8,793 research outputs found

    Examining the role of smart TVs and VR HMDs in synchronous at-a-distance media consumption

    Get PDF
    This article examines synchronous at-a-distance media consumption from two perspectives: How it can be facilitated using existing consumer displays (through TVs combined with smartphones), and imminently available consumer displays (through virtual reality (VR) HMDs combined with RGBD sensing). First, we discuss results from an initial evaluation of a synchronous shared at-a-distance smart TV system, CastAway. Through week-long in-home deployments with five couples, we gain formative insights into the adoption and usage of at-a-distance media consumption and how couples communicated during said consumption. We then examine how the imminent availability and potential adoption of consumer VR HMDs could affect preferences toward how synchronous at-a-distance media consumption is conducted, in a laboratory study of 12 pairs, by enhancing media immersion and supporting embodied telepresence for communication. Finally, we discuss the implications these studies have for the near-future of consumer synchronous at-a-distance media consumption. When combined, these studies begin to explore a design space regarding the varying ways in which at-a-distance media consumption can be supported and experienced (through music, TV content, augmenting existing TV content for immersion, and immersive VR content), what factors might influence usage and adoption and the implications for supporting communication and telepresence during media consumption

    A Platform for Large-Scale Regional IoT Networks

    Get PDF
    The Internet of Things (IoT) promises to allow everyday objects to connect to the Internet and interact with users and other machines ubiquitously. Central to this vision is a pervasive wireless communication network connecting each end device. For individual IoT applications it is costly to deploy a dedicated network or connect to an existing cellular network, especially as these applications do not fully utilize the bandwidth provided by modern high speeds networks (e.g., WiFi, 4G LTE). On the other hand, decades of wireless research have produced numerous low-cost chip radios and effective networking stacks designed for short-range communication in the Industrial, Scientific and Medical Radio band (ISM band). In this thesis, we consider adapting this existing technology to construct shared regional low-powered networks using commercially available ISM band transceivers. To maximize network coverage, we focus on low-power wide-area wireless communication which enables links to reliably cover 10 km or more depending on terrain transmitting up to 1 Watt Equivalent Isotropically Radiated Power (EIRP). With potentially thousands of energy constrained IoT devices vying for extremely limited bandwidth, minimizing network coordination overhead and maximizing channel utility is essential. To address these challenges, we propose a distributed queueing (DQ) based MAC protocol, DQ-N. DQ-N exhibits excellent performance, supporting thousands of IoT devices from a single base station. In the future, these networks could accommodate a heterogeneous set of IoT applications, simplifying the IoT application development cycle, reducing total system cost, improving application reliability, and greatly enhancing the user experience

    Understanding the limits of LoRaWAN

    Full text link
    The quick proliferation of LPWAN networks, being LoRaWAN one of the most adopted, raised the interest of the industry, network operators and facilitated the development of novel services based on large scale and simple network structures. LoRaWAN brings the desired ubiquitous connectivity to enable most of the outdoor IoT applications and its growth and quick adoption are real proofs of that. Yet the technology has some limitations that need to be understood in order to avoid over-use of the technology. In this article we aim to provide an impartial overview of what are the limitations of such technology, and in a comprehensive manner bring use case examples to show where the limits are

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445
    corecore