs on the Resistance data yields an AUC of 76.5%

while ANS yields an F1 of 74.6%, which handily beat the best baselines which
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have AUC=70.7% and F1= 69.6%. All of our methods beat all baselines in

terms of AUC and F1-score.

(c) NCP: This could only be applied on the Resistance dataset. ANS features

produced the best results with 72.4% AUC and 68.8% F1. Again, the best

baselines only achieve 63.2% AUC and F1=59.9% .

(d) ELEA: On this data, FE-GCN yields the best results for the PNP task with

AUC and F1-scores of 80.2% and 71% respectively. This approach outperforms

the best baseline which has AUC=76.3% and F1=67.4%.

6.4.4. Ensemble prediction performance

Figure 6.1 shows that NPA generates an individual prediction based on each of the

three types of features. These predictions are then combined using late fusion. If a

binary prediction using one of the above three predictors returns class i with proba-

bility pi, then we combine the predictions linearly as ⌃3
i=1wipi (where each wi 2 [0, 1]

and ⌃3
i=1wi = 1) to compute an overall probability. We use a grid search over the

space of possible values to find the best wi’s value. The best wi learned on the train-

ing and validation sets are used in the predictions on the test set (so in particular,

the test set was never used when computing the w’s).

The result of late fusion is compared with all methods in Table 6.4. We see that

our NPA architecture performs well overall — not surprisingly, it performs better

on the PNP-Distinct Task than the other two tasks where di↵erences might be very

small.

6.4.5. Ablation study

We also performed ablation testing in which each of the three classes of features was

removed one at a time in order to assess the importance of that class of features in
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Excluded Method F1 AUC

Resistance& PNP

ANS + Hist. 0.695 0.701
VNS + Hist. 0.679 0.694
FE-GCN + TCN 0.644 0.689

Resistance& PNP-Distinct

ANS + Hist. 0.776 0.795
VNS + Hist. 0.696 0.780
FE-GCN + TCN 0.763 0.790

Resistance& NCP

ANS + Hist. 0.627 0.667
VNS + Hist. 0.626 0.701
FE-GCN + TCN 0.614 0.701

ELEA& PNP

ANS + Hist. 0.711 0.802
VNS + Hist. 0.703 0.772
FE-GCN + TCN 0.660 0.765

Table 6.5: Experiment C: Ablation study. For each dataset and task, we report the
performance of the ensemble after excluding one of individual methods.
We highlight the lowest F1 and AUC scores to indicate the most important
method in each case.
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making the overall NPA ensemble prediction. Table 6.5 shows the result — note that

the most important class of features causes predictive performance to drop the most,

so the lowest numbers are the ones that indicate the most significant feature types.

We observe that FE-GCN is the most important predictor in the PNP tasks for both

the Resistance and ELEA datasets, while ANS/VNS features are the most significant

ones in the other two tasks in terms of AUC.

6.4.6. Emotion impact for nervousness scores

As shown in Equation 6.1, nervousness scores are a weighted sum of the influence

from positive emotions and negative emotions. We vary the weight ↵ for positive

emotions from 0 to 1 with step 0.1, and evaluate the prediction AUC for all tasks in

Resistance dataset. Figs. 6.3a and 6.3b show the results for ANS and VNS features

respectively. For ANSs, we observe that the AUCs for small ↵s are higher than those

for larger ↵s, indicating that the negative emotions (small ↵) are more important in

speech audio for nervousness prediction. For VNSs, we see that the high AUCs are

shown in the center of Fig. 6.3b, meaning that both types of emotions are needed for

accurate nervousness prediction.

6.4.7. Change in prediction performance based on video start time and

length

In this experiment, we vary both the start time and video length to explore the AUC

of VNS features on PNP and PNP-Distinct tasks on the Resistance dataset. Figure 6.4

shows the relative change in performance compared to the performance of the models

on the whole video. Figure 6.4(a) shows that for PNP, irrespective of where we start,

we should make use of as much video as possible. Figure 6.4(b) suggests that using

60% of the video starting either at the beginning or after 20% of the video has elapsed

or after 40% of the video has elapsed generates near optimal results.
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(a) ANS features.

(b) VNS features.

Figure 6.3: Experiment D: Emotion Impact for Nervousness Scores. We vary ↵ (cf.
Equ. 6.1), the weight of positive emotions for nervousness scores. Figures show the
best AUC on the three tasks with the Resistance dataset as ↵ changes. For ANS
features (top), the negative emotions are more important for predicting nervousness.
For VNS features (bottom), both positive and negative emotions are needed to make
an accurate prediction.
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(a) PNP.
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(b) PNP-Disdinct.

Figure 6.4: Experiment E: Relative change in performance for two tasks on the Re-
sistance data Using VNS features. We vary the starting time and the length of the
video clip used and assess how much performance changes compared to the whole
video. Performance depends on which part of the video is used.
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Figure 6.5: Experiment F: Visualization of the Gradients of Facial Landmarks. The
lighter the color is and the bigger the point is, the bigger the gradients are.

Dataset Resistance Resistance Resistance ELEA
Task PNP PNP-Distinct NCP PNP

First V: ls(u, v), ds(u), 1/dom(v) V: ls(u, v), ds(u), 1/dom(v) A: ll(u, v), ds(u), dom(u)/dom(v) V: ll(u, v), ds(u), dom(u)/dom(v)
Second V: g(u, v), ds(u), 1/dom(v) V: ls(u, v), ds(u), dom(u) A: g(u, v), ds(u), dom(u) V: g(u, v), ds(u), 1/dom(v)
Third V: g(u, v), ds(u), dom(u) V: g(u, v), ds(u), 1/dom(v) A: g(u, v), ds(u), 1/dom(v) V: g(u, v), ds(u), dom(u)

Table 6.6: Experiment G: Importance of individual Nervousness Scores. The top-3
important individual nervousness scores for each task are reported. A stands for ANS
and V stands for VNS. The meaning for each function is defined in Section 6.3.1.
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6.4.8. FE-GCN nervousness landmark visualization and face retrieval

We analyze the trained FE-GCN + TCN model by visualizing the importance of facial

landmarks and retrieving the most relevant faces. In the PNP task (on Resistance

data), we computed the gradients of the model output towards the facial landmark

pixel intensities from all face images. Larger gradients indicate that changing the pixel

intensities will influence the prediction output more [132, 136, 155], which suggests

high relevance for nervousness prediction. We conduct two visualization experiments

below.

(i) For each of the 68 facial landmarks, we computed the average L1 norm of the

gradient vectors over all the images in the dataset. Figure 6.5 shows the heatmap of

the average gradient L1 norms, where lighter colors and bigger points indicate larger

gradient values. We observe that the landmarks in the mouth-nose and chin regions

are the most relevant for predicting nervousness.

(ii) Next, for each video, we retrieve the top images sorted by the L1 norms of

the landmark gradient vectors. The landmarks (and faces of selected images) are

assumed to have large responses to nervousness. Figure 6.6 shows two sample pairs

of players in two games. The numbers on the left show the ground truth perceived

nervousness ratings (a higher score means more nervous). The color bars on the right

show the norm of the gradient (the light, the better). We observe that faces with a

rating of 4 usually don’t smile (row 1, columns 2–4 and row 2), pout (row 3, column

3), or rest the chin (row 3, column 4), while faces with low ratings are usually happy

(row 2) and relaxed (row 3, column 2–4). In addition, the heatmaps of landmark

gradients vary dramatically between highly nervous and less nervous faces, indicating

that di↵erent nervousness levels respond to di↵erent landmarks.
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6.4.9. Importance of individual nervousness scores

As defined in Table 6.2, there are 54 types of individual video and audio nervousness

scores (27 of each). However our experiments show that no single feature by itself

yields good results: the best individual feature only yields 0.66 AUC. We therefore

evaluate individual feature importance as follows. For a given prediction problem, we

pick the top 10 results of all feature combinations for this task sorted by AUC, and

use the frequency with which that feature appears as its importance. Table 6.6 shows

the top-3 most important features for each task. We observe that (i) all types of

interactions (look-at, look-while-listen and look-while-speak) are the most important,

and (ii) individual visual features are more important than audio features, and (iii)

dominance of the subject is less important than dominance of others in the group.

6.4.10. Prediction on data with di↵erent annotation agreements.

This experiment explores the nervousness prediction results on datasets with higher

annotator agreements as defined in Table 6.1. Since some sub-datasets have less

than 10 games, we randomly split all sub-datasets into 5 folds for cross-validation.

Figure 6.7 (a)–(d) shows the prediction AUC of our four methods as well as the best

performing baselines on each of the four tasks. The x-axis of each figure are the

datasets ordered by the annotation agreements, with the leftmost being the original

data (lowest agreements). We observe that the proposed FE-GCN+TCN (green lines)

perform consistently well on di↵erent sub-datasets compared to the baselines (dotted

lines). Not surprisingly, late fusion, which incorporates FE-GCN+TCN, achieves

the best AUC in all cases. The datasets with higher annotation agreement do not

always lead to better predictions, however. The reason might be that the training sets

become too small (only 19%–37% of the original data) to enable well-trained models.
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Section 6.5

Conclusion

To the best of our knowledge, NPA is the first framework to predict nervousness of

subjects in group interaction videos. We introduce a new class of features called

Nervousness Scores based on social science theory. We propose a novel combination

of CNNs and GCNs called Facial Emotion Graph Convolution Network (FE-GCN)

that generates facial embedding based features. We show that our methods beat

five baselines in head to head testing and that our overall framework shows good

performance on three nervousness related problems and two datasets.
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(a) Game 1.

(b) Game 2.

Figure 6.6: Experiment F: FE-GCN nervousness face retrieval and facial landmark
gradients visualization on the Resistance data.
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Figure 6.7: Experiment H: Prediction on data with di↵erent annotation agreements.
Note that solid lines are our proposed methods, while dotted lines are the best per-
forming baselines: Emotion + Hist. [13] for (a)–(b), Speaking Cues [72] for (c), and
Non-verbal Activities [76] for (d). In each figure, the annotation agreement increases
and the dataset size decreases from left to right.
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Chapter 7

Adaptive Multimodal Fusion for

Persuasion Prediction

Debates are ubiquitous. Politicians engage in debates over various policies. Compa-

nies debate the pros and cons of legislation. Students debate the pros and cons of

modifications to grading systems. We develop M2P2, a system that uses multi-modal

data such as acoustic, visual, language, and debate metadata to predict persuasiveness

in a given debate. M2P2 considers two prediction tasks: Debate Outcome Prediction

(DOP) problem (predict who wins / loses) and the Intensity of Persuasion Predic-

tion (IPP) problem which predicts the number of votes for the position of a speaker

after he speaks as compared to the number of votes before. M2P2 has several novel-

ties: an alignment module that extracts shared information between modalities and

a heterogeneity module that adaptively learns the weights of di↵erent modalities with

guidance from three separately trained unimodal reference models. We test M2P2 on

two debate video datasets, which significantly outperforms 3 recent baselines.
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Section 7.1

Introduction

Controversial topics (e.g. foreign policy, immigration, national debt, privacy issues)

engender much debate amongst academics, businesses, and politicians. Speakers who

are persuasive often win such debates. Given videos of discussions between two par-

ticipants, the goal of this work is to provide a fully automated system to solve two

persuasion related problems. The Debate Outcome Prediction problem (DOP) tries

to determine which of two teams “wins” a debate. Suppose the two teams are A and

B and suppose befA, befB denote the number of supporters for A and B’s positions re-

spectively before the debate and aftA, aftB denote the same after the debate. Hence,

befA + befB = n = aftA + aftB. In the DOP problem, we say that team A (resp.

team B) wins the debate if befA < aftA (resp. befB < aftB). We say a speaker

is a winner if s/he belongs to the winning team. The Intensity of Persuasion Prob-

lem (IPP) tries to predict the increase (or decrease) in the number of votes of each

speaker (as opposed to a team). We use the same notation as before but assuming

we have two speakers S1, S2. The intensity of speaker X’s persuasiveness is aftX�befX

n

for X 2 {S1, S2}. It is clear that both these problems are important. In a business

meeting, it might be important to win (DOP), but in other situations, peeling away

support for an opponent might be important (IPP). The more support a speaker can

peel away from the opponent, the more persuasive s/he is.

Solving DOP and IPP using video data alone can pose many challenges. In this

work, we test our M2P2 algorithm against two datasets, the IQ2US dataset1 from a

popular US debate TV show and the Qipashuo dataset from the popular Chinese TV

show Qipashuo2. Real-world videos such as these come with three broad properties:

1
https://www.intelligencesquaredus.org

2
https://www.imdb.com/title/tt4397792/
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(i) as we can see in Figure 7.2b, the detected language can be very noisy — this must

be accounted for, (ii) as we can see from Figure 7.2a, there can be considerable noise

in the video modality as well — for instance, a man’s face might be shown in the

video while a woman is speaking and these kinds of audio-video mismatches must be

addressed, (iii) but in some cases — as shown in Figure 7.1, the modalities might

be nicely aligned where the audio, language, and video modalities are all correct and

the speaker’s speech and visual signals are aligned. The problem of identifying these

types of mismatches poses a major challenge in building a single model to predict

both DOP and IPP.

Though we are not the first to take on the DOP problem, we are the first to

solve IPP. DOP has been addressed by [25, 107, 127] who use multimodal sequence

data to predict who will win a debate. However, these e↵orts do not address all the

three challenges described above. To the best of our knowledge, there is no existing

dataset that addresses the IPP problem and there are no algorithms to solve the IPP

problem. In this work, we develop a novel algorithm called M2P2 and show that M2P2

improves upon past solutions to DOP by 2%–3.7% accuracy (statistically significant

with a p-value below 0.05) and beats adaptations of past work on DOP to the IPP

case by over 25% MSE (statistically significant with p < 0.01).

When all three modalities (audio, video, language) agree, then that “common”

information must be correctly captured by a predictive model. In this case, we say

that the modalities are aligned. However, there can be cases where some modalities

suggest one thing, while the other(s) suggest something di↵erent. In this case, we say

the modalities are heterogeneous. Our solution, M2P2, captures both aspects and also

learns how to weight the two aspects in order to maximize prediction accuracy. M2P2

first leverages the Transformer encoder structure [144] to project the three modalities

into three latent spaces. To combine the information from the latent spaces, the
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Figure 7.1: In multimodal content, the modalities are semantically aligned. This
example shows a case where the visual modality (facial expressions) and the language
modality (the content of the speech) are closely aligned.

(a) There are cases where the visual modality is noisy, while the language modality is clean.
In 4 consecutive frames when the woman is speaking, the face of a man appears (see frames

2 and 3) and the man’s face is incorrectly assumed to be the woman’s. The language

modality, however, is correct.

(b) There are cases where the language modality can be noisy, while the visual modality is
clean. We use Baidu’s o↵-the-shelf OCR detector to extract the Chinese transcripts from

the video frames. In the video frame (the right side of the figure), the transcripts extracted

by the OCR system (the left side) are incorrect due to the milk ads shown.

Figure 7.2: Individual modalities can be noisy. Here we show examples where the
visual or the language modality are wrong. M2P2 learns to down-weight the noisy
modalities.

model then devises two major modules: alignment and heterogeneity.

The alignment module learns to highlight the shared, aligned information across
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modalities. It enforces an alignment loss in the loss function as a regularization term

during training. This ensures that there is relatively little discrepancy between the

latent embeddings of di↵erent modalities when they are aligned.

The heterogeneity module first learns the weights of modality-specific information

and applies weighted fusion to harden the model against noisy modalities (cf. Fig-

ure 7.2). M2P2 uses a novel interactive training procedure to learn the weights from

three separately trained reference models, each corresponding to a single modality.

Intuitively, a modality with smaller unimodal loss should be assigned a higher weight

in the multimodal model. Finally, the outputs of both modules are combined with

the debate meta-data for persuasion prediction.

We evaluate M2P2 on the IQ2US and Qipashuo datasets. IQ2US was first used

by [25] to evaluate the DOP problem. The IQ2US dataset only has the final debate

outcomes, without any labels about how persuasive each speaker is during the debate.

Hence, IQ2US cannot be used to evaluate IPP. To this end, we created a new dataset

Qipashuo, based on an extremely popular Chinese entertainment debate TV show

called Qipashuo2. In Qipashuo, the audience provides real-time votes before and after

each speaker in order to gauge how persuasive the speaker is. Qipashuo therefore

provides a direct measure of each speaker’s persuasiveness for training and evaluation.

We use the IQ2US dataset for the DOP problem and the Qipashuo dataset for IPP

problem.

The code of M2P2 can be found at https://shorturl.at/nqsyT. M2P2 out-

performs baselines based on three recent works [25, 107, 127] which were originally

designed to predict debate outcomes (or other related problem scenarios). We also

conduct ablation studies and visualize our results to show the e↵ectiveness of di↵erent

novel components in M2P2.

To summarize, we make the following contributions:
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• To the best of our knowledge, M2P2 is the first to solve the IPP problem.

• We design a novel adaptive fusion learning framework to solve the IPP and

DOP problems.

• We curate a new dataset Qipashuo from the well-known Chinese debate TV show

Qipashuo. Qipashuo will be a strong benchmark for future work on persuasion

prediction as well as multimodal learning.

• M2P2 outperforms reasonable baselines adapting recent papers [25, 107, 127]

by 25% in IPP and 3% in DOP problems — and these results are statistically

significant.

Section 7.2

The M2P2 framework

Figure 7.3 shows an overview of our M2P2 architecture with a brief description of

its major components. Note that the key novelties of this work are the two novel

modules (i.e., the alignment module and the heterogeneity module shaded in yellow

in Figure 7.3) that constitute the adaptive fusion framework (Section 7.2.3) 3.

7.2.1. Generating primary input embeddings

Given a video clip, we respectively represent the acoustic, visual and language input

as XA 2 RTA , XV 2 R(H⇥W⇥C)⇥TV , XL 2 RD⇥TL , where TA, TV , TL are respectively

the lengths of the audio signal, face sequence, and word sequence. H,W,C are the

height, width and the number of channels of each image, and D is the length of our

dictionary of words. In addition, we also use two debate meta-data features: the

3
Our proposed adaptive fusion framework has the potential of being broadly utilized in other

multimodal learning tasks. We leave that exploration for future work.
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Figure 7.3: M2P2 architecture. First, audio, face and language sequences are ex-
tracted from a video clip and fed to three separate modules to get primary input
embeddings. Second, each of these embeddings is fed to a Transformer encoder [144]
followed by a max pooling layer, which yields the latent embeddings. Third, the
latent embeddings are fed to the alignment and heterogeneity modules to generate
the embeddings H

align and H
het. Last, we concatenate H

align, Hhet and the debate
meta-data XM which is fed to an MLP for persuasiveness prediction. The latent em-
beddings interact with two procedures alternately: optimize the alignment loss Lalign

and persuasiveness loss Lpers, and learn weights through 3 reference models.

number of votes before a speech and the length of the speech. We generically denote

the debate meta-data as a vector XM 2 RdM , where dM = 2.

We first extract features from the three modalities, then add a fully-connected

(FC) layer for each modality to obtain low dimensional primary input embeddings.

The generated primary input embeddings are depicted as multi-dimensional bars (as

a symbol of vector sequences) in Figure 7.3. Here we describe the detailed feature

extraction components.

Feature extraction from the acoustic modality. For each audio clip, we use

Covarep [44] to extract MFCCs4, Glottal source parameters, pitch-related features,

and features using the Summation of Residual Harmonics method [51]. These features

capture human voice characteristics from di↵erent perspectives and are all shown to

be relevant to emotions [62]. These 73 dimensional features are averaged over every

4
The energy-related 0th coe�cient is excluded
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half second.

Feature extraction from the visual modality. Since the speakers in both datasets

can be highly dynamic and occluded, we capture only their faces as Brilman et al. [25]

did to reduce noisy input. The details of face detection and recognition are in Sec-

tion 7.3. Given each facial image, we use the VGG19 architecture [133] pre-trained on

the Facial Emotion Recognition FER2013 dataset5 and extract the 512 dimensional

output before the last FC layer as the face features.

Feature extraction from the language modality. We use the Jieba6 Chinese

text segmentation library to segment Chinese sentences (utterances) into words. We

use the Tencent Chinese embedding corpus [135] to extract 200 dimensional word

embeddings. In the case of English, we extract 64 dimensional Glove word embeddings

[116] trained from all transcripts from the IQ2US debates.

All features are passed to a learnable FC+ReLU layer which converts the initial

features into primary input embeddings. The primary input embeddings thus obtained

for each of the three modalities are respectively H
in

A
2 Rdin⇥T

0
A , H

in

V
2 Rdin⇥T

0
V , H

in

L
2

Rdin⇥T
0
L , where din = 16 is the row-dimension of the primary input embeddings,

which is same across di↵erent modalities. T
0
A
, T

0
V
, T

0
L
denote the sequence lengths of

the modalities, where T 0
V
= TV , T

0
L
= TL. Note that in our primary input embeddings,

the timestamps of the acoustic, visual, and language modality respectively represent

a short time window, a frame, and a word.

5
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-

challenge/overview
6
https://github.com/fxsjy/jieba
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7.2.2. Generating compact latent embeddings of modalities with Trans-

formers

To get a compact representation of the primary input embeddings for each modal-

ity, we aggregate the sequence of features into a single representation vector using

one Transformer encoder per modality. Transformer encoders have been shown to

outperform many other deep architectures, including RNNs, GRUs, and LSTMs in

many sequential data processing tasks in computer vision [149] and natural language

processing [46]. The multi-head self-attention mechanism of Transformer better mem-

orizes the long-term temporal dynamics [144].

With the Transformer encoder, the primary input embedding H
in

m
,m 2 {A, V, L}

of each modality is respectively transformed into a representation as:

H
trans

m
= TransformerEncoder(H in

m
), (7.1)

where H
trans

m
2 Rdtrans⇥T

0
m , and dtrans = 16 is the dimension of the latent space after

the Transformer encoder.

To convert arbitrary length time sequences into standardized latent embedding

vectors H latent

m
2 Rdtrans⇥1, we additionally use a max pooling layer:

H
latent

m
= MaxPool(H trans

m
). (7.2)

H
latent

m
intuitively captures the maximum activation over the time sequence along

each dimension of dtrans.
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7.2.3. Balancing shared and heterogeneous information with adaptive fu-

sion

As mentioned earlier, there are two conflicting aspects of multimodal data. First,

data from di↵erent modalities within the same time frames may sometimes be highly

aligned (i.e., have shared information). Second, di↵erent modalities may sometimes

contain diverse cues which may not be equally important for prediction. To balance

the aligned and heterogeneous multimodal information, we propose a novel adap-

tive fusion framework consisting of two key modules: an alignment module and a

heterogeneity module (shaded in yellow in Figure 7.3).

Alignment module. To extract information shared across di↵erent modalities, we

first use a shared multi-layer perceptron (MLPs) to project the latent embeddings of

each modality m = A, V, L into the same latent space:

H
s

m
= MLPs(H latent

m
) (7.3)

Here, Hs

m
2 Rds , where ds = 16 is the dimension of the shared projection space.

MLPs is shown as three rounded grey boxes in Figure 7.3.

Inspired by existing multimodal representation learning work [2, 54], we use three

cosine loss terms 1� cos(Hs

m
, H

s

n
) (8m,n = A, V, L,m 6= n) across the modalities to

measure the alignment of modalities in the shared projection space:

Lalign = 1� cos(Hs

A
, H

s

V
)+

1� cos(Hs

A
, H

s

L
) + 1� cos(Hs

V
, H

s

L
)

(7.4)

During training, the alignment loss will be added to the entire prediction loss func-

tion as a regularization term to penalize lack of alignment between the 3 modalities

in the projected space.
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After the shared MLP layer, the regularized embeddings Hs

m
are in the same latent

space. We apply mean pooling to average the three embeddings:

H
align = MeanPool(Hs

A
, H

s

V
, H

s

L
) , (7.5)

H
align 2 Rds now contains shared information from all modalities.

Heterogeneity module. Another key observation discussed in Section 7.1 is that

di↵erent modalities may contain diverse information, and therefore make unequal

contributions to the final prediction of persuasiveness (e.g., due to the noisy data from

certain modalities as shown in Figure 7.2). We therefore propose a novel heterogeneity

module which utilizes an interactive training procedure (Algorithm 3) to learn weights

for di↵erent modalities.

Intuitively, the importance of each modality should be inversely proportional to

the “error” caused by the modality. To estimate this error term, we create three uni-

modal MLP reference models (represented as dashed arrows and rounded grey boxes

at the central bottom of Figure 7.3) parameterized by �A,�V ,�L for the acoustic,

visual, and language modalities respectively. Each unimodal MLP takes the com-

pact latent embedding H
latent

m
generated by the Transformer encoder as input and

generates a unimodal prediction Ŷ
ref

m
for each modality m = A, V, L:

Ŷ
ref

m
= MLPref

m
(�m;H

latent

m
) . (7.6)

We use Tval to denote the validation set, Yval 2 R|Tval| are the labels, and Ŷ
ref

m,val
2

R|Tval| are the predictions made by the unimodal reference model for modality m.

The reference models (�m’s) are updated using the following Mean Squared Error
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(MSE) loss alone:

Lref

m
=

���Yval � Ŷ
ref

m,val

���
2

2

|Tval|
(7.7)

After several epochs of training �m’s, we are able to obtain a converged MSE loss

of each reference model. We then use the updated reference model to estimate the

prediction errors by Lref

m
. Lref

m
is used to guide the weights wm of latent embeddings

H
latent

m
(m = A, V, L) to be concatenated in the heterogeneity module:

H
het = wAH

latent

A
� wVH

latent

V
� wLH

latent

L
. (7.8)

wA, wV , wL are scalars incrementally updated over epochs:

wm = ↵wm + (1� ↵)w̃m, (7.9)

where ↵ 2 (0, 1) controls the rate of update, and w̃m is obtained using the following

softmax function of the reference model validation losses:

w̃m =
exp{��Lref

m
}

P
m0=A,V,L

exp{��Lref

m0 }
, 8m = A, V, L (7.10)

� > 0 is a scaling factor. Since
P

m
w̃m = 1, combining Equation (7.9), it is guaran-

teed that
P

m
wm = 1.

Adaptive fusion with interactive training. The representations obtained from

the alignment module (Halign) and the heterogeneity module (Hhet) are then con-

catenated together with the debate meta-data XM and fed into a final MLP layer to

make the final prediction Ŷ :

Ŷ = f(✓;XA, XV , XL, XM) = MLP(Halign �H
het �XM) (7.11)
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Algorithm 3: M2P2 interactive training procedure.
Input: Training dataset T , validation datset Tval; Number of epochs n and

N

Output: Multi-modality model f(✓;XA, XV , XL, XM), modality weights wm

(8m = A, V, L)
1 Initialize three unimodal reference models �m(8m = A, V, L) and ✓;
2 Initialize wA = wV = wL = 1/3;
3 % Master Procedure Start
4 for epoch=1,. . . ,N do
5 Update ✓ with loss function Equation (7.12);
6 Get latent embeddings H latent

m
, 8m = A, V, L;

7 % Slave Procedure Start
8 for epoch=1,. . . ,n do
9 Update �m, 8m = A, V, L with loss function in Equation (7.7);

10 end
11 % Slave Procedure End
12 Get reference model losses Lref

m
, 8m = A, V, L;

13 Update modality importance weights wm, 8m = A, V, L using
Equations (7.9)-(7.10);

14 end
15 % Master Procedure End
16 return ✓, wm(8m = A, V, L)

where ✓ is the set of parameters of the M2P2 model excluding the reference model

parameters �m.

To train the M2P2 model, we have two loss terms: a novel alignment loss Lalign,

and a persuasiveness loss term Lpers. In the case of the IPP problem, Lpers is the

MSE loss. In the case of DOP, we use cross-entropy loss for the binary classification.

The total loss function is a weighted combination:

Lfinal = Lpers + �Lalign, (7.12)

where � is a weight factor.

The entire training proceeds in a master-slave manner, as shown in Algorithm 3.

In each epoch of the master training procedure (Lines 4 to 14), we use the total

120



7.3 Data preprocessing Persuasion Prediction

loss function in Equation (7.12) to update the parameters ✓ of the main M2P2 com-

ponents. The weights wA, wV , wL of the 3 modalities are obtained using reference

models �m, and their losses Lref

m
are then updated in the slave procedure. In each

epoch of the slave procedure (Lines 8 to 10), we take the latent embeddings from the

master procedure as input and update the reference models with the loss function in

Equation (7.7). We then obtain the weights wA, wV , wL of di↵erent modalities in the

heterogeneity module.

Section 7.3

Data preprocessing

7.3.1. Qipashuo dataset

The dataset is described in Section 3.3.2. We extracted the transcripts from the

video subtitles. To su�ciently preprocess the videos for subtitle extraction, we took

the following steps. First, we sampled 2 frames per second and binarize the images

with a threshold 0.6, which can avoid the influence from various colors of subtitles in

videos. Second, we cropped the subtitles by a fixed bounding box since the position

of subtitles is fixed in all the videos. Third, we clustered the binarized images into

buckets such that any two binarized images in the same bucket are identical on 90% or

more pixels. We then randomly selected one of these images to represent the cluster.

This helps reduce noise (e.g. from advertisements displayed on the image). Finally,

the surviving binary images were fed into an OCR API to get accurate transcripts.

We used Baidu’s o↵-the-shelf pre-trained OCR API7, so no extra data is needed for

training.

If we take each speaking clip as a train/test instance, there would be a total of 205

data points. This paucity of information poses a huge challenge for machine learning.

7
https://ai.baidu.com/tech/ocr

121



7.4 Experimental evaluations Persuasion Prediction

We therefore segment each speaking clip into clips of 50 utterances each according to

the transcript we extract above. Note that 50 is the smallest number of utterances

in any speaking clip of our dataset. Moreover, note that these “sub-clips” of 50

utterances yield a temporal sequence whose temporal dynamics can be important.

The labels are shared for segments extracted from the same clip. This trick yields

2,297 such segments which are used as train/test instances in our evaluation.

As the speakers are highly dynamic and often occluded, we only use speakers’ faces

as the visual input. We extract 2 frames per second from videos and use Dlib8 for face

detection and recognition. The recognition is based on one pre-annotated profile for

each speaker and is only needed for training. To further reduce false positives (i.e.,

extracting the face of the non-speakers), we first use the model from [15] to remove

faces in the image that are not speaking, and then use the method from [100] for face

tracking.

7.3.2. IQ2US dataset

In the IQ2US data (Section 3.3.1), no pre-processing is required for the language

modality. For the visual modality, we use the same procedures as in the Qipashuo

dataset to extract the face image sequences of the speakers. Since there are no

intermediate votes in IQ2US, we only predict the debate outcome (i.e. whether a

single-speaker clip instance belongs to the winning team).

Section 7.4

Experimental evaluations

Our experiments assess the performance of M2P2 on the DOP and IPP tasks. Specif-

ically:

8
http://dlib.net
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Fold 1 2 3 4 5 6 7 8 9 10 Average

Brilman et al. [25] 0.009 0.011 0.016 0.017 0.030 0.018 0.020 0.012 0.013 0.018 0.016
Nojavanasghari et al. [107] 0.007 0.015 0.019 0.011 0.027 0.014 0.020 0.012 0.020 0.015 0.016
Santos et al. [127] 0.025 0.019 0.018 0.019 0.018 0.017 0.029 0.016 0.024 0.018 0.020
M2P2 (ours) 0.006 0.010 0.015 0.015 0.020 0.015 0.012 0.009 0.009 0.013 0.012
dec. % 14.2 9.1 6.3 -36.4 -11.1 -7.1 40.0 25.0 30.8 13.3 25.0

Table 7.1: MSE for each test fold of di↵erent approaches to solving the Intensity
of Persuasion Prediction (IPP) on the Qipashuo Dataset. The last row shows the
MSE decrease percentage of M2P2 compared to the best baseline in each fold. On
average, M2P2 achieves a lower MSE than the baselines by at least 25%. Results are
statistically significant with p-val < 0.01. Note that the vote scores we predict range
from 0 to 1.

Method DOP (Accuracy) IPP (MSE)

Brilman et al. [25] (early fusion) 0.614 0.016
Nojavanasghari et al. [107] (late fusion) 0.615 0.016
Santos et al. [127] (early fusion) 0.598 0.020
M2P2 (proposed method) 0.635 0.012

Table 7.2: Prediction accuracy for Debate Outcome Prediction in IQ2US dataset.
Our M2P2 is 2%–3.7% better than baselines. Results are statistically significant with
p-val < 0.05.

(a) (IPP) We predict the change of number of votes after a speech by a debater —

this is done on the Qipashuo dataset;

(b) (DOP) We predict whether a clip in which a debater is speaking is part of the

winning team of the debate — this is done on the IQ2US dataset;

In addition, we also conduct an ablation study that assesses the contributions of di↵er-

ent components of M2P2. Moreover, we assess the importance of di↵erent modalities

as well as time frames using the Qipashuo dataset. Finally, we compare the results of

di↵erent ways of encoding the linguistic inputs.

7.4.1. Experimental settings

Qipashuo uses a 10-fold rolling window prediction. Specifically, we construct 10 se-
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quences of consecutive episodes of the show. For instance, if E1, . . . , Ek represent the

set of all Qipashuo episodes, then one sequence would be Seqk = E1, . . . , Ek, another

would be Seqk�1 = E1, . . . , Ek�1. For any such sequence Seqi = E1, . . . , Ei, we set

Ei as the test episode (i.e. the episode on which we make predictions). We learn a

model from the first i� 3 episodes E1, . . . , Ei�3 and identify the best parameters for

our model by using episodes Ei�2, Ei�1 as the validation set. As the same subject

can occur in multiple episodes of Qipashuo in order to avoid information leakage from

training to test data, we do not train a model from Ei to predict Ej,j<i, 8i, j.

For IQ2US, 10-fold cross validation is used since a debater can only appear in one

episode. The initial vote score and speaking length features are normalized to (0, 1].

Denote FCn as a fully-connected layer that outputs n-dimension vectors. The

MLPs in the reference models and final multimodal prediction model are all configured

as FC16+ReLU, FC8+ReLU, and FC1+Sigmoid. The shared MLP in alignment

module is FC16+ReLU. M2P2 uses Batch Normalization [74] right after each of the

FC layers for input embeddings, and uses 0.4 as dropout [68] after all FC16 layers.

For the Transformer encoder, we use a single layer with 4 heads, where the input,

hidden, and output dimension are all 16. We use the Adam [81] optimizer with a

weight decay of 10�5. The numbers of epochs in Algorithm 1 is N = 200 and n = 10.

The learning rate lr, alignment loss weight �, update scalar ↵, scaling factor � are

finalized by grid search. We ended up using lr = 0.001, � = 0.1,↵ = 0.5, � = 50 as

these yield the best results on the validation sets.

7.4.2. Comparison with baselines

We compare both tasks with the following multimodal persuasion prediction base-

lines: early fusion + SVM [25], deep multimodal late fusion [107], and early fusion

+ LSTM [127]. Brilman et al. [25] extract audio, visual and linguistic features from

IQ2US debate videos and concatenate these features, which are fed into an SVM for
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classification. Although [25] also solves the DOP problem on the IQ2US dataset, it is

di↵erent from our work in that (i) the used episodes are di↵erent (see Section 7.3.2

and (ii) it uses long video inputs (9–36 minutes) of all debates while we only use a

short speaking clip ( 1 minutes) of a single speaker. Thus, for fair comparison, we

implemented their method and ran experiments in our data. Nojavanasghari et al.

[107] first feed features of each modality to a neural network to get predictions of the

modality, then uses a fusion neural network to combine the modality-based predic-

tions. Santos et al. [127] model the temporal dynamics by using an LSTM on the

concatenated features from all modalities.

In the case of the IPP problem, we adapt the first baseline by modifying it to use

an SVM regressor (rather than an SVM classifier). For the other two baselines, we

use MSE loss to train the models. For fairness, we also allow the baselines to use the

two debate meta-data features. The results comparing M2P2 on IPP and DOP with

past approaches are shown in Tables 7.1 and 7.2, respectively.

IPP Problem Table 7.1 shows the MSE obtained by di↵erent approaches in each

fold and the average on the Qipashuo dataset. Note that the vote scores we predict are

normalized to lie in the [0, 1] interval. The last line of Table 7.1 shows the decrease

percentage of MSE which is defined as dec. = 1-MSE(M2P2)/MSE(the best baseline).

For instance, from the first column of Table 7.1, we see that the percentage decrease

is 1� 0.006
0.007 ⇡ 0.14 representing a 14% decrease of MSE generated by M2P2 compared

to the best of the baselines. In the case of IPP, we see that on average, M2P2 yields a

25% decrease of MSE compared with the best baseline which is statistically significant

via a Student t-test (p-val < 0.01). Moreover, M2P2 is more robust and performs

better than all baselines in 7 out of 10 folds.
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DOP Problem Table 7.2 shows the average prediction accuracy over 10 folds on

the DOP problem w.r.t. the IQ2US dataset. It is clear that M2P2 achieves 2%–3.7%

higher average accuracy than the baselines, the improvement is statistically significant

(p-val < 0.05). These make M2P2 the best performing system for both the IPP and

the DOP problems.

Method MSE

M2P2 without alignment loss 0.018
M2P2 without reference models 0.015
M2P2-LSTM 0.032
M2P2-Acoustic (unimodal) 0.017
M2P2-Visual (unimodal) 0.019
M2P2-Language (unimodal) 0.016
M2P2 0.012

Table 7.3: Ablation study results. All improvements are statistically significant
(p-val < 0.01). The methods from top to bottom are: M2P2 without correlation
losses, M2P2 without reference models, M2P2 with LSTM layer instead of Trans-
former Encoder and max pooling, M2P2 with only acoustic modality, only visual
modality, and only language modality.

7.4.3. Ablation study

To measure the contributions of the di↵erent components of M2P2, we create four

methods, each with one component removed from M2P2 :

• M2P2 without the alignment loss.

• M2P2 without reference models. The latent embeddings are concatenated by

equal weights 1/3.

• M2P2-LSTM. The Transformer encoder and max pooling layer are replaced by

a 1-layer LSTM.
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• M2P2-unimodal. We input a single modality without alignment loss and latent

embedding concatenation. That is, the latent embedding is directly concate-

nated with the debate meta-feature and fed to the final MLP.

IPP Problem Table 7.3 shows the average MSE obtained on the Qipashuo dataset

for bothM2P2 and the 4 methods above. First, according to rows 1,2 and the last row,

we find that if M2P2 does not use the alignment module and reference models in the

heterogeneity module, the MSE increases from 0.012 to 0.018 and 0.015 respectively.

This is statistically significant (p-val < 0.01) and hence shows the power of both

proposed adaptive fusion modules in Section 7.2.3. Second, we observe the power

of the Multihead-attention Transformer encoder to handle long sequences, as the

M2P2-LSTM model achieves the worst MSE amongst all methods. Third, we observe

from rows 4-6 that the language modality is the most important in the prediction

task, while the acoustic and visual modalities are less important. This observation is

consistent with the modality concatenation weights that will be shown in the following

subsection.

Figure 7.4: Modality weights in the heterogeneity module.
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7.4.4. Visualization of prediction

In this experiment, we show (1) the importance of modalities through their learned

weights (cf. Equation (7.8)), and (2) the examples of learned temporal attention

weights from di↵erent modalities.

Modality weights We report the modality weights in the heterogeneity module of

the trained M2P2 in all folds of Qipashuo dataset. Figure 7.4 shows box plots for the

three modalities. The language modality is the most important and robust over all

folds with a median weight of 0.42, while the median weights of acoustic and visual

modalities are 0.23 and 0.32 respectively.

Temporal attention weights We visualize the temporal attention weights of two

sample sequences of visual (Figure 7.5) and language (Figure 7.6) modalities. For

each timestamp, we average the attention weights of all timestamps and all heads

towards it, as its attention weight. In Figure 7.5 (top), the man’s face is not detected

correctly in frames 3 and 6 – and we see thatM2P2 assigns near-zero attention weights

to both frames, suggesting that these frames should be ignored. Moreover, the happy

expression in frame 2 gets a high attention weight. The woman below gets high

attention weights when she actively talks to someone (frames 2,4,5). In Figure 7.6,

we notice that reasonable keywords like ‘wear’, ‘shackle’, ‘passive’, and ‘hold’ also

get high attention weights. Therefore, our M2P2 captures the meaningful long-range

temporal dynamics with the help of Transformer Encoder.
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Figure 7.5: Temporal attention of visual modality – color coded as blue. Darker color
implies higher attention weight.

Figure 7.6: Temporal attention of language modality – color coded as red. Darker
color implies higher attention weight. The original Chinese transcripts are translated
to English.
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Section 7.5

Discussion

7.5.1. Text encoder comparison for linguistic inputs

In M2P2 , the sequence of word embeddings is used as the sequence input to the

Transformer encoder. Another way is to encode each sentence to an embedding

and feed the sequence of sentences to the Transformer encoder. We have conducted

experiments to compare these two methods. To get English sentence embeddings in

IQ2US, we employ the pre-trained Universal Sentence Encoder [33] in TFHub9. For

Chinese sentences in Qipashuo we train an LSTM to get 128-dimensional sentence

embeddings. We replace word embeddings with sentence embeddings and conduct

the experiments in both datasets. As a result, the accuracy in IQ2US is 0.623 (1.4%

worse than M2P2) and the mean squared error in Qipashuo is 0.014 (20% worse than

M2P2). Thus, the fine-grained word-level embeddings are better than sentence-level

embeddings. The word order and semantic meaning is already captured by the word-

level embeddings.

7.5.2. Heterogeneity module vs. attention mechanism

Intuitively, the heterogeneity module in M2P2 aims to learn the modality-wise im-

portance from data. An alternative is to use the attention mechanism to attend the

model to di↵erent modalities. However, the attention mechanism introduces extra

amount of trainable parameters into M2P2 . In our early experiments, this resulted

in worse results due to the small dataset (2297 and 805 data points for Qipashuo and

IQ2US resp.). On the contrary, the parameters introduced by heterogeneity module

are independent from the rest of M2P2 model, which fuses modalities and achieves

better prediction results.

9
https://tfhub.dev/google/universal-sentence-encoder/1
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Section 7.6

Conclusion and future work

In this work, we have solved two problems. First, we provide a solution to the

Debate Outcome Prediction (DOP) problem that improves on past work by 2%–3.7%.

Though these numbers are not huge, they are statistically significant. Second, we are

the first to pose and solve the Intensity of Persuasion Prediction (IPP) problem. We

show that we are able to beat baselines built on top of past solutions to IPP by 25% on

average. Our proposed M2P2 framework leverages both the common and modality-

specific information contained in multimodal sequence data (audio, video, language),

while learning to focus attention on the meaningful part of the data. Moreover, our

newly created Qipashuo dataset provides a valuable new asset for future research.

However, there is ample scope for future work. First, we do not provide any

theoretical guarantees on the convergence of modality weights. Second, more scalable

methods to capture cross-modal interaction would be very valuable. Third, one may

inspect if the interactive training procedure has overpower issues of one over another

and improve further.

It is important to note that the adaptive fusion technique in M2P2 can be gen-

eralized to other multimodal sequence prediction problems such as video question

answering and video sentiment analysis. We leave this exploration for future work.

In other future work, we plan to conduct semantic-level studies to gain knowledge

of the persuasive attributes (e.g. are high pitch, positive sentiment, attractive faces

more persuasive?). One can also explore richer primary input modality embeddings

(e.g. body pose, context-related word embeddings).
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Chapter 8

Conclusion and future work

In the final chapter, we give a complete picture of our main contributions and findings

across all chapters, and point out several prominent future directions to be explored.

Section 8.1

Conclusion

This thesis proposed several predictive models of group human behaviors on videos

and analyzed the cues characterizing di↵erent behaviors. Accurate identification of

the behaviors is great needed by companies and governments in situations like decision

making, consulting, security check and marketing. To sum up, we have studied the

following aspects:

(a) building dynamic non-verbal interaction networks (e.g. looking at, talking to)

from videos of a group of people,

(b) defining informative features involving group interactions and multiple modali-

ties, inspired from social science findings of human behaviors,

(c) developing predictive models to consider group-level influence and fuse multi-

modal features,
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(d) analyzing behavior-specific patterns from the models,

In chapter 2, we summarized the factors relating the dominance, nervousness

and persuasion behaviors, including visual (e.g. emotions, gazes), vocal (e.g. pitch,

volume) linguistic (e.g. semantic) and interaction (e.g. interruption) cues. We then

summarized the existing computational e↵orts involving feature engineering, temporal

aggregation, group influence modeling, and multimodal fusion.

In chapter 3, we introduced four video datasets we used to train and evaluate

models and study group behaviors. We employed the Resistance dataset [56] where

people played the Resistance social game in an adversarial setting, and the ELEA

dataset [124] recording a cooperative game played by a group. The two datasets have

similar labels such as dominance, like/dislike, nervousness. We also introduced two

debate datasets, Qipashuo (in Chinese) and IQ2US (in English) on which we study

the persuasion behavior.

Chapter 4 proposed an algorithm to extract the non-verbal interaction (who looks

at who) from group interaction videos. It also proposed a lightly-supervised version

of this algorithm, which generalizes the prediction towards unseen videos using the

prior that people usually look at the single speaker. It further developed an accurate

model to predict the speaking behavior from mouth movements. Both the look-at

and speaking behaviors are the foundation of building more complex interactions.

Finally, a face-to-face dynamic communication network dataset is released for further

research, which contains 62 networks, ⇠3M edges.

Chapter 5 developed methods to predict (i) the most dominant person in a group

and (ii) the more dominant person in a pair. We proposed the dominance rank

features and two models. The dominance ranks capture the relative dominance from

various types of interactions. The DELF model fuses multiple modalities and achieves

at least 0.79 AUC on all tasks, and the GDP model (for problem (i)) improves the it to
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0.82 by data augmentation and group-level prediction. We found that the dominance

rank features and speaking histogram features play a key role in problem (i) and (ii)

respectively.

In chapter 6, we developed a hybrid system combing feature engineering and end-

to-end representation learning. On one hand, we proposed the nervousness score

features which consider the non-verbal interactions together with audiovisual emo-

tions and relative dominance ranks between people. On the other hand, we designed

the FE-GCN + TCN model to learn face emotional embeddings from the dynam-

ics of the face landmarks. Our system achieves 0.7 to 0.81 AUC on four tasks and

two datasets. We found that (i) the visual emotions are more important than audio

emotions in the nervousness scores for accurate prediction, and the negative audio

emotions expressed to a person have more impact on his/her nervousness than the

positive ones, (ii) the speak-to and listen-to interactions are more important than

the look-at interaction for prediction, indicating that the speaking behavior plays a

key role, and (iii) the landmarks in mouth-nose and chain regions are indicators for

nervousness.

Chapter 7 came up with a multimodal adaptive fusion framework M2P2 and

demonstrated its e�cacy on persuasion prediction. The framework consists of an

alignment module to project the multimodal inputs into one latent space, and a het-

erogeneity module to learn the modality importance adaptively through the guidance

of three single-modal models. As a result, M2P2 achieves 0.64 accuracy on the debate

outcome persuasion and 0.012 MSE on the intensity prediction of persuasion, beating

all three previous baselines. Our heterogeneity module shows that order of modality

importance is: language, video and audio.
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Section 8.2

Future work

We discuss several significant research directions which will increase our understand-

ings of group human behaviors as well as further improve and generalize our prediction

models.

8.2.1. Better understanding of group human behaviors

The context of verbal interaction is essential for understanding human behaviors, yet

it is non-trivial to extract such interaction automatically. One potential way is to use

Automatic Speech Recognition (ASR) techniques ([158, 128, 11]) to convert audio

to transcripts, and combine with the look-at information predicted by our model

(chapter 4). Once the verbal interaction is included, further research can explore the

factors (e.g. sentiments, key words, topics) among communications that characterize

group human behaviors. What’s more, it could be helpful to extract features or word

embeddings of such texts and feeding into the existing models.

Another meaningful direction is to study the relationship between human behav-

iors and gender, ethnicity, and culture. Social scientists have conducted such studies

on deception detection [28] and trustworthiness [24]. As the Resistance data contains

this information, we can divide the data and apply the existing models separately.

The separate models can further characterize the behaviors (e.g. do male and female

behave di↵erently when being dominant?), and might improve the prediction perfor-

mance since the variance of samples is reduced. However, a challenge raised by this is

the much smaller available training dataset, which might be resolved by pre-training

(next subsection).
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8.2.2. Model generalization

Unified framework In most existing work, a model is only used to make predic-

tions by hand-crafted features for one kind of behavior ([106, 107, 13]), which limits

the usage of the model. As human behaviors are usually inter-correlated (e.g. nervous-

ness, leadership, and dominance, chapter 6), a unified framework that simultaneously

or collectively predicts all of them might be beneficial that: (i) the correlation can

be exploited by collective classification, (ii) multiple datasets of di↵erent behaviors

can be combined to train the framework in a multi-task manner, which will increase

the training samples, and (iii) the general representation can be applied to multiple

behaviors, and domain-specific knowledge may not be required.

One related concurrent work is Wang et al. [150]. They build a general graph

neural network based model to capture dynamic interactions and show its success in

predicting dominance, nervousness and deception.

Pre-training The self-supervision manner of pre-training and fine-tuning has shown

great success in NLP [46], image-text learning [141, 98], and audio-visual learning [5].

Such methods employ the self-correspondence of the data, such as an image and the

text describing it or a guitar video and its sound, to pre-train a large powerful model

and fine-tune it with annotated labels in much smaller datasets. Future research can

collect large-scale dataset of people interacting with each other, and design specific

pre-training tasks. Priors such as audio-visual correspondence enable the model to

learn the multimodal representation of the cues such as emotions and semantics. The

pre-trained model can then be fine-tuned on Resistance, ELEA or IQ2US data for group

human behavior predictions.

Less constrained settings Currently, most proposed models take frontal view

videos as input. Although less noisy, the applications are limited – close-up cameras
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are needed to capture each individual. Moreover, the frontal view videos make it

more di�cult to capture the group interaction [16]. Recently, researchers try to

predict social relationship from single-view videos ([96, 86]) with annotated labels.

Using such videos, future work can build the interaction through the geometry of the

body, head and eyes (e.g. [101]) and further predict the group human behaviors.
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beans in burgers: Deep semantic-visual embedding with localization, Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,

pp. 3984–3993.
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