104,398 research outputs found

    Constructive Game Logic

    Full text link
    Game Logic is an excellent setting to study proofs-about-programs via the interpretation of those proofs as programs, because constructive proofs for games correspond to effective winning strategies to follow in response to the opponent's actions. We thus develop Constructive Game Logic which extends Parikh's Game Logic (GL) with constructivity and with first-order programs a la Pratt's first-order dynamic logic (DL). Our major contributions include: 1) a novel realizability semantics capturing the adversarial dynamics of games, 2) a natural deduction calculus and operational semantics describing the computational meaning of strategies via proof-terms, and 3) theoretical results including soundness of the proof calculus w.r.t. realizability semantics, progress and preservation of the operational semantics of proofs, and Existence Properties on support of the extraction of computational artifacts from game proofs. Together, these results provide the most general account of a Curry-Howard interpretation for any program logic to date, and the first at all for Game Logic.Comment: 74 pages, extended preprint for ESO

    Constructive Hybrid Games

    Full text link
    Hybrid games are models which combine discrete, continuous, and adversarial dynamics. Game logic enables proving (classical) existence of winning strategies. We introduce constructive differential game logic (CdGL) for hybrid games, where proofs that a player can win the game correspond to computable winning strategies. This is the logical foundation for synthesis of correct control and monitoring code for safety-critical cyber-physical systems. Our contributions include novel static and dynamic semantics as well as soundness and consistency.Comment: 60 pages, preprint, under revie

    Game semantics for the constructive μ\mu-calculus

    Full text link
    We define game semantics for the constructive μ\mu-calculus and prove its correctness. We use these game semantics to prove that the μ\mu-calculus collapses to modal logic over CS5\mathsf{CS5} frames. Finally, we prove the completeness of μCS5\mathsf{\mu CS5} over CS5\mathsf{CS5} frames

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF
    We propose a theory of learning aimed to formalize some ideas underlying Coquand's game semantics and Krivine's realizability of classical logic. We introduce a notion of knowledge state together with a new topology, capturing finite positive and negative information that guides a learning strategy. We use a leading example to illustrate how non-constructive proofs lead to continuous and effective learning strategies over knowledge spaces, and prove that our learning semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand's and Krivine's approaches

    Fixpoint Games on Continuous Lattices

    Get PDF
    Many analysis and verifications tasks, such as static program analyses and model-checking for temporal logics reduce to the solution of systems of equations over suitable lattices. Inspired by recent work on lattice-theoretic progress measures, we develop a game-theoretical approach to the solution of systems of monotone equations over lattices, where for each single equation either the least or greatest solution is taken. A simple parity game, referred to as fixpoint game, is defined that provides a correct and complete characterisation of the solution of equation systems over continuous lattices, a quite general class of lattices widely used in semantics. For powerset lattices the fixpoint game is intimately connected with classical parity games for μ\mu-calculus model-checking, whose solution can exploit as a key tool Jurdzi\'nski's small progress measures. We show how the notion of progress measure can be naturally generalised to fixpoint games over continuous lattices and we prove the existence of small progress measures. Our results lead to a constructive formulation of progress measures as (least) fixpoints. We refine this characterisation by introducing the notion of selection that allows one to constrain the plays in the parity game, enabling an effective (and possibly efficient) solution of the game, and thus of the associated verification problem. We also propose a logic for specifying the moves of the existential player that can be used to systematically derive simplified equations for efficiently computing progress measures. We discuss potential applications to the model-checking of latticed μ\mu-calculi and to the solution of fixpoint equations systems over the reals

    From truth to computability I

    Get PDF
    The recently initiated approach called computability logic is a formal theory of interactive computation. See a comprehensive online source on the subject at http://www.cis.upenn.edu/~giorgi/cl.html . The present paper contains a soundness and completeness proof for the deductive system CL3 which axiomatizes the most basic first-order fragment of computability logic called the finite-depth, elementary-base fragment. Among the potential application areas for this result are the theory of interactive computation, constructive applied theories, knowledgebase systems, systems for resource-bound planning and action. This paper is self-contained as it reintroduces all relevant definitions as well as main motivations.Comment: To appear in Theoretical Computer Scienc

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF
    We propose a theory of learning aimed to formalize some ideas underlying Coquand\u27s game semantics and Krivine\u27s realizability of classical logic. We introduce a notion of knowledge state together with a new topology, capturing finite positive and negative information that guides a learning strategy. We use a leading example to illustrate how non-constructive proofs lead to continuous and effective learning strategies over knowledge spaces, and prove that our learning semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand\u27s and Krivine\u27s approaches
    • …
    corecore