28,578 research outputs found

    Planning robot actions under position and shape uncertainty

    Get PDF
    Geometric uncertainty may cause various failures during the execution of a robot control program. Avoiding such failures makes it necessary to reason about the effects of uncertainty in order to implement robust strategies. Researchers first point out that a manipulation program has to be faced with two types of uncertainty: those that might be locally processed using appropriate sensor based motions, and those that require a more global processing leading to insert new sensing operations. Then, they briefly describe how they solved the two related problems in the SHARP system: how to automatically synthesize a fine motion strategy allowing the robot to progressively achieve a given assembly relation despite position uncertainty, and how to represent uncertainty and to determine the points where a given manipulation program might fail

    Dexterous manipulation of unknown objects using virtual contact points

    Get PDF
    The manipulation of unknown objects is a problem of special interest in robotics since it is not always possible to have exact models of the objects with which the robot interacts. This paper presents a simple strategy to manipulate unknown objects using a robotic hand equipped with tactile sensors. The hand configurations that allow the rotation of an unknown object are computed using only tactile and kinematic information, obtained during the manipulation process and reasoning about the desired and real positions of the fingertips during the manipulation. This is done taking into account that the desired positions of the fingertips are not physically reachable since they are located in the interior of the manipulated object and therefore they are virtual positions with associated virtual contact points. The proposed approach was satisfactorily validated using three fingers of an anthropomorphic robotic hand (Allegro Hand), with the original fingertips replaced by tactile sensors (WTS-FT). In the experimental validation, several everyday objects with different shapes were successfully manipulated, rotating them without the need of knowing their shape or any other physical property.Peer ReviewedPostprint (author's final draft
    corecore