135 research outputs found

    Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC

    Get PDF
    abstract: Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC.View the article as published at https://www.hindawi.com/journals/tswj/2014/189481

    End to end Multi-Objective Optimisation of H.264 and HEVC Codecs

    Get PDF
    All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features

    Video Content-Based QoE Prediction for HEVC Encoded Videos Delivered over IP Networks

    Get PDF
    The recently released High Efficiency Video Coding (HEVC) standard, which halves the transmission bandwidth requirement of encoded video for almost the same quality when compared to H.264/AVC, and the availability of increased network bandwidth (e.g. from 2 Mbps for 3G networks to almost 100 Mbps for 4G/LTE) have led to the proliferation of video streaming services. Based on these major innovations, the prevalence and diversity of video application are set to increase over the coming years. However, the popularity and success of current and future video applications will depend on the perceived quality of experience (QoE) of end users. How to measure or predict the QoE of delivered services becomes an important and inevitable task for both service and network providers. Video quality can be measured either subjectively or objectively. Subjective quality measurement is the most reliable method of determining the quality of multimedia applications because of its direct link to users’ experience. However, this approach is time consuming and expensive and hence the need for an objective method that can produce results that are comparable with those of subjective testing. In general, video quality is impacted by impairments caused by the encoder and the transmission network. However, videos encoded and transmitted over an error-prone network have different quality measurements even under the same encoder setting and network quality of service (NQoS). This indicates that, in addition to encoder settings and network impairment, there may be other key parameters that impact video quality. In this project, it is hypothesised that video content type is one of the key parameters that may impact the quality of streamed videos. Based on this assertion, parameters related to video content type are extracted and used to develop a single metric that quantifies the content type of different video sequences. The proposed content type metric is then used together with encoding parameter settings and NQoS to develop content-based video quality models that estimate the quality of different video sequences delivered over IP-based network. This project led to the following main contributions: (1) A new metric for quantifying video content type based on the spatiotemporal features extracted from the encoded bitstream. (2) The development of novel subjective test approach for video streaming services. (3) New content-based video quality prediction models for predicting the QoE of video sequences delivered over IP-based networks. The models have been evaluated using subjective and objective methods

    Packet loss visibility across SD, HD, 3D, and UHD video streams

    Get PDF
    The trend towards video streaming with increased spatial resolutions and dimensions, SD, HD, 3D, and 4kUHD, even for portable devices has important implications for displayed video quality. There is an interplay between packetization, packet loss visibility, choice of codec, and viewing conditions, which implies that prior studies at lower resolutions may not be as relevant. This paper presents two sets of experiments, the one at a Variable BitRate (VBR) and the other at a Constant BitRate (CBR), which highlight different aspects of the interpretation. The latter experiments also compare and contrast encoding with either an H.264 or an High Efficiency Video Coding (HEVC) codec, with all results recorded as objective Mean Opinion Score (MOS). The video quality assessments will be of interest to those considering: the bitrates and expected quality in error-prone environments; or, in fact, whether to use a reliable transport protocol to prevent all errors, at a cost in jitter and latency, rather than tolerate low levels of packet errors

    Survey of Error Concealment techniques: Research directions and open issues

    Full text link
    © 2015 IEEE. Error Concealment (EC) techniques use either spatial, temporal or a combination of both types of information to recover the data lost in transmitted video. In this paper, existing EC techniques are reviewed, which are divided into three categories, namely Intra-frame EC, Inter-frame EC, and Hybrid EC techniques. We first focus on the EC techniques developed for the H.264/AVC standard. The advantages and disadvantages of these EC techniques are summarized with respect to the features in H.264. Then, the EC algorithms are also analyzed. These EC algorithms have been recently adopted in the newly introduced H.265/HEVC standard. A performance comparison between the classic EC techniques developed for H.264 and H.265 is performed in terms of the average PSNR. Lastly, open issues in the EC domain are addressed for future research consideration

    Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC

    Get PDF
    Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC

    5G-QoE:QoE Modelling for Ultra-HD Video Streaming in 5G Networks

    Get PDF
    Traffic on future fifth-generation (5G) mobile networks is predicted to be dominated by challenging video applications such as mobile broadcasting, remote surgery and augmented reality, demanding real-time, and ultra-high quality delivery. Two of the main expectations of 5G networks are that they will be able to handle ultra-high-definition (UHD) video streaming and that they will deliver services that meet the requirements of the end user's perceived quality by adopting quality of experience (QoE) aware network management approaches. This paper proposes a 5G-QoE framework to address the QoE modeling for UHD video flows in 5G networks. Particularly, it focuses on providing a QoE prediction model that is both sufficiently accurate and of low enough complexity to be employed as a continuous real-time indicator of the 'health' of video application flows at the scale required in future 5G networks. The model has been developed and implemented as part of the EU 5G PPP SELFNET autonomic management framework, where it provides a primary indicator of the likely perceptual quality of UHD video application flows traversing a realistic multi-tenanted 5G mobile edge network testbed. The proposed 5G-QoE framework has been implemented in the 5G testbed, and the high accuracy of QoE prediction has been validated through comparing the predicted QoE values with not only subjective testing results but also empirical measurements in the testbed. As such, 5G-QoE would enable a holistic video flow self-optimisation system employing the cutting-edge Scalable H.265 video encoding to transmit UHD video applications in a QoE-aware manner
    corecore