3 research outputs found

    Modeling and Simulation of the Humanoid Robot HOAP-3 in the OpenHRP3 Platform

    Get PDF
    The aim of this work is to model and simulate the humanoid robot HOAP-3 in the OpenHRP3 platform. Our purpose is to create a virtual model of the robot so that different motions and tasks can be tested in different environments. This will be the first step before testing the motion patterns in the real HOAP-3. We use the OpenHRP3 platform for the creation and validation of the robot model and tasks. The procedure followed to reach this goal is detailed in this article. In order to validate our experience, different walking motions are tested and the simulation results are compared with the experimental ones.This work has been supported by the Comunidad de Madrid Project S2009/DPI-1559/ROBOCITY2030 II, the CYCIT Project PI2004-00325 and the European Project Robot@CWE FP6-2005-IST-5

    Online impedance regulation techniques for compliant humanoid balancing

    Get PDF
    This paper presents three distinct techniques, aimed at the online active impedance regulation of compliant humanoid robots, which endeavours to induce a state of balance to the system once it has been perturbed. The presence of passive elastic elements in the drives powering this class of robots leads to under-actuation, thereby rendering the control of compliant robots an intricate task. Consequently, the impedance regulation procedures proposed in this paper directly account for these elastic elements. In order to acquire an indication of the robot鈥檚 state of balance in an online fashion, an energy (Lyapunov) function is introduced, whose sign then allows one to ascertain whether the robot is converging to or diverging from, a desired equilibrium position. Computing this function鈥檚 time derivative unequivocally gives the energy-injecting nature of the active stiffness regulation, and reveals that active damping regulation has no bearing on the system鈥檚 state of stability. Furthermore, the velocity margin notion is interpreted as a velocity value beyond which the system鈥檚 balance might be jeopardized, or below which the robot will be guaranteed to remain stable. As a result, the unidirectional and bidirectional impedance optimization methods rely upon the use of bounds that have been defined based on the energy function鈥檚 derivative, in addition to the velocity margin. Contrarily, the third technique鈥檚 functionality revolves solely around the use of Lyapunov Stability Margins (LSMs). A series of experiments carried out using the COmpliant huMANoid (COMAN), demonstrates the superior balancing results acquired when using the bidirectional scheme, as compared to utilizing the two alternative techniques
    corecore