7 research outputs found

    Seamless video access for mobile devices by content-aware utility-based adaptation

    Get PDF
    Today's Internet multimedia services are characterized by heterogeneous networks, a wide range of terminals, diverse user preferences, and varying natural environment conditions. Heterogeneity of terminals, networks, and user preferences impose nontrivial challenges to the Internet multimedia services for providing seamless multimedia access particularly for mobile devices (e.g., laptops, tablet PCs, PDAs, mobile phones, etc.). Thus, it is essential that advanced multimedia technologies are developed to deal with these challenges. One of these technologies is video adaptation, which has gained significant importance with its main objective of enabling seamless access to video contents available over the Internet. Adaptation decision taking, which can be considered as the "brain" of video adaptation, assists video adaptation to achieve this objective. Scalable Video Coding (SVC) offers flexibility for video adaptation through providing a comprehensive set of scalability parameters (i.e., temporal, spatial, and quality) for producing scalable video streams. Deciding the best combination of scalability parameters to adapt a scalable video stream while satisfying a set of constraints (e.g., device specifics, network bandwidth, etc.) poses challenges for the existing adaptation services to enable seamless video access. To ease such challenges, an adaptation decision taking technique employing a utility-based approach to decide on the most adequate scalability parameters for adaptation operations is developed. A Utility Function (UF), which models the relationships among the scalability parameters and weights specifying the relative importance of these parameters considering video content characteristics (i.e., motion activity and structural feature), is proposed to assist the developed technique. In order to perform the developed adaptation decision taking technique, a video adaptation framework is also proposed in this paper. The adaptation experiments performed using the proposed framework prove the effectiveness of the framework to provide an important step towards enabling seamless video access for mobile devices to enhance viewing experience of users. © 2012 Springer Science+Business Media, LLC

    Content-Aware Scalability-Type Selection for Rate Adaptation of Scalable Video

    Get PDF
    Scalable video coders provide different scaling options, such as temporal, spatial, and SNR scalabilities, where rate reduction by discarding enhancement layers of different scalability-type results in different kinds and/or levels of visual distortion depend on the content and bitrate. This dependency between scalability type, video content, and bitrate is not well investigated in the literature. To this effect, we first propose an objective function that quantifies flatness, blockiness, blurriness, and temporal jerkiness artifacts caused by rate reduction by spatial size, frame rate, and quantization parameter scaling. Next, the weights of this objective function are determined for different content (shot) types and different bitrates using a training procedure with subjective evaluation. Finally, a method is proposed for choosing the best scaling type for each temporal segment that results in minimum visual distortion according to this objective function given the content type of temporal segments. Two subjective tests have been performed to validate the proposed procedure for content-aware selection of the best scalability type on soccer videos. Soccer videos scaled from 600 kbps to 100 kbps by the proposed content-aware selection of scalability type have been found visually superior to those that are scaled using a single scalability option over the whole sequence

    Cross Dynamic Range And Cross Resolution Objective Image Quality Assessment With Applications

    Get PDF
    In recent years, image and video signals have become an indispensable part of human life. There has been an increasing demand for high quality image and video products and services. To monitor, maintain and enhance image and video quality objective image and video quality assessment tools play crucial roles in a wide range of applications throughout the field of image and video processing, including image and video acquisition, communication, interpolation, retrieval, and displaying. A number of objective image and video quality measures have been introduced in the last decades such as mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). However, they are not applicable when the dynamic range or spatial resolution of images being compared is different from that of the corresponding reference images. In this thesis, we aim to tackle these two main problems in the field of image quality assessment. Tone mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Most TMOs have been designed in the absence of a well-established and subject-validated image quality assessment (IQA) model, without which fair comparisons and further improvement are difficult. We propose an objective quality assessment algorithm for tone-mapped images using HDR images as references by combining 1) a multi-scale signal fidelity measure based on a modified structural similarity (SSIM) index; and 2) a naturalness measure based on intensity statistics of natural images. To evaluate the proposed Tone-Mapped image Quality Index (TMQI), its performance in several applications and optimization problems is provided. Specifically, the main component of TMQI known as structural fidelity is modified and adopted to enhance the visualization of HDR medical images on standard displays. Moreover, a substantially different approach to design TMOs is presented, where instead of using any pre-defined systematic computational structure (such as image transformation or contrast/edge enhancement) for tone-mapping, we navigate in the space of all LDR images, searching for the image that maximizes structural fidelity or TMQI. There has been an increasing number of image interpolation and image super-resolution (SR) algorithms proposed recently to create images with higher spatial resolution from low-resolution (LR) images. However, the evaluation of such SR and interpolation algorithms is cumbersome. Most existing image quality measures are not applicable because LR and resultant high resolution (HR) images have different spatial resolutions. We make one of the first attempts to develop objective quality assessment methods to compare LR and HR images. Our method adopts a framework based on natural scene statistics (NSS) where image quality degradation is gauged by the deviation of its statistical features from NSS models trained upon high quality natural images. In particular, we extract frequency energy falloff, dominant orientation and spatial continuity statistics from natural images and build statistical models to describe such statistics. These models are then used to measure statistical naturalness of interpolated images. We carried out subjective tests to validate our approach, which also demonstrates promising results. The performance of the proposed measure is further evaluated when applied to parameter tuning in image interpolation algorithms
    corecore