4,521 research outputs found

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    Faster ASV decomposition for orthogonal polyhedra using the Extreme Vertices Model (EVM)

    Get PDF
    The alternating sum of volumes (ASV) decomposition is a widely used technique for converting a B-Rep into a CSG model. The obtained CSG tree has convex primitives at its leaf nodes, while the contents of its internal nodes alternate between the set union and difference operators. This work first shows that the obtained CSG tree T can also be expressed as the regularized Exclusive-OR operation among all the convex primitives at the leaf nodes of T, regardless the structure and internal nodes of T. This is an important result in the case in which EVM represented orthogonal polyhedra are used because in this model the Exclusive-OR operation runs much faster than set union and difference operations. Therefore this work applies this result to EVM represented orthogonal polyhedra. It also presents experimental results that corroborate the theoretical results and includes some practical uses for the ASV decomposition of orthogonal polyhedra.Postprint (published version

    Scaling behaviour of three-dimensional group field theory

    Get PDF
    Group field theory is a generalization of matrix models, with triangulated pseudomanifolds as Feynman diagrams and state sum invariants as Feynman amplitudes. In this paper, we consider Boulatov's three-dimensional model and its Freidel-Louapre positive regularization (hereafter the BFL model) with a ?ultraviolet' cutoff, and study rigorously their scaling behavior in the large cutoff limit. We prove an optimal bound on large order Feynman amplitudes, which shows that the BFL model is perturbatively more divergent than the former. We then upgrade this result to the constructive level, using, in a self-contained way, the modern tools of constructive field theory: we construct the Borel sum of the BFL perturbative series via a convergent ?cactus' expansion, and establish the ?ultraviolet' scaling of its Borel radius. Our method shows how the ?sum over trian- gulations' in quantum gravity can be tamed rigorously, and paves the way for the renormalization program in group field theory

    Renormalization of the commutative scalar theory with harmonic term to all orders

    Full text link
    The noncommutative scalar theory with harmonic term (on the Moyal space) has a vanishing beta function. In this paper, we prove the renormalizability of the commutative scalar field theory with harmonic term to all orders by using multiscale analysis in the momentum space. Then, we consider and compute its one-loop beta function, as well as the one on the degenerate Moyal space. We can finally compare both to the vanishing beta function of the theory with harmonic term on the Moyal space.Comment: 16 page

    Dynamical Symmetry Breaking in SYM Theories as a Non-Semiclassical Effect

    Get PDF
    We study supersymmetry breaking effects in N=1 SYM from the point of view of quantum effective actions. Restrictions on the geometry of the effective potential from superspace are known to be problematic in quantum effective actions, where explicit supersymmetry breaking can and must be studied. On the other hand the true ground state can be determined from this effective action, only. We study whether some parts of superspace geometry are still relevant for the effective potential and discuss whether the ground states found this way justify a low energy approximation based on this geometry. The answer to both questions is negative: Essentially non-semiclassical effects change the behavior of the auxiliary fields completely and demand for a new interpretation of superspace geometry. These non-semiclassical effects can break supersymmetry.Comment: 37 pages, LaTex. Version 3: many important changes, extended discussion of the topi

    Combinatorial Quantum Field Theory and Gluing Formula for Determinants

    Full text link
    We define the combinatorial Dirichlet-to-Neumann operator and establish a gluing formula for determinants of discrete Laplacians using a combinatorial Gaussian quantum field theory. In case of a diagonal inner product on cochains we provide an explicit local expression for the discrete Dirichlet-to-Neumann operator. We relate the gluing formula to the corresponding Mayer-Vietoris formula by Burghelea, Friedlander and Kappeler for zeta-determinants of analytic Laplacians, using the approximation theory of Dodziuk. Our argument motivates existence of gluing formulas as a consequence of a gluing principle on the discrete level.Comment: 26 pages, accepted for publication at Letters in Math. Physic

    Second-order mixed-moment model with differentiable ansatz function in slab geometry

    Full text link
    We study differentiable mixed-moment models (full zeroth and first moment, half higher moments) for a Fokker-Planck equation in one space dimension. Mixed-moment minimum-entropy models are known to overcome the zero net-flux problem of full-moment minimum entropy MNM_N models. Realizability theory for these modification of mixed moments is derived for second order. Numerical tests are performed with a kinetic first-order finite volume scheme and compared with MNM_N, classical MMNMM_N and a PNP_N reference scheme.Comment: arXiv admin note: text overlap with arXiv:1611.01314, arXiv:1511.0271
    • …
    corecore