100 research outputs found

    Algebraic conformal quantum field theory in perspective

    Full text link
    Conformal quantum field theory is reviewed in the perspective of Axiomatic, notably Algebraic QFT. This theory is particularly developped in two spacetime dimensions, where many rigorous constructions are possible, as well as some complete classifications. The structural insights, analytical methods and constructive tools are expected to be useful also for four-dimensional QFT.Comment: Review paper, 40 pages. v2: minor changes and references added, so as to match published versio

    The Pivotal Role of Causality in Local Quantum Physics

    Full text link
    In this article an attempt is made to present very recent conceptual and computational developments in QFT as new manifestations of old and well establihed physical principles. The vehicle for converting the quantum-algebraic aspects of local quantum physics into more classical geometric structures is the modular theory of Tomita. As the above named laureate to whom I have dedicated has shown together with his collaborator for the first time in sufficient generality, its use in physics goes through Einstein causality. This line of research recently gained momentum when it was realized that it is not only of structural and conceptual innovative power (see section 4), but also promises to be a new computational road into nonperturbative QFT (section 5) which, picturesquely speaking, enters the subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazi

    Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Full text link
    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular Euclideanization'' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an ``Encyclopedia of Mathematical Physics'' contribution hep-th/0502125.Comment: 55 pages, removal of some typos in section

    Fell bundles and imprimitivity theorems

    Full text link
    Our goal in this paper and two sequels is to apply the Yamagami-Muhly-Williams equivalence theorem for Fell bundles over groupoids to recover and extend all known imprimitivity theorems involving groups. Here we extend Raeburn's symmetric imprimitivity theorem, and also, in an appendix, we develop a number of tools for the theory of Fell bundles that have not previously appeared in the literature.Comment: minor change

    Modular Theory and Eyvind Wichmann's Contributions to modern Particle Physics Theory

    Get PDF
    Some of the consequences of Eyvind Wichmann's contributions to modular theory and the QFT phase-space structure are presented. In order to show the power of those ideas in contemporary problems, I selected the issue of algebraic holography as well as a new nonperturbative constructive approach (based on the modular structur of wedge-localized algebras and modular inclusions) and show that these ideas are recent consequences of the pathbreaking work which Wichmann together with his collaborator Bisognano initiated in the mid 70$^{ies}.Comment: A rogue address which entered chapter 2 has since been omitted. 21 pages, tcilatex, to be published in a special Festschrift volume, dedicated to Prof. E. Wichmann on the occasion of his seventieth birthda

    AQFT from n-functorial QFT

    Full text link
    There are essentially two different approaches to the axiomatization of quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and functorial QFT, going back to Atiyah and Segal. More recently, based on ideas by Baez and Dolan, the latter is being refined to "extended" functorial QFT by Freed, Hopkins, Lurie and others. The first approach uses local nets of operator algebras which assign to each patch an algebra "of observables", the latter uses n-functors which assign to each patch a "propagator of states". In this note we present an observation about how these two axiom systems are naturally related: we demonstrate under mild assumptions that every 2-dimensional extended Minkowskian QFT 2-functor ("parallel surface transport") naturally yields a local net. This is obtained by postcomposing the propagation 2-functor with an operation that mimics the passage from the Schroedinger picture to the Heisenberg picture in quantum mechanics. The argument has a straightforward generalization to general pseudo-Riemannian structure and higher dimensions.Comment: 39 pages; further examples added: Hopf spin chains and asymptotic inclusion of subfactors; references adde

    Central aspects of skew translation quadrangles, I

    Full text link
    Except for the Hermitian buildings H(4,q2)\mathcal{H}(4,q^2), up to a combination of duality, translation duality or Payne integration, every known finite building of type B2\mathbb{B}_2 satisfies a set of general synthetic properties, usually put together in the term "skew translation generalized quadrangle" (STGQ). In this series of papers, we classify finite skew translation generalized quadrangles. In the first installment of the series, as corollaries of the machinery we develop in the present paper, (a) we obtain the surprising result that any skew translation quadrangle of odd order (s,s)(s,s) is a symplectic quadrangle; (b) we determine all skew translation quadrangles with distinct elation groups (a problem posed by Payne in a less general setting); (c) we develop a structure theory for root-elations of skew translation quadrangles which will also be used in further parts, and which essentially tells us that a very general class of skew translation quadrangles admits the theoretical maximal number of root-elations for each member, and hence all members are "central" (the main property needed to control STGQs, as which will be shown throughout); (d) we solve the Main Parameter Conjecture for a class of STGQs containing the class of the previous item, and which conjecturally coincides with the class of all STGQs.Comment: 66 pages; submitted (December 2013
    • …
    corecore