11 research outputs found

    Content Delivery in Erasure Broadcast Channels with Cache and Feedback

    Full text link
    We study a content delivery problem in a K-user erasure broadcast channel such that a content providing server wishes to deliver requested files to users, each equipped with a cache of a finite memory. Assuming that the transmitter has state feedback and user caches can be filled during off-peak hours reliably by the decentralized content placement, we characterize the achievable rate region as a function of the memory sizes and the erasure probabilities. The proposed delivery scheme, based on the broadcasting scheme by Wang and Gatzianas et al., exploits the receiver side information established during the placement phase. Our results can be extended to centralized content placement as well as multi-antenna broadcast channels with state feedback.Comment: 29 pages, 7 figures. A short version has been submitted to ISIT 201

    Mitigating Interference in Content Delivery Networks by Spatial Signal Alignment: The Approach of Shot-Noise Ratio

    Get PDF
    Multimedia content especially videos is expected to dominate data traffic in next-generation mobile networks. Caching popular content at the network edge has emerged to be a solution for low-latency content delivery. Compared with the traditional wireless communication, content delivery has a key characteristic that many signals coexisting in the air carry identical popular content. They, however, can interfere with each other at a receiver if their modulation-and-coding (MAC) schemes are adapted to individual channels following the classic approach. To address this issue, we present a novel idea of content adaptive MAC (CAMAC) where adapting MAC schemes to content ensures that all signals carry identical content are encoded using an identical MAC scheme, achieving spatial MAC alignment. Consequently, interference can be harnessed as signals, to improve the reliability of wireless delivery. In the remaining part of the paper, we focus on quantifying the gain CAMAC can bring to a content-delivery network using a stochastic-geometry model. Specifically, content helpers are distributed as a Poisson point process, each of which transmits a file from a content database based on a given popularity distribution. It is discovered that the successful content-delivery probability is closely related to the distribution of the ratio of two independent shot noise processes, named a shot-noise ratio. The distribution itself is an open mathematical problem that we tackle in this work. Using stable-distribution theory and tools from stochastic geometry, the distribution function is derived in closed form. Extending the result in the context of content-delivery networks with CAMAC yields the content-delivery probability in different closed forms. In addition, the gain in the probability due to CAMAC is shown to grow with the level of skewness in the content popularity distribution.Comment: 32 pages, to appear in IEEE Trans. on Wireless Communicatio

    Benefits of Cache Assignment on Degraded Broadcast Channels

    Get PDF
    International audienceDegraded K-user broadcast channels (BCs) are studied when the receivers are facilitated with cache memories. Lower and upper bounds are derived on the capacity-memory tradeoff, i.e., on the largest rate of reliable communication over the BC as a function of the receivers' cache sizes, and the bounds are shown to match for interesting special cases. The lower bounds are achieved by two new coding schemes that benefit from nonuniform cache assignments. Lower and upper bounds are also established on the global capacity-memory tradeoff, i.e., on the largest capacity-memory tradeoff that can be attained by optimizing the receivers' cache sizes subject to a total cache memory budget. The bounds coincide when the total cache memory budget is sufficiently small or sufficiently large, where the thresholds depend on the BC statistics. For small cache memories, it is optimal to assign all the cache memory to the weakest receiver. In this regime, the global capacity-memory tradeoff grows by the total cache memory budget divided by the number of files in the system. In other words, a perfect global caching gain is achievable in this regime and the performance corresponds to a system where all the cache contents in the network are available to all receivers. For large cache memories, it is optimal to assign a positive cache memory to every receiver, such that the weaker receivers are assigned larger cache memories compared to the stronger receivers. In this regime, the growth rate of the global capacity-memory tradeoff is further divided by the number of users, which corresponds to a local caching gain. It is observed numerically that a uniform assignment of the total cache memory is suboptimal in all regimes, unless the BC is completely symmetric. For erasure BCs, this claim is proved analytically in the regime of small cache sizes
    corecore