1,914 research outputs found

    Stochastic Configuration Machines: FPGA Implementation

    Full text link
    Neural networks for industrial applications generally have additional constraints such as response speed, memory size and power usage. Randomized learners can address some of these issues. However, hardware solutions can provide better resource reduction whilst maintaining the model's performance. Stochastic configuration networks (SCNs) are a prime choice in industrial applications due to their merits and feasibility for data modelling. Stochastic Configuration Machines (SCMs) extend this to focus on reducing the memory constraints by limiting the randomized weights to a binary value with a scalar for each node and using a mechanism model to improve the learning performance and result interpretability. This paper aims to implement SCM models on a field programmable gate array (FPGA) and introduce binary-coded inputs to the algorithm. Results are reported for two benchmark and two industrial datasets, including SCM with single-layer and deep architectures.Comment: 19 pages, 9 figures, 8 table

    Developing tools for determination of parameters involved in COâ‚‚ based EOR methods

    Get PDF
    To mitigate the effects of climate change, COâ‚‚ reduction strategies are suggested to lower anthropogenic emissions of greenhouse gasses owing to the use of fossil fuels. Consequently, the application of COâ‚‚ based enhanced oil recovery methods (EORs) through petroleum reservoirs turn into the hot topic among the oil and gas researchers. This thesis includes two sections. In the first section, we developed deterministic tools for determination of three parameters which are important in COâ‚‚ injection performance including minimum miscible pressure (MMP), equilibrium ratio (Káµ¢), and a swelling factor of oil in the presence of COâ‚‚. For this purposes, we employed two inverse based methods including gene expression programming (GEP), and least square support vector machine (LSSVM). In the second part, we developed an easy-to-use, cheap, and robust data-driven based proxy model to determine the performance of COâ‚‚ based EOR methods. In this section, we have to determine the input parameters and perform sensitivity analysis on them. Next step is designing the simulation runs and determining the performance of COâ‚‚ injection in terms of technical viewpoint (recovery factor, RF). Finally, using the outputs gained from reservoir simulators and applying LSSVM method, we are going to develop the data-driven based proxy model. The proxy model can be considered as an alternative model to determine the efficiency of COâ‚‚ based EOR methods in oil reservoir when the required experimental data are not available or accessible

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been in the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The lack of a free-lunch theorem implies the need for a diverse set of forecasting methods to tackle an array of applications. This unique article provides a non-systematic review of the theory and the practice of forecasting. We offer a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts, including operations, economics, finance, energy, environment, and social good. We do not claim that this review is an exhaustive list of methods and applications. The list was compiled based on the expertise and interests of the authors. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of the forecasting theory and practice

    Tracing back the source of contamination

    Get PDF
    From the time a contaminant is detected in an observation well, the question of where and when the contaminant was introduced in the aquifer needs an answer. Many techniques have been proposed to answer this question, but virtually all of them assume that the aquifer and its dynamics are perfectly known. This work discusses a new approach for the simultaneous identification of the contaminant source location and the spatial variability of hydraulic conductivity in an aquifer which has been validated on synthetic and laboratory experiments and which is in the process of being validated on a real aquifer

    Cuban energy system development – Technological challenges and possibilities

    Get PDF
    This eBook is a unique scientific journey to the changing frontiers of energy transition in Cuba focusing on technological challenges of the Cuban energy transition. The focus of this milestone publication is on technological aspects of energy transition in Cuba. Green energy transition with renewable energy sources requires the ability to identify opportunities across industries and services and apply the right technologies and tools to achieve more sustainable energy production systems. The eBook is covering a large diversity of Caribbean country´s experiences of new green technological solutions and applications. It includes various technology assessments of energy systems and technological foresight analyses with a special focus on Cuba

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners

    Optimization of refinery preheat trains undergoing fouling: control, cleaning scheduling, retrofit and their integration

    Get PDF
    Crude refining is one of the most energy intensive industrial operations. The large amounts of crude processed, various sources of inefficiencies and tight profit margins promote improving energy recovery. The preheat train, a large heat exchanger network, partially recovers the energy of distillation products to heat the crude, but it suffers of the deposition of material over time – fouling – deteriorating its performance. This increases the operating cost, fuel consumption, carbon emissions and may reduce the production rate of the refinery. Fouling mitigation in the preheat train is essential for a profitable long term operation of the refinery. It aims to increase energy savings, and to reduce operating costs and carbon emissions. Current alternatives to mitigate fouling are based on heuristic approaches that oversimplify the representation of the phenomena and ignore many important interactions in the system, hence they fail to fully achieve the potential energy savings. On the other hand, predictive first principle models and mathematical programming offer a comprehensive way to mitigate fouling and optimize the performance of preheat trains overcoming previous limitations. In this thesis, a novel modelling and optimization framework for heat exchanger networks under fouling is proposed, and it is based on fundamental principles. The models developed were validated against plant data and other benchmark models, and they can predict with confidence the main effect of operating variables on the hydraulic and thermal performance of the exchangers and those of the network. The optimization of the preheat train, an MINLP problem, aims to minimize the operating cost by: 1) dynamic flow distribution control, 2) cleaning scheduling and 3) network retrofit. The framework developed allows considering these decisions individually or simultaneously, although it is demonstrated that an integrated approach exploits the synergies among decision levels and can reduce further the operating cost. An efficient formulation of the model disjunctions and time representation are developed for this optimization problem, as well as efficient solution strategies. To handle the combinatorial nature of the problem and the many binary decisions, a reformulation using complementarity constraints is proposed. Various realistic case studies are used to demonstrate the general applicability and benefits of the modelling and optimization framework. This is the first time that first principle predictive models are used to optimize various types of decisions simultaneously in industrial size heat exchanger networks. The optimization framework developed is taken further to an online application in a feedback loop. A multi-loop NMPC approach is designed to optimize the flow distribution and cleaning scheduling of preheat trains over two different time scales. Within this approach, dynamic parameter estimation problems are solved at frequent intervals to update the model parameters and cope with variability and uncertainty, while predictive first principle models are used to optimize the performance of the network over a future horizon. Applying this multi-loop optimization approach to a case study of a real refinery demonstrates the importance of considering process variability on deciding about optimal fouling mitigation approaches. Uncertainty and variability have been ignored in all previous model based fouling mitigation strategies, and this novel multi-loop NMPC approach offers a solution to it so that the economic savings are enhanced. In conclusion, the models and optimization algorithms developed in this thesis have the potential to reduce the operating cost and carbon emission of refining operations by mitigating fouling. They are based on accurate models and deterministic optimization that overcome the limitations of previous applications such as poor predictability, ignoring variability and dynamics, ignoring interactions in the system, and using inappropriate tools for decision making.Open Acces

    Renewable Energy Resource Assessment and Forecasting

    Get PDF
    In recent years, several projects and studies have been launched towards the development and use of new methodologies, in order to assess, monitor, and support clean forms of energy. Accurate estimation of the available energy potential is of primary importance, but is not always easy to achieve. The present Special Issue on ‘Renewable Energy Resource Assessment and Forecasting’ aims to provide a holistic approach to the above issues, by presenting multidisciplinary methodologies and tools that are able to support research projects and meet today’s technical, socio-economic, and decision-making needs. In particular, research papers, reviews, and case studies on the following subjects are presented: wind, wave and solar energy; biofuels; resource assessment of combined renewable energy forms; numerical models for renewable energy forecasting; integrated forecasted systems; energy for buildings; sustainable development; resource analysis tools and statistical models; extreme value analysis and forecasting for renewable energy resources
    • …
    corecore