8,936 research outputs found

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017

    Bayesian Compression for Deep Learning

    Get PDF
    Compression and computational efficiency in deep learning have become a problem of great significance. In this work, we argue that the most principled and effective way to attack this problem is by adopting a Bayesian point of view, where through sparsity inducing priors we prune large parts of the network. We introduce two novelties in this paper: 1) we use hierarchical priors to prune nodes instead of individual weights, and 2) we use the posterior uncertainties to determine the optimal fixed point precision to encode the weights. Both factors significantly contribute to achieving the state of the art in terms of compression rates, while still staying competitive with methods designed to optimize for speed or energy efficiency.Comment: Published as a conference paper at NIPS 201

    Overcoming the data crisis in biodiversity conservation

    Get PDF
    How can we track population trends when monitoring data are sparse? Population declines can go undetected, despite ongoing threats. For example, only one of every 200 harvested species are monitored. This gap leads to uncertainty about the seriousness of declines and hampers effective conservation. Collecting more data is important, but we can also make better use of existing information. Prior knowledge of physiology, life history, and community ecology can be used to inform population models. Additionally, in multispecies models, information can be shared among taxa based on phylogenetic, spatial, or temporal proximity. By exploiting generalities across species that share evolutionary or ecological characteristics within Bayesian hierarchical models, we can fill crucial gaps in the assessment of species’ status with unparalleled quantitative rigor

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    A Learning-Based Framework for Two-Dimensional Vehicle Maneuver Prediction over V2V Networks

    Full text link
    Situational awareness in vehicular networks could be substantially improved utilizing reliable trajectory prediction methods. More precise situational awareness, in turn, results in notably better performance of critical safety applications, such as Forward Collision Warning (FCW), as well as comfort applications like Cooperative Adaptive Cruise Control (CACC). Therefore, vehicle trajectory prediction problem needs to be deeply investigated in order to come up with an end to end framework with enough precision required by the safety applications' controllers. This problem has been tackled in the literature using different methods. However, machine learning, which is a promising and emerging field with remarkable potential for time series prediction, has not been explored enough for this purpose. In this paper, a two-layer neural network-based system is developed which predicts the future values of vehicle parameters, such as velocity, acceleration, and yaw rate, in the first layer and then predicts the two-dimensional, i.e. longitudinal and lateral, trajectory points based on the first layer's outputs. The performance of the proposed framework has been evaluated in realistic cut-in scenarios from Safety Pilot Model Deployment (SPMD) dataset and the results show a noticeable improvement in the prediction accuracy in comparison with the kinematics model which is the dominant employed model by the automotive industry. Both ideal and nonideal communication circumstances have been investigated for our system evaluation. For non-ideal case, an estimation step is included in the framework before the parameter prediction block to handle the drawbacks of packet drops or sensor failures and reconstruct the time series of vehicle parameters at a desirable frequency
    • …
    corecore