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Abstract 

Crude refining is one of the most energy intensive industrial operations. The large 

amounts of crude processed, various sources of inefficiencies and tight profit margins 

promote improving energy recovery. The preheat train, a large heat exchanger network, 

partially recovers the energy of distillation products to heat the crude, but it suffers of the 

deposition of material over time – fouling – deteriorating its performance. This increases the 

operating cost, fuel consumption, carbon emissions and may reduce the production rate of 

the refinery. 

Fouling mitigation in the preheat train is essential for a profitable long term operation 

of the refinery. It aims to increase energy savings, and to reduce operating costs and carbon 

emissions. Current alternatives to mitigate fouling are based on heuristic approaches that 

oversimplify the representation of the phenomena and ignore many important interactions in 

the system, hence they fail to fully achieve the potential energy savings. On the other hand, 

predictive first principle models and mathematical programming offer a comprehensive way 

to mitigate fouling and optimize the performance of preheat trains overcoming previous 

limitations. 

In this thesis, a novel modelling and optimization framework for heat exchanger 

networks under fouling is proposed, and it is based on fundamental principles. The models 

developed were validated against plant data and other benchmark models, and they can 

predict with confidence the main effect of operating variables on the hydraulic and thermal 

performance of the exchangers and those of the network. 

The optimization of the preheat train, an MINLP problem, aims to minimize the 

operating cost by: 1) dynamic flow distribution control, 2) cleaning scheduling and 3) 

network retrofit. The framework developed allows considering these decisions individually 

or simultaneously, although it is demonstrated that an integrated approach exploits the 

synergies among decision levels and can reduce further the operating cost. An efficient 

formulation of the model disjunctions and time representation are developed for this 

optimization problem, as well as efficient solution strategies. To handle the combinatorial 

nature of the problem and the many binary decisions, a reformulation using complementarity 
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constraints is proposed. Various realistic case studies are used to demonstrate the general 

applicability and benefits of the modelling and optimization framework. This is the first time 

that first principle predictive models are used to optimize various types of decisions 

simultaneously in industrial size heat exchanger networks. 

The optimization framework developed is taken further to an online application in a 

feedback loop. A multi-loop NMPC approach is designed to optimize the flow distribution 

and cleaning scheduling of preheat trains over two different time scales. Within this 

approach, dynamic parameter estimation problems are solved at frequent intervals to update 

the model parameters and cope with variability and uncertainty, while predictive first 

principle models are used to optimize the performance of the network over a future horizon. 

Applying this multi-loop optimization approach to a case study of a real refinery 

demonstrates the importance of considering process variability on deciding about optimal 

fouling mitigation approaches. Uncertainty and variability have been ignored in all previous 

model based fouling mitigation strategies, and this novel multi-loop NMPC approach offers 

a solution to it so that the economic savings are enhanced. 

In conclusion, the models and optimization algorithms developed in this thesis have 

the potential to reduce the operating cost and carbon emission of refining operations by 

mitigating fouling. They are based on accurate models and deterministic optimization that 

overcome the limitations of previous applications such as poor predictability, ignoring 

variability and dynamics, ignoring interactions in the system, and using inappropriate tools 

for decision making. 

  



7 

Contents 

Declaration of originality........................................................................................................ 2 

Copyright declaration ............................................................................................................. 3 

Acknowledgements ................................................................................................................ 4 

Abstract ................................................................................................................................... 5 

Contents .................................................................................................................................. 7 

List of figures ....................................................................................................................... 12 

List of tables ......................................................................................................................... 23 

Nomenclature........................................................................................................................ 25 

Symbols ............................................................................................................................ 25 

Greek letters ...................................................................................................................... 27 

Subscripts .......................................................................................................................... 27 

Superscripts ....................................................................................................................... 28 

Acronyms .......................................................................................................................... 28 

Chapter 1 Introduction ........................................................................................................ 30 

1.1. Motivation and objectives ...................................................................................... 33 

1.2. Thesis structure ...................................................................................................... 36 

Chapter 2 Optimizing preheat trains under fouling: a review............................................. 40 

2.1. Introduction ............................................................................................................ 40 

2.2. Problem definition and challenges ......................................................................... 41 

2.3. Optimization alternatives for preheat trains under fouling .................................... 45 

2.4. Problem formulation and modelling considerations .............................................. 48 

2.5. Mathematical considerations and solution strategies ............................................. 55 

2.6. Concluding remarks ............................................................................................... 63 

Chapter 3 Optimizing preheat trains under fouling: general mathematical formulation .... 66 

3.1. Introduction ............................................................................................................ 66 

3.2. Model building blocks ........................................................................................... 67 

3.2.1. Network representation................................................................................... 67 

3.2.2. Heat exchanger model .................................................................................... 70 

3.2.3. Fouling model ................................................................................................. 72 



8 

3.2.4. Operating mode disjunctions .......................................................................... 77 

3.2.5. Operational constraints ................................................................................... 79 

3.2.6. Objective function .......................................................................................... 80 

3.3. Time representation: discrete and continuous formulation .................................... 81 

3.3.1. Discrete time approach ................................................................................... 82 

3.3.2. Continuous time approach .............................................................................. 83 

3.3.3. Scalability and comparison of time representations ....................................... 86 

3.4. Optimal integration of cleaning scheduling and control ........................................ 89 

3.4.1. Summary of problem formulation .................................................................. 90 

3.4.2. Comparison of time discretization approaches ............................................... 91 

3.4.3. Optimal cleaning scheduling considering deposit ageing .............................. 99 

3.4.4. Optimization of HEN with constrained operation ........................................ 103 

3.4.5. Optimal integration of cleaning scheduling and control .............................. 107 

3.5. Concluding remarks ............................................................................................. 113 

Chapter 4 Optimizing preheat trains under fouling: model validation ............................. 115 

4.1. Introduction .......................................................................................................... 115 

4.2. Summary of heat exchanger models used for validation ..................................... 116 

4.3. Model validation approach and parameter estimation problem ........................... 119 

4.4. Prediction errors and model validity .................................................................... 124 

4.4.1. Validation under clean conditions ................................................................ 125 

4.4.2. Validation under dynamic fouling operation ................................................ 132 

4.5. Model validation using real plant data ................................................................. 136 

4.6. Concluding remarks ............................................................................................. 142 

Chapter 5 Optimizing preheat trains under fouling: solution strategy for large problems 144 

5.1. Introduction .......................................................................................................... 144 

5.2. Problem reformulation with complementarity constraints .................................. 145 

5.3. Solution strategy using MPCC ............................................................................ 148 

5.4. Applications of MPCC reformulation and advantages ........................................ 149 

5.4.1. Comparison with standard solution strategies .............................................. 150 

5.4.2. Solving industrial size case studies .............................................................. 153 

5.5. Concluding remarks ............................................................................................. 170 



9 

Chapter 6 Optimal retrofit, cleaning scheduling, and control of preheat trains under fouling

 172 

6.1. Introduction .......................................................................................................... 172 

6.2. Including retrofit decisions in the optimization problem ..................................... 173 

6.3. Practical optimal retrofit of HEN under fouling .................................................. 178 

6.3.1. Case study NR-S: single retrofit alternative ................................................. 178 

6.3.2. Case study NR-B: multiple retrofit alternatives and dynamic flow distribution

 185 

6.4. Concluding remarks ............................................................................................. 198 

Chapter 7 Online optimization of preheat trains: integration of flow control and cleaning 

scheduling 200 

7.1. Introduction .......................................................................................................... 200 

7.2. Multi-loop MHE/NMPC for fouling mitigation .................................................. 202 

7.2.1. Flow distribution feedback loop ................................................................... 204 

7.2.2. Cleaning scheduling feedback loop .............................................................. 206 

7.2.3. Overall methodology for online fouling mitigation ..................................... 208 

7.2.4. End of operation considerations ................................................................... 209 

7.3. Online optimization of an industrial preheat train ............................................... 211 

7.3.1. Online optimization assuming perfect model ............................................... 213 

7.3.2. Online optimization under plant mismatch .................................................. 224 

7.3.3. Effect of multi-loop MHE/NMPC parameters ............................................. 231 

7.3.4. Effect of inlet flow rate disturbances in the system ..................................... 233 

7.3.5. Effect of crude blend disturbances in the system ......................................... 236 

7.4. Concluding remarks ............................................................................................. 242 

Chapter 8 Online optimization of preheat trains: closed loop schedules stability ............ 244 

8.1. Introduction .......................................................................................................... 244 

8.2. Measuring closed loop scheduling instability ...................................................... 246 

8.2.1. Task timing instability .................................................................................. 249 

8.2.2. Task allocation instability ............................................................................. 250 

8.2.3. Overall schedule instability .......................................................................... 251 

8.2.4. Time weighted overall schedule instability .................................................. 252 

8.3. Alternatives to reduce closed loop scheduling instability ................................... 254 



10 

8.3.1. Terminal cost penalty ................................................................................... 254 

8.3.2. Freezing decision in prediction horizon ....................................................... 256 

8.3.3. Penalizing variability .................................................................................... 258 

8.4. Cleaning scheduling stability in preheat trains operation .................................... 259 

8.4.1. Case 4HE-B. Comparing alternatives to improve stability .......................... 259 

8.4.2. Case REF-X. Closed loop schedule stability in an industrial preheat train .. 267 

8.5. Concluding remarks ............................................................................................. 276 

Chapter 9 Conclusions ...................................................................................................... 278 

9.1. Contributions and achievements .......................................................................... 281 

9.2. Future work .......................................................................................................... 284 

Appendix A.  Case studies and networks specifications .................................................... 287 

A.1.  Physical properties equations ............................................................................... 287 

A.2. Case studies .......................................................................................................... 288 

A.2.1. Case 1: “1HE” .............................................................................................. 290 

A.2.2. Case 2: “2HE-S” ........................................................................................... 291 

A.2.3. Case 3: “2HE-B” .......................................................................................... 293 

A.2.4. Case 4: “4HE-S” ........................................................................................... 295 

A.2.5. Case 5: “4HE-B” .......................................................................................... 296 

A.2.6. Case 6: “LN-S1” ........................................................................................... 298 

A.2.7. Case 7: “LN-S2” ........................................................................................... 301 

A.2.8. Case 8: “LN-S3” ........................................................................................... 304 

A.2.9. Case 9: “LN-B1” .......................................................................................... 307 

A.2.10. Case 10: “LN-B2” .......................................................................................... 309 

A.2.11. Case 11: “REF-X” .......................................................................................... 311 

A.2.12. Case 12: “NR-S” ............................................................................................ 314 

A.2.13. Case 13: “NR-B” ............................................................................................ 319 

Appendix B.  Dynamic and distributed model for shell and tube heat exchangers ............ 324 

B.1.   Modelling framework and constituent equations ................................................ 324 

Appendix C.  Heuristic algorithms for online cleaning scheduling of preheat trains ........ 328 

C.1. Heuristic algorithms for online cleaning scheduling ........................................... 328 

C.2. Application to a real case study ........................................................................... 331 

C.2.1. Online cleaning scheduling .......................................................................... 332 



11 

C.2.2. Introducing control elements ........................................................................ 334 

Appendix D.  Dissemination record ................................................................................... 338 

Journal peer-reviewed articles ........................................................................................ 338 

Refereed conferences proceedings .................................................................................. 339 

Conference presentations without proceedings .............................................................. 340 

Seminars and talks .......................................................................................................... 340 

References .......................................................................................................................... 341 

 

 

 

 

  



12 

List of figures 

Figure 2.1. General (simplified) representation of a refinery preheat train. ......................... 42 

Figure 2.2. Schematic representation of the modelling approaches for shell and tube heat 

exchangers ............................................................................................................................ 49 

Figure 3.1. Representation of a HEN as a graph showing all the nodes and arcs. ............... 68 

Figure 3.2. Multi-layer representation for the heat transfer in the radial direction of a shell 

and tube heat exchanger. a) frontal view for a tube, b) representative temperature profile 

and notation. ......................................................................................................................... 72 

Figure 3.3. Representation of a heat exchanger in a network (a), and the addition of bypass 

streams for idle state (b). ...................................................................................................... 77 

Figure 3.4. Time domain discretization for scheduling problems, adapted from (Pinto and 

Grossmann 1998). ................................................................................................................. 82 

Figure 3.5. Representation of the time horizon using a continuous time approach ............. 85 

Figure 3.6. Problem size comparison and scalability for time discretization approaches. a) 

Number of time events, b) total number of integer variables. (CT: continuous time, DT: 

discrete time). ....................................................................................................................... 88 

Figure 3.7. HEN representation of the case studies of this chapter. a) Case 1HE, b) Case 

4HE-S, c) Case 2HE-S, d) Case 2HE-B. .............................................................................. 89 

Figure 3.8. Optimal CIT (a, c, e) and furnace duty (b, d, f) profiles for the cleaning 

scheduling problem of cases: 1HE (a, b), 2HE-S (c, d), and 2HE-B (e, f). .......................... 96 

Figure 3.9. Partially optimized cleaning schedule for case 4HE-S. A) Optimal cleaning 

times, B) Optimal cleaning times and cleaning schedule of HEX4. .................................... 97 

Figure 3.10. Optimal CIT (a) and furnace duty (b) profiles for the partially optimize 

cleaning schedule of case 4HE-S.......................................................................................... 98 

Figure 3.11. Total operating cost of the optimal cleaning scheduling (SCH) of case 1HE for 

various ageing scenarios. ...................................................................................................... 99 

Figure 3.12. Furnace duty for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. ........................................................... 100 



13 

Figure 3.13. Tube side pressure drop for various ageing scenarios of case 1HE. a) no 

mitigation operation, b) optimal cleaning scheduling solution. ......................................... 101 

Figure 3.14. Deposit thickness for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. ........................................................... 101 

Figure 3.15. Fouling resistance for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. ........................................................... 102 

Figure 3.16. Deposit age for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. ........................................................... 103 

Figure 3.17. No mitigation (NM) and optimal cleaning scheduling (SCH) operating cost 

(left) and production profit (right) for the case 2HE-S when the network operation is 

limited. ................................................................................................................................ 104 

Figure 3.18. CDU production throughput of the case 2HE-S when the network operation is 

limited. a) No mitigating actions, b) optimal cleaning scheduling. .................................... 105 

Figure 3.19. Optimal cleaning scheduling for the case 2HE-S when the network is 

thermally limited (TL), hydraulically limited (HL), and not limited (NL). ....................... 106 

Figure 3.20. Overall tube side pressure drop of the case 2HE-S when the network operation 

is limited. a) No mitigating actions, b) optimal cleaning scheduling. ................................ 106 

Figure 3.21. Furnace duty of the case 2HE-S when the network operation is limited. a) No 

mitigating actions, b) optimal cleaning scheduling. ........................................................... 107 

Figure 3.22. Fouling resistance of HEX1 (a) and HEX2 (b) of case “2HE-B” under different 

flow split scenarios when there are no cleanings. .............................................................. 110 

Figure 3.23. Furnace duty for the case 2HE-B under different flow split scenarios. a) no 

cleanings, b) optimal cleaning scheduling. ......................................................................... 111 

Figure 3.24. Split fraction towards HEX1 branch on the tube side of case 2HE-B under 

different flow split scenarios. a) no cleanings, b) optimal cleaning scheduling. ................ 112 

Figure 3.25. Split fraction towards HEX1 branch on the shell side of case 2HE-B under 

different flow split scenarios. a) no cleanings, b) optimal cleaning scheduling. ................ 112 

Figure 4.1. Flowchart of model validation procedure using 2D distributed model as 

benchmark .......................................................................................................................... 120 

Figure 4.2. Model fitting and validation approaches when plant measurements are available.

 ............................................................................................................................................ 123 



14 

Figure 4.3. Network structure for all cases considered in the model validation ................ 124 

Figure 4.4. Histograms showing the initial error (top) and absolute error (bottom) 

distributions the key performance variables predicted by model A and B in clean 

conditions. a, b) tube side temperature, c, d) shell side temperature, e, f) tube side pressure 

drop, g, h) heat duty. ........................................................................................................... 126 

Figure 4.5. Variance capture by the PLS model on the error of each performance indicator 

variable. .............................................................................................................................. 128 

Figure 4.6. PLS model loads on inputs (a) and outputs (b) for the absolute error between the 

lumped (A) and distributed (B) models .............................................................................. 130 

Figure 4.7. Cross validation results of the PLS model for 7 samples. a) Tube side 

temperature absolute error, b) shell side temperature absolute error, c) tube side pressure 

drop absolute error, d) heat duty absolute error. ................................................................ 131 

Figure 4.8. AAE evaluated within the estimation horizon (column 1), the prediction horizon 

(column 2), and the overall operation (column 3) as a function of the estimation horizon for 

the tube side temperature (row 1), the shell side temperature (row 2), the pressure drop (row 

3), and the heat duty (row 4). ............................................................................................. 134 

Figure 4.9. Optimal parameters estimated for the lumped model (A) based on the 

observations of the distributed model (B) as a function of the estimation horizon (EH). a) 

deposition constant, b) removal constant, c) deposit roughness......................................... 135 

Figure 4.10. Volumetric flow rate measure, time series approximation, and outlier 

identification for E01 in case “REF-X”. (95% confidence interval: dash line, ♦ outliers). 137 

Figure 4.11. Residuals plot (left) and distribution (right) for the volumetric flow rate of E01 

in case “REF-X”. ................................................................................................................ 137 

Figure 4.12. Absolute error in the heat duty calculation based on the tube and shell side for 

exchanger E04 of case “REF-X”. ....................................................................................... 138 

Figure 4.13. “REF-X” case, E05 tube side outlet temperature (a), and shell side outlet 

temperature (b) predicted with each modelling approach. ................................................. 140 

Figure 4.14. Distribution of the prediction error for the tube side outlet temperature (a) and 

the shell side temperature (b) using three modelling approaches for the case “REF-X”. .. 141 

Figure 4.15. Distribution of the prediction error for the tube side pressure drop using two 

estimation approaches for the lumped model parameters for the case “REF-X”. .............. 142 



15 

Figure 5.1. HEN representation of the case studies of this chapter. a) Case 1HE, b) Case 

2HE-S, c) Case 2HE-B. ...................................................................................................... 150 

Figure 5.2. HEN representation of the case studies of this chapter. a) Case LN-S1, b) Case 

LN-B1, c) Case REF-X. ..................................................................................................... 154 

Figure 5.3. Optimal cleaning schedule (a) and furnace duty (b) for case LN-S1. .............. 155 

Figure 5.4. Fouling resistance (a) and heat duty (b) for exchangers of case LN-S1 when 

there are no cleanings. ........................................................................................................ 156 

Figure 5.5. Heat duty of heat exchangers HEX3 (a) and HEX8 (b) for case LN-S1 ......... 156 

Figure 5.6. Furnace duty of case LN-B1 when the tube side flow is pressure driven or freely 

controlled. a) No mitigation and optimal control strategies, b) optimal cleaning scheduling 

and integrated strategies. .................................................................................................... 159 

Figure 5.7. Optimal cleaning schedule of case LN-B1 when the tube side flow is pressure 

driven (a) and when it is freely controlled (b). ................................................................... 160 

Figure 5.8. Flow split distribution of LN-B1. a, b) Crude split fraction to HEX3 with and 

without cleanings. c, d) HVGO split fraction to HEX3 with and without cleanings. e, f) VR 

split fraction to HEX4 with and without cleanings. ........................................................... 161 

Figure 5.9. Effect of the number of periods in the time horizon on the optimal cleaning 

schedule of REF-X case. a) Total operating cost, b) Cleaning cost ................................... 163 

Figure 5.10. Effect of the number of periods in the time horizon on the computational time 

required to solve the optimal cleaning schedule of REF-X. ............................................... 164 

Figure 5.11. Optimal cleaning schedule compare with that of the actual operation for the 

case REF-X. ........................................................................................................................ 165 

Figure 5.12. Furnace duty (a) and split fraction to E02A/B branch (b) for optimal cleaning 

scheduling solutions of REF-X case. .................................................................................. 166 

Figure 5.13. Fouling resistance of key heat exchangers of REF-X for optimal cleaning 

scheduling scenarios. a) E03A, b) E03B, c) E05A, d) E05B. ............................................ 167 

Figure 5.14. Validation of the furnace duty of REF-X case using a distributed model. a) No 

mitigation, b) Actual operation, c) Optimal cleaning scheduling and flow distribution .... 168 

Figure 5.15. Validation of the heat duty of exchangers: a) E01A, b) E02A, c) E03A of REF-

X case using a distributed model at the optimal cleaning scheduling conditions. ............. 169 



16 

Figure 5.16. Validation of the average fouling resistance of exchangers: a) E01A, b) E02A, 

c) E03A of REF-X case using a distributed model at the optimal cleaning scheduling 

conditions. .......................................................................................................................... 169 

Figure 5.17. Validation of the tube side pressure drop of exchangers: a) E01A, b) E02A, c) 

E03A of REF-X case using a distributed model at the optimal cleaning scheduling 

conditions. .......................................................................................................................... 169 

Figure 6.1. Example of HEN superstructure including network retrofit alternatives......... 174 

Figure 6.2. Network super structure of case study 1 (NR-S). ............................................ 179 

Figure 6.3. Operating cost and capital cost of each alternative explored for case study NR-S

 ............................................................................................................................................ 180 

Figure 6.4. Operating cost and capital cost of optimal retrofit alternative with and without 

fouling mitigation for case study NR-S. ............................................................................. 181 

Figure 6.5. Furnace duty of optimal retrofit alternative with and without fouling mitigation 

for case study NR-S. ........................................................................................................... 182 

Figure 6.6. Optimal cleaning schedule of case study NR-S considering network and area 

retrofit (X: exchanger removed, +: exchanger added, ▪ exchanger fixed). ........................ 182 

Figure 6.7. Fouling resistance of exchangers HEX6 (a), HEX7 (b), and HEX7x (c) for the 

optimal network and area retrofit alternatives of case study NR-S. ................................... 183 

Figure 6.8. Heat duty of exchangers HEX3 (a), HEX6 (b), HEX7 (c), and HEX7x (d) for 

the optimal network and area retrofit alternatives of case study NR-S. ............................. 184 

Figure 6.9. Optimal HTA retrofit of all exchangers with and without fouling mitigation for 

case NR-S. .......................................................................................................................... 185 

Figure 6.10. Network superstructure of case study 2 (NR-B). ........................................... 186 

Figure 6.11. Furnace duty for network retrofit alternatives of case NR-B without 

considering cleanings proposed by Yeap et al. (2005) ....................................................... 187 

Figure 6.12. New bypasses for alternative I retrofit of case NR-B considering optimal 

dynamic flow distribution. .................................................................................................. 188 

Figure 6.13. Optimal and constant flow distribution of retrofit alternative I of case NR-B. a) 

crude branch 1, b) crude branch 2, c) crude branch 3, d) VR bypass, e) OR bypass. ........ 188 

Figure 6.14. Exchanger heat duty of retrofit alternative I of case NR-B optimizing the flow 

distribution. a) E5a, b) E6a, c) E5b, d) E6b, e) E5, f) E6, g) E3, h) E4. ............................ 190 



17 

Figure 6.15. Exchanger fouling resistance of retrofit alternative I of case NR-B optimizing 

the flow distribution. a) E5a, b) E6a, c) E5b, d) E6b, e) E5, f) E6, g) E3, h) E4. .............. 191 

Figure 6.16. Furnace duty for optimal network retrofit alternatives of case NR-B without 

considering cleanings. ........................................................................................................ 192 

Figure 6.17. Optimal network retrofit without considering cleanings for case NR-B. a) 

optimal retrofit with constant flows (HEN retrofit – constant), b) optimal retrofit with 

dynamic flow distribution (HEN retrofit – constant), c) optimal network and HTA retrofit 

with dynamic flow distribution (HEN-HTA retrofit). ........................................................ 193 

Figure 6.18. Flow distribution, constant or dynamic, of the optimal network retrofit of case 

study NR-B. a) crude branch, b) VR bypass, c) OR bypass. .............................................. 194 

Figure 6.19. Optimal network retrofit for case NR-B considering simultaneous optimization 

of the cleaning schedule (with and without HTA retrofit). ................................................ 195 

Figure 6.20. Furnace duty for optimal network retrofit alternatives of case NR-B including 

optimal cleaning scheduling. .............................................................................................. 196 

Figure 6.21. Optimal HTA retrofit for each exchanger with and without fouling mitigation 

for case NR-B. .................................................................................................................... 196 

Figure 6.22. Optimal cleaning schedule of case study NR-B considering network retrofit 

(HEN retrofit) and network and area retrofit (HEN-HTA retrofit). (X: exchanger removed, 

+: exchanger added, ▪ exchanger fixed). ............................................................................ 197 

Figure 6.23. Total cost of all retrofit alternatives, manual and optimal, of case NR-B. .... 198 

Figure 7.1. Representation of the online, integrated optimal cleaning scheduling and control 

of HEN subject to fouling and disturbances. ...................................................................... 203 

Figure 7.2. Schematic representation of a moving horizon for NMPC and MHE. Past 

measurements and predictions at = ∗ (a), and at = ∗ +  (b). ............................... 204 

Figure 7.3. Representation of scheduling construction in rolling horizon scheme. a) 

assuming an open-end operation, b) shrinking horizon to account for the end of operation.

 ............................................................................................................................................ 210 

Figure 7.4. Network representation of REF-X case study used in the application of the 

online fouling mitigation methodology. ............................................................................. 211 

Figure 7.5. Actual measurements of the inlet stream flow rates (a), and temperature (b) for 

the case study of REF-X. .................................................................................................... 212 



18 

Figure 7.6. Comparison of cleaning schedules for all online scenarios considered of the 

case study REF-X. .............................................................................................................. 215 

Figure 7.7. Flow split fraction towards E02A/B for all online scenarios of REF-X case. . 216 

Figure 7.8. Effects of optimal flow distribution for online fouling mitigation, case of E02A. 

a) Fouling resistance, b) heat duty ...................................................................................... 217 

Figure 7.9. CIT observed (continuous line) and predicted (dash line) at the control layer for 

the scenario Opt. S+C of REF-X at three consecutive time instances – time evolution from 

top to bottom. ...................................................................................................................... 218 

Figure 7.10. CIT observed (continuous line) and predicted (dash line) at the scheduling 

layer for the scenario Opt. S+C of REF-X at three consecutive time instances – current time 

of the prediction on the upper right corner. ........................................................................ 219 

Figure 7.11. Cleaning schedule executed (black) and predicted (red) at the scheduling layer 

for the scenario Opt. S+C of REF-X at three consecutive time instances – current time of 

the prediction on the upper right corner. ............................................................................ 219 

Figure 7.12. Optimal split fraction implemented (continuous line) and predicted (dash line) 

at the scheduling layer for the scenario Opt. S+C of REF-X. Prediction at 361 days........ 220 

Figure 7.13. Comparison of the optimal cleaning schedule determined online assuming the 

end time is known and using a shrinking horizon approach for the NMPC. ...................... 221 

Figure 7.14. CIT observed (continuous line) and predicted (dash line) at the scheduling 

layer towards the end of the operation. a) open-ended online optimization, b) shrinking 

horizon optimization. .......................................................................................................... 222 

Figure 7.15. Comparison of the cleaning schedule executed (black) and predicted (red) at 

the scheduling layer towards the end of the operation. a) open-end online optimization, b) 

shrinking horizon optimization. .......................................................................................... 223 

Figure 7.16. Model plant mismatch defined varying the deposition constant of each 

exchanger of the plant. a) example of time variability for two exchangers, b) box plot 

representing the variability in the deposition constant for each exchanger in the network.

 ............................................................................................................................................ 224 

Figure 7.17. Cleaning schedule executed in the actual operation and with the online 

optimization approach considering model plant mismatch. ............................................... 226 



19 

Figure 7.18. Furnace duty (a) and split fractions towards E02A/B (b) for the actual 

operation and the online optimization considering model plant mismatch. ....................... 226 

Figure 7.19. CIT observed (continuous line), predicted (dashed line), and estimated (dotted 

line) at the control layer for the scenario Opt. S+C of REF-X at three consecutive time 

instances under model plant mismatch. Time evolution is from top to bottom. ................ 228 

Figure 7.20. CIT observed (continuous line), predicted (dashed line), and estimated (dotted 

line) at the scheduling layer for the scenario Opt. S+C of REF-X at three consecutive time 

instances under model plant mismatch – time evolution from top to bottom. ................... 229 

Figure 7.21. Comparison of the actual deposition constant and that estimated at the control 

layer for REF-X case. a) time series example for E04, b) box plot comparing every 

exchanger in the network. ................................................................................................... 230 

Figure 7.22. Comparison of the actual deposition constant and that estimated at the 

scheduling layer for REF-X case. a) time series example for E04, b) box plot comparing 

every exchanger in the network. ......................................................................................... 230 

Figure 7.23. Effect of the  and Τ ∗ of the scheduling layer on the closed-loop 

performance for case REF-X. a) energy cost, b) cleaning cost, c) total operating cost. .... 232 

Figure 7.24. Step disturbances in the inlet flow rates of case REF-X over one year of 

operation. ............................................................................................................................ 233 

Figure 7.25. Cleaning schedule executed (a) and furnace duty (b) for REF-X case when step 

disturbances in the input flow rates are introduced. ........................................................... 234 

Figure 7.26. Fouling resistance (a) and heat duty (b) of exchanger E01B of REF-X case 

when step disturbances in the input flow rates are introduced. .......................................... 235 

Figure 7.27. Evolution of the predicted fouling resistance of E02A for REF-X case at four 

consecutive solutions of the scheduling layer of the online optimization approach. ......... 236 

Figure 7.28. Example of the step change in the ‘real’ deposition constant of case REF-X.

 ............................................................................................................................................ 237 

Figure 7.29. Cleaning schedule of REF-X operating under large mismatch in the deposition 

constants. Comparison of closed-loop optimization, open-loop optimization, and actual 

operation. ............................................................................................................................ 238 



20 

Figure 7.30. Furnace duty of REF-X operating under large mismatch in the deposition 

constants. Comparison of closed-loop optimization, open-loop optimization, and actual 

operation. ............................................................................................................................ 239 

Figure 7.31. Fouling resistance (a) and heat duty (b) of exchanger E03A of REF-X 

operating under large mismatch in the deposition constants. ............................................. 240 

Figure 7.32. Comparison of the ‘real’ deposition constant and the estimated one at the 

control layer (a) and at the scheduling layer (b) for E04 of REF-X case operating under 

large mismatch .................................................................................................................... 241 

Figure 7.33. Moving horizon prediction and estimation of the fouling resistance before the  

-80% step change (a), and the +200% step change (b) of the deposition constant for E03B 

of REF-X case. ................................................................................................................... 241 

Figure 8.1. Representation of sources of scheduling instability and the elements used to 

quantify it. ........................................................................................................................... 247 

Figure 8.2. Matrix representation of a schedule with a unique task for a simple example. a) 

Schedule update − 1 at time − 1, b) Schedule update  at time  ........................... 251 

Figure 8.3. Representation of freezing scheduling parameter for improving closed-loop 

schedule instability. ............................................................................................................ 257 

Figure 8.4. Network structure of the cases for closed-loop instability. a) 4HE-B, b) REF-X

 ............................................................................................................................................ 259 

Figure 8.5. Closed-loop scheduling instability time evolution - 4HE-B, base case. .......... 260 

Figure 8.6. Evolution of the cleaning schedule predicted (red) and executed (black) for the 

base case of 4HE-B at various sampling times (upper right corner). a) from 65 to 136 days, 

and b) from 181 to 256 days. .............................................................................................. 261 

Figure 8.7. Observed (black) and predicted (red) fouling resistance for the base case of the 

network 4HE-B. a) HEX2B at 91 and 106 days, and b) HEX2C at 65 and 76 days, to show 

sources of instability. .......................................................................................................... 262 

Figure 8.8. Effect of the terminal cost penalty ( ) in the closed loop performance - case 

4HE-B. a) Process economics, total cost (left) and cleaning cost (right), b) Average 

schedule instability and its standard deviation. .................................................................. 263 



21 

Figure 8.9. Effect of the number of frozen periods ( ) and the maximum allowed 

variation in the cleaning starting time (ΔΤ ) on the closed loop performance of case 4HE-

B. a) Total operating cost, b) Average schedule overall weighted instability. ................... 264 

Figure 8.10. Penalty on task variability ( ) and the penalty on cleaning starting time ( ) 

on the closed loop performance of case 4HE-B. a) Total operating cost, b) Average overall 

weighted instability. ........................................................................................................... 265 

Figure 8.11. DEA analysis for all the closed loop solutions of the scheduling and control 

problem - case 4HE-B. ....................................................................................................... 266 

Figure 8.12. Closed-loop schedule instability measured as: (a) task timing instability, (b) 

task allocation instability, (c) overall instability, and (d) overall weighted instability for 

case REF-X varying the  and update frequency of scheduling layer. ...................... 268 

Figure 8.13. Closed loop performance of REF-X when varying the penalty parameters of 

schedule variability. a) energy cost, b) cleaning cost, c) total cost. ................................... 269 

Figure 8.14. Closed loop average overall weighted instability (a) and Pareto plot (b) for the 

performance of REF-X when varying the penalty parameters of schedule variability. ..... 270 

Figure 8.15. Cleaning schedule executed for online optimization of REF-X. Base case with 

no schedule instability mitigation and schedule instability mitigation with two penalty 

parameters. .......................................................................................................................... 271 

Figure 8.16. Online optimization of REF-X - Base case (no instability reduction). Cleaning 

schedule as executed (black) and predicted (red) (a), and CIT as observed (black), 

estimated (blue) and predicted (red). .................................................................................. 273 

Figure 8.17. Online optimization of REF-X – Pen A case (penalizing schedule variability) 

with = 1 10 − 3 and = 1 10 − 1. Cleaning schedule as executed (black) and 

predicted (red) (a), and CIT as observed (black), estimated (blue) and predicted (red). ... 274 

Figure 8.18. Online optimization of REF-X – Pen B case (penalizing schedule variability) 

with = 1 10 − 3 and = 1 10 − 2. Cleaning schedule as executed (black) and 

predicted (red) (a), and CIT as observed (black), estimated (blue) and predicted (red). ... 275 

Figure A.1. Network representation of case “1HE”. .......................................................... 290 

Figure A.2. Network representation of case “2HE-S”........................................................ 291 

Figure A.3. Network representation of case “2HE-B”. ...................................................... 293 

Figure A.4. Network representation of case “4HE-S”........................................................ 295 



22 

Figure A.5. Network representation of case “4HE-B”. ...................................................... 296 

Figure A.6. Network representation of case “LN-S1”. ....................................................... 298 

Figure A.7. Network representation of case “LN-S2”. ....................................................... 301 

Figure A.8. Network representation of case “LN-S3”. ....................................................... 304 

Figure A.9. Network representation of case “LN-B1”. ...................................................... 307 

Figure A.10. Network representation of case “LN-B2”. .................................................... 309 

Figure A.11. Network representation of case “REF-X”. .................................................... 312 

Figure A.12. Network representation of case “NR-S”. ...................................................... 315 

Figure A.13. Original retrofit alternatives of case “NR-S” and their representation in the 

network superstructure. a, b) C2, c, d) C3, e, f) C4. (Coletti, Macchietto, and Polley 2011)

 ............................................................................................................................................ 316 

Figure A.14. Network representation of case “NR-B”. ...................................................... 319 

Figure A.15. Original retrofit alternatives of case “NR-B” and their representation in the 

network superstructure. a, b) I, c, d) II, e, f) III. (Yeap et al. 2005) ................................... 321 

Figure B.1. Dynamic and distributed modelling framework. a) Shell and tube exchanger 

representation, b) Heat transfer domains in a single tube .................................................. 325 

Figure C.1. Heuristic algorithm for online cleaning schedule of HEN. ............................. 330 

Figure C.2. Estimation of the heat duty decay for individual exchangers using three 

approximations. .................................................................................................................. 330 

Figure C.3. Cleaning schedule of case REF-X determined by heuristic algorithms that can 

be applied online. ................................................................................................................ 333 

Figure C.4. Evolution of the overall benefits of cleanings – LHS of Eq. (C.1) for the case 

study using a quadratic approximation for the heat duty.................................................... 334 

Figure C.5. Furnace duty (column 1), and split fraction to E02 branch (column 2) of the 

case study when the cleaning schedule is defined using heuristics (row 1: constant duty 

prediction, row 2: linear duty prediction, row 3: quadratic duty prediction). .................... 335 

Figure C.6. Cost comparison of all alternatives for REF-X case. Using heuristics vs 

optimization to define the cleaning schedule of the network. ............................................ 336 

 

  



23 

List of tables 

Table 1.1. Descriptions and abbreviations for the different solution strategies and cases 

considered in this thesis for HEN under fouling. ................................................................. 38 

Table 2.1. Fouling mitigation actions commonly performed in HEN. ................................. 43 

Table 2.2. Mathematical programming applications on fouling mitigation alternatives...... 46 

Table 2.3. Applications of shell and tube heat exchanger models ....................................... 50 

Table 2.4. Review of heat exchanger and fouling models used in preheat train operation .. 53 

Table 2.5. Review of solution strategies and formulation of the optimal cleaning scheduling 

problem of preheat trains ...................................................................................................... 57 

Table 3.1. Scenarios to define problem size and scalability using the continuous time 

discretization ......................................................................................................................... 87 

Table 3.2. Computational results and optimal solution of cleaning scheduling problem for 

case: 1HE .............................................................................................................................. 92 

Table 3.3. Computational results and optimal solution of cleaning scheduling problem for 

cases: 2HE-S and 2HE-B. ..................................................................................................... 93 

Table 3.4. Optimal cleaning solution and computational results of case 2HE-B for the 

integration of scheduling and control decisions ................................................................. 109 

Table 4.1. Model size comparison and estimation of the number of equations and variables.

 ............................................................................................................................................ 117 

Table 4.2. Summary of optimal fouling parameter estimated with each modelling approach 

for the case “REF-X” based on plant data .......................................................................... 139 

Table 5.1. Comparison of optimal solution for small case studies using two solution 

strategies: branch and bound, and problem reformulation with complementarity constraints.

 ............................................................................................................................................ 151 

Table 5.2. Computational results and optimal solution for various operating modes of LN-

B1 case study ...................................................................................................................... 158 

Table 7.1. Total operating cost for online fouling mitigation and the actual refinery 

operation. ............................................................................................................................ 214 



24 

Table 7.2. Model size and solution time summary of the optimization problems involved in 

the proposed online approach considering model-plant mismatch. ................................... 227 

Table A.1. Cost parameters and operational constraints of all case studies ....................... 289 

Table A.2. Heat exchangers specifications for case “1HE” ............................................... 290 

Table A.3. Stream specifications and physical properties for case “1HE” ........................ 291 

Table A.4. Heat exchangers specifications for case “2HE-S” ............................................ 292 

Table A.5. Stream specifications and physical properties for case “2HE-S” ..................... 292 

Table A.6. Heat exchangers specifications for case “2HE-B” ........................................... 294 

Table A.7. Stream specifications and physical properties for case “2HE-B” .................... 294 

Table A.8. Heat exchangers specifications for case “4HE-S” ............................................ 295 

Table A.9. Stream specifications and physical properties for case “4HE-S” ..................... 296 

Table A.10. Heat exchangers specifications for case “4HE-B” ......................................... 297 

Table A.11. Stream specifications and physical properties for case “4HE-B” .................. 297 

Table A.12. Heat exchangers specifications for case “LN-S1” .......................................... 299 

Table A.13. Stream specifications and physical properties for case “LN-S1” ................... 300 

Table A.14. Heat exchangers specifications for case “LN-S2” .......................................... 302 

Table A.15. Stream specifications and physical properties for case “LN-S2” ................... 303 

Table A.16. Heat exchangers specifications for case “LN-S3” .......................................... 305 

Table A.17. Stream specifications and physical properties for case “LN-S3” ................... 306 

Table A.18. Heat exchangers specifications for case “LN-B1” ......................................... 308 

Table A.19. Stream specifications and physical properties for case “LN-B1” .................. 309 

Table A.20. Heat exchangers specifications for case “LN-B2” ......................................... 310 

Table A.21. Stream specifications and physical properties for case “LN-B2” .................. 311 

Table A.22. Heat exchangers specifications for case “REF-X” ......................................... 313 

Table A.23. Stream specifications and physical properties for case “REF-X” .................. 314 

Table A.24. Heat exchangers specifications for case “NR-S” ........................................... 317 

Table A.25. Stream specifications and physical properties for case “NR-S”..................... 318 

Table A.26. Heat exchangers specifications for case “NR-B” ........................................... 322 

Table A.27. Stream specifications and physical properties for case “NR-B”* .................. 323 

Table B.1. Main constituent equations of the distributed and dynamic model .................. 326 

  



25 

Nomenclature 

Symbols 

Symbol Units Description 

 m2 Cross sectional area 

 - Matrix used in heuristics to define arrangement of HEX to clean simultaneously 

 kJ/kgK Specific heat capacity 

 mm Outer tube diameter 

 mm Inner tube diameter 

 - Variable indicating the axial direction of the flow 

 J/mol Activation energy 

 - Fanning friction factor 

 - Price correction factor due to material 

 - Price correction factor due to pressure 

 - Price correction factor to date – CEPCI index ratio 

 kg/m2s Mass flux ℎ W/m2K Convective heat transfer coefficient 

 m2 Heat transfer area 

 - Schedule instability 

 day-1 Frequency factor in ageing kinetics 

 - Terminal cost or penalty in the objective function of MPC 

 m Tube length 

 kg/s Mass flow rate 

 - Number of time discrete points (columns) in a schedule representation 

 - Number of units (rows) in a schedule representation 

 - Number of variables in a parameter estimation problem 

 - Maximum number of cleanings per exchanger over the time horizon 

 - Number of measurements of a variable 

 - Number of tubes / Maximum number of simultaneous cleanings 

 - Number of tube passes / Number of periods 

 - Number of periods in the  to freeze scheduling decisions 

 - Number of transfer units 

 m Wet perimeter in tube or shell 

 - Effectiveness factor of a heat exchanger  
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 bar Pressure 

 $ Threshold in heuristics to define cleanings based on potential savings 

 $ Capital cost of a heat exchanger 

 $/MW Cost of fuel burnt in the furnace 

 $/ton Cost of carbon emissions 

 $ Cost of cleaning actions 

 $/kg Profit per crude processed 

 $ Cost of a single tube - $ 25/m 

 $ Area retrofit cost 

 - Prandtl number 

 W/m2 Heat flux 

 MW Heat duty 

 MW Approximation of heat duty as an explicit function of time 

 m Radial direction ̃ - Dimensionless radial direction 

 J/molK Universal gas constant 

 - Ratio of heat capacities tube:shell 

 - Reynolds number 

 m2K/W Fouling thermal resistance 

 - Slack variable 

 - Split fraction 

 day Time 

∗
 day Current time of the operation 

 ̅ - Dimensionless time [0, 1] 

 day Estimation horizon for parameter estimation 

 K Temperature 

 m/s / - Flow velocity / Manipulated variable in a MPC scheme 

 W/m2K Overall heat transfer coefficient 

 - Parameters to be estimated in a parameter estimation problem 

 - Running cost in the MPC objective function 

 - Mass fraction composition in the deposit layer / any continuous variable 

 - Heat exchanger area retrofit variable 

 - Measured variable 

 - Binary variable for cleanings {0, 1} 

 - Binary variables used in a general representation of scheduling problems {0, 1} 

 - Binary variable for heat exchanger retrofit {0, 1} 
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 - Logic variable {TRUE, FALSE} 

 - / m Binary variable for the overall state of a period / Axial direction 

Greek letters 

Symbol Units Description 

 m2K/J Deposition constant in Ebert-Panchal model 

 - Duration of a cleaning action in a discrete time representation 

 m5K/J2 Removal constant in Ebert-Panchal model 

 mm Deposit thickness 

 - Tolerance 

 mm Deposit roughness – Friction factor calculation 

 bar Tube side pressure drop 

 - Efficiency of heat transfer 

 W/mK Thermal conductivity 

 Pa.s / - Viscosity / Mean 

 - Irrational number (3.14159) 

 kg/m3 / - Density / Penalty parameter in an objective function 

 - Standard deviation 

 Pa Shear stress on the tube side  

 - Complementarity function between two variables Τ day Length of a time period  Τ∗
 day Update interval – sampling time of a control loop Τ  day Cleaning time 

Subscripts 

Symbol Description 

 Control feedback loop 

 Variable of the furnace / Referring to a fouling variable / Final time 

 Index in a set referring to nodes 

 Variable evaluated at inlet conditions 

 Index in a set referring to nodes 

 Index in a set referring to streams 

 Index in a set referring to nodes 

 Variable evaluated at outlet conditions 

 Related to overall schedule instability 
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 Related to time weighted overall schedule instability 

 Related to a retrofit variable ℎ Related to the evaluation (optimization) of schedules in an online approach 

 Scheduling feedback loop 

 Index in a set referring to discrete time 

 Related to task timing schedule instability 

 Related to task allocation schedule instability 

Superscripts 

Symbol Description 0 Inlet condition of a source node in a network / Initial condition / Cleaned conditions 

 Variable evaluated at the aged deposit or ageing kinetics 

 Variable evaluated at the interface between the aged deposit and the inner tube wall 

 Variable evaluated at the bypass streams 

 Variable evaluated at the deposit (continuous domain) 

 Variable evaluated at the fresh deposit 

 Variable evaluated at the interface between the fresh deposit and the aged deposit 

 Variable evaluated at the internal tube wall (flow) conditions of an exchanger 

 Lower bound 

 Variable evaluated at the shell side of an exchanger 

 Variable evaluated at the interface between the tube side and the fresh deposit  

 Variable evaluated at the tube side of an exchanger 

 Upper bound 

 Variable evaluated at the external tube wall conditions of an exchanger 

 Variable evaluated at the interface between the outer tube wall and the shell side 

Acronyms 

Symbol Description 

A Arcs / Set of arcs in a network 

 Absolute average error 

CDU Crude distillation unit 

CFD Computational fluid dynamics 

DAE Differential algebraic equations 

DEA Data envelop analysis 

FPH Future prediction horizon 
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HEN Heat exchanger network(s) 

HEX Heat exchanger / Set of heat exchangers 

HTA Heat transfer area 

LMTD Logarithm mean temperature difference 

MHE Moving horizon estimator 

MINLP Mixed integer nonlinear program 

Mx Mixer node / Set of mixer nodes 

N Set of all nodes in a network 

NM No mitigation operation strategy for HEN. No cleanings and constant flow splits 

NMPC Nonlinear model predictive control 

NLP Nonlinear program 

NTU Number of transfer units 

OT-FPH Overlapping time of the future prediction horizons of two consecutive schedule evaluations 

PEH Past estimation horizon 

PDAE Partial differential algebraic equations 

 Principal component in PLS method 

 Partial least squares 

 Right hand side of an equation or constraint 

S Set of streams in a network 

SCH Optimal cleaning scheduling solution for a HEN under fouling 

SE Set of schedule evaluations over the operating time 

Si Sink node / Set of sink nodes 

So Source node / Set of source nodes 

Sp Splitter node / Set of splitter nodes 

T Set of discrete time points independent of the discretization approach 
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Chapter 1  

 

Introduction 

The energy sector is undergoing a shift from traditional fossil fuels to highly efficient, 

low carbon emission and sustainable alternatives. The focus has been driven to a more energy 

efficient operation of energy intensive industries, such as refining and chemical, because of 

stringent environmental policies, a competitive market, and tighter production margins 

(Coletti et al. 2015). Industry accounts for approximately 40% of energy use in the world and 

refinery operations represents almost 10% of it. Refinery is one of the most energy intensive 

operations and it produces carbon emissions that represents 12% of the total man-made 

emissions (U.S. Energy Information Administration 2016; International Panel on Climate 

Change IPCC 2014). The high impact of this industry on the economy and environment has 

motivated intensive research on how to reduce the energy demand, and how to make refinery 

operations more efficient. Making refinery processes more energy efficient helps to reduce 

carbon emissions and energy consumption, and to increase the process profitability of the 

operation. For instance, an increase of 1.0 MW in the duty of a furnace in a small refinery 

processing 100 kbbl / year represents an increase of 90 tons CO2 emitted per year and an 

additional cost of $300.000 USD / year– assuming average cost of 2017 for fuel, and standard 

carbon and energy content (Nategh, Malayeri, and Mahdiyar 2017; Abdul-Manan, Arfaj, and 

Babiker 2017). Most of the additional costs due to energy inefficiencies in a refinery come 

from the operation of the preheat train and crude distillation unit (CDU).  

All crude processed in a refinery must go through the CDU where the different cuts, 

such as lights olefins, naphtha, diesel, and gas oil, are obtained. Because of the high energy 

demand of operating the CDU, the energy of its products – hot streams – is partially recovered 

in the preheat train – large heat exchanger network – where they heat up the crude stream 

from storage conditions up to 350°C – 370°C. The large flow rates of crude and the high 

temperatures of the operation make the preheat train a key section for improving the overall 
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energy efficiency and profitability of the refinery as it can recover up to 70% of the energy 

contained in product streams of the CDU (Panchal 2000). The preheat train is divided in three 

sections according to the temperature ranges at which crude is processed: cold end, 

intermediate section, and hot end. A desalter is usually located after the cold end to remove 

the inorganic material in the crude, and a flash drum before the hot end to remove the light 

components and ensure that a saturated liquid enters the CDU. Also, a furnace after the hot 

end supplies the extra energy necessary to satisfy a constant inlet temperature to the CDU. 

When the efficiency of the preheat train decreases, the duty of this furnace increases to 

compensate for the energy lost, which increases the operating cost and the carbon emissions 

of the refinery. 

The deposition of unwanted material – fouling – in process surfaces reduces the heat 

transfer efficiency, and it is almost ubiquitous to all heat transfer operations (Coletti and 

Hewitt 2015). Refining operations, and specially the preheat train, are dramatically affected 

by crude oil fouling due to the high temperatures at which crude is processed, the high energy 

demand of the operation, and the varying composition of crude oil. Crude oil fouling is not 

yet well and fully understood, but it is known that it can be caused by the presence of 

impurities in the crude oil, thermal decomposition, and oxidation reactions of fuel oil 

constituents (Diaby et al. 2012; Coletti, Crittenden, and Macchietto 2015). For instance, the 

presence and concentration of asphaltenes in the crude has been associated with its fouling 

propensity and deposition rates (Yang et al. 2015; Ho 2016a). Contrary to the crude oil 

fouling mechanisms, its effect and consequences are well known in the operation of refineries 

and preheat trains. The two main consequences of fouling are: reduction of the heat transfer 

rate as an additional thermal resistance is built in the heat exchanger – thermal impact – and 

increment of the pressure drop due to partial blockage of the flow area – hydraulic impact. 

Both have important economic implications in the operation of preheat trains such as: 

• Capital cost: when fouling is considered at the design stage of heat exchangers 

following TEMA guidelines, the actual heat transfer area is ~30% higher than the 

one required (TEMA 2007), although this approach ignores the dynamics of 

fouling and assume a unique and constant fouling resistance for the worst case 

scenario. Other capital costs arise from exploring retrofit options such as the use 

of tube inserts, heat transfer enhancement technology, or modifying the network 
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structure (Nguyen et al. 2010; Tjoe and Linnhoff 1986). Most of these decisions 

are often still made based on practical observations and ignore the fouling 

mechanisms and dynamics.  

• Fuel and energy cost: burning extra fuel in a furnace or boiler or using more 

electricity for pumping to compensate the effects of fouling leads to additional 

operational cost that, considering a global perspective, may represent 1% to 5% of 

the energy consumed by the industrial sector (Muller-Steinhagen and Zettler 2011; 

Sheikh et al. 2000). 

• Maintenance cost: during the operation of preheat trains it is common to schedule 

maintenance actions – cleanings – to recover partially or completely the thermo-

hydraulic performance of key units. While units are taken out of service the energy 

recovery capacity of the preheat train drops increasing the energy cost. There is 

also a maintenance cost –  due to chemicals, utilities, commissioning – which is 

case dependent, based on the size of the exchanger, the degree of fouling, and the 

type of cleaning (Lachas-Fuentes 2015). 

• Production loss cost: when operational constraints are reached, like the furnace 

firing limit or the maximum pressure drop, the CDU throughput is reduced or in 

drastic cases an unplanned shut-down is necessary. This leads to a significant 

reduction of the production rate and, depending on the length of this low 

production period, the production loss cost may represent 60% of the total cost 

associated with fouling (Muller-Steinhagen and Zettler 2011; Coletti and 

Macchietto 2011). 

Alternatives for fouling mitigation in refining operations are needed and of major 

importance to reduce the operational cost, increase energy efficiency, and reduce carbon 

emissions. Mitigation strategies can be broadly classified as proactive strategies, which aim 

is to reduce the consequence of fouling before it happens such as the use of antifoulant agents 

(Ho 2016a) or tube inserts (Muller-Steinhagen and Zettler 2011); or reactive strategies, which 

aim is to restore the efficiency of the heat exchangers after fouling has occurred, such as 

periodic cleanings, network retrofit, or flow control. There is a great potential in using 

predictive models, which provide a good understanding of the physical and chemical 
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phenomena of heat exchange and fouling for analysing, monitoring and provide insights of 

the operation considering all interactions, trade-offs and long term effects on the system. 

This thesis focuses on the model based optimization of preheat trains under fouling 

using mathematical programming as the tool to define fouling mitigation strategies including 

flow control, network retrofit, and cleaning scheduling. It aims to provide efficient and 

practical solutions to the problem of fouling in preheat trains so that carbon emissions are 

reduced, and energy efficiency increased. This works builds on previous research done at 

Imperial College on modelling heat exchangers networks under fouling to analyse their 

performance and suggest fouling mitigation actions from different perspectives (Georgiadis, 

Rotstein, and Macchietto 1998; Coletti and Macchietto 2011; Diaz-Bejarano, Coletti, and 

Macchietto 2016). 

1.1. Motivation and objectives 

A model based solution for the operation of preheat trains under fouling should be able 

to: i) represent accurately the thermal and hydraulic behaviour of heat exchangers and their 

interactions in a network, ii) capture the fouling dynamics and how it is affected by the main 

operating variables of each unit, iii) predict the effect of various fouling mitigation 

alternatives on the thermo-hydraulic performance of the network, iv) quantify all elements 

of the operating cost of the preheat train, v) cope with process variability and disturbances, 

and vi) provide optimal operating conditions and fouling mitigation actions that are feasible 

in the long term operation. This ideal solution allows to automate optimal decisions regarding 

fouling mitigation in preheat trains considering all interactions, synergies, trade offs, and 

dynamic effects over long periods of operations. These features are desirable from a practical 

perspective, but there is no a single platform or approach that is successful in all of them. 

Heat exchanger models used for this purpose can range from simple heat transfer 

calculations – LMTD – to complex CFD simulations. Each captures different time and length 

scales of the heat transfer process. Similarly, to model crude oil fouling, completely empirical 

models that ignore the effect of operating conditions have been proposed, as well as 

phenomenological models that accounts for the effects of interfacial mass transfer, particle 

diameter, and crude composition. In the context of providing optimization based solutions to 

the problem of crude oil fouling, it is necessary to find the right balance between model 
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complexity and model accuracy so they are suitable for optimization purposes – this is 

understood as models that can be solved in a reasonable computational time with standard 

computational power – and their solution represents the actual behaviour observed. Hence, 

modelling approaches such as CFD for the flow distribution inside heat exchangers, or 

molecular dynamics for the force interactions that lead to crude deposition are very 

challenging to include in a deterministic optimization framework, although they can provide 

great details on the local phenomena. 

On the other side of the spectrum, optimization based approaches that have been used 

for the operation and cleaning scheduling of preheat trains typically rely on simplified models 

whose accuracy is questionable. For instance, using completely empirical models for the 

deposition rate and linearized models for the heat exchangers define a MILP formulation that 

can be easily solved with current commercial solvers, but its solution may not reflect the 

economic benefits claimed or may even be infeasible. In that case, the predicted models used 

ignore the effect of operating conditions in various phenomena, and their applicability is 

restricted around a nominal operating point and short periods of operation (Diaby et al. 2012). 

More accurate and representative models for the heat exchangers and fouling can be included 

in the problem formulation, but the resulting optimization problem, an MINLP, may require 

alternative solution strategies –different from those used in commercially available solvers 

such as branch and bound or outer approximation. Nevertheless, those approaches have only 

considered one fouling mitigation option at a time so they either deal with the flow 

distribution problem, the cleaning scheduling problem, or the network retrofit problem. A 

holistic and comprehensive approach is better so that the synergies among the different 

fouling mitigation alternatives are exploited to maximize energy recovery. Here the challenge 

is to efficiently solve a mathematical programming problem that defines multiple fouling 

mitigation strategies – flow distribution, cleaning schedule, network retrofit – over long 

periods of operation for preheat trains under fouling using an accurate representation of the 

units and their interactions. 

An important aspect that is usually ignored during the optimization of the preheat train, 

is the variability of the operation. Most of the current optimization approaches assume 

constant operating conditions over long operating periods – from 1 to 5 years. In refineries 

the crude flow rates, crude blends, and operating conditions change dynamically at high 
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frequency, almost daily, reacting to changes in market conditions, demand, and availability 

of crude. This dynamic behaviour has an important effect on the efficiency and performance 

of the preheat train because changes in flow rates affect the deposition rates, and different 

blends have different fouling propensity. For example, refineries that process heavy crudes 

and that have a high yield of heavy products tends to be more efficient and have lower carbon 

emissions than those that process light crude because the unit operations are less energy 

intensive (Han et al. 2015). Also, changes in the crude blends processed can promote 

deposition, inhibit it, or contribute to removal of existing deposit (Wiehe and Kennedy 2000). 

Accounting for the effect of process variability and uncertainty enhance the optimal decisions 

regarding fouling mitigation in preheat trains because it improves the accuracy of the 

predictive model, and those actions react to the observed changes in the operation to 

maximize the energy recovery. 

This thesis aims to develop a deterministic optimization framework that overcomes the 

pitfalls faced by previous approaches. In this way, an accurate representation of the preheat 

train under fouling among various time scales is used to minimize the operating cost, 

considering dynamic flow distribution, cleaning scheduling, and network retrofit 

simultaneously, and under variable operating conditions. The time scales of the problem 

range from hours and days for the flow distribution, to months and years for the cleaning 

scheduling and network retrofit. Specific objectives of this work are: 

1. To develop accurate predictive models based on first principles that are suitable 

for optimising the operation, cleaning scheduling, and retrofit of HEN under 

fouling in off-line and on-line applications. 

2. To develop efficient algorithms and solution strategies for the large scale MINLP 

problems that arise from the formulation of the integrated – and individual – 

optimal control, cleaning scheduling, and/or retrofit problems of HEN under 

fouling. 

3. To develop an online fouling mitigation methodology able to optimally determine 

the HEN operation and its cleaning schedule, while updating the prediction models 

based on current and past data to monitor the operation, and ensuring closed loop 

stability. Note that because of the time scale of fouling which is a slow process, 
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what is defined as an online or real-time application in this case correspond to one 

with updates in the order of hours or days. 

4. To demonstrate the benefits and validate the application of optimization based 

fouling mitigation strategies using the models and algorithms developed in real 

refinery applications. 

This thesis focuses on crude oil fouling and its mitigation in the operation of the preheat 

train, although most of the contributions presented here can be extended to other types of 

fouling in heat transfer applications. For instance, fouling due to protein denaturation and 

aggregation is a major problem in milk pasteurization processes, and daily cleanings are 

necessary to maintain the desired operating conditions (Prakash, Kravchuk, and Deeth 2015; 

Georgiadis, Papageorgiou, and Macchietto 2000). Fouling is also an important source of 

inefficiencies in the power generation industry, cosmetic industry, food industry and in some 

chemical facilities (Chen et al. 2017; Laouini et al. 2014). Therefore, the findings presented 

in this thesis can be extrapolated to provide model based and optimization solutions to the 

fouling problem in those applications. 

1.2. Thesis structure 

Chapter 2 presents a literature review of modelling approaches for heat exchangers and 

fouling in crude oil preheat trains, the various formulation of optimization problems related 

to fouling mitigation, model simplifications, and solution strategies covering from heuristic 

approaches to deterministic optimization. 

In Chapter 3, a general and rigorous mathematical formulation for optimizing HEN 

under fouling is developed. It uses a radially distributed first principle model for the 

exchangers, and a semi empirical model for the deposition rate. Various time discretization 

approaches are proposed, and their performance evaluated. The main complicating factors of 

solving the associated MINLP optimization problem are identified, and the simultaneous 

optimal cleaning schedule and flow distribution is defined for realistic case studies under a 

wide range of operating conditions, constraints and limitations in the operation. 

The formulation developed is validated in Chapter 4 against a more rigorous and 

previously validated model of HEN under fouling. A set of case studies, including a total of 

37 exchangers, is used for validation under clean conditions and under dynamic operation. 
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In addition, a parameter estimation and model validation approaches are developed to 

determine the optimal set of parameters that make the two modelling approaches equivalent 

in terms of predicting the overall performance of the system. Finally, actual measurements 

from a refinery are used to validate the model developed, and to test the validation approach. 

In Chapter 5, an efficient solution strategy is presented for the large scale combinatorial 

MINLP problem associated with the optimal cleaning scheduling and flow distribution of 

HEN under fouling. The theoretical framework of a mathematical reformulation, its 

assumptions and limitations are presented. Several case studies are used to demonstrate the 

validity of the reformulation approach, its computational advantages and its impact on the 

economics of the process. 

In Chapter 6, the formulation presented is expanded to include retrofit decisions. Heat 

transfer area and network retrofit decisions are included in the problem formulation which 

make it more complex, but they are represented in a way that the solution strategy proposed 

in Chapter 5 is still effective. Its application to realistic case studies demonstrates the 

important trade-off and interactions among the three fouling mitigation alternatives 

considering capital cost in the operation of the network. 

Chapter 7 introduces process variability, uncertainty and disturbances in the 

optimization of preheat trains. It develops an online optimization approach based on two 

MHE/NMPC loops to cope with different time scales and fouling mitigation decisions 

occurring at those scales – flow distribution for short time scales, and integration of flow 

distribution and cleaning scheduling for long time scales. A realistic case study is used to 

demonstrate the advantages of this approach when the preheat train operates dynamically, 

under large disturbance in the inputs, and the prediction models are not perfect.  

Chapter 8 deals with the issue of closed loop scheduling stability which is a practical 

problem that arise in online implementations. In this chapter novel and general measurements 

to quantify closed loop schedule instability are developed, and alternative to reduce it without 

compromising the closed loop performance are evaluated. The trade-offs between closed 

loop performance – operational cost – and closed loop schedule stability are analysed in two 

realistic case studies, one under nominal operating conditions and other under variable and 

uncertain conditions. 
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Chapter 9 presents the main conclusions and findings of this thesis. It also presents 

recommendations and future directions of research. 

Table 1.1. Descriptions and abbreviations for the different solution strategies and cases 

considered in this thesis for HEN under fouling. 

Short 
notation(s) 

Description 

Optimization variables 

S
ch

ed
u

li
n

g
 

F
lo

w
 

co
n

tr
o

l 

N
et

w
o

rk
 

re
tr

o
fi

t 

A
re

a
 

re
tr

o
fi

t 

NM 
No mitigation. There are no cleanings and the flow in all parallel 

branches of the network is constant 
X X X X 

SCH 

Opt. Sch 

Opt. S 

Optimal cleaning scheduling. The only decision variables are those 

associated with the cleaning schedule (cleaning time and cleaning 

sequence). The flow distribution in the network is constant 

O X X X 

SP 

Opt. Sp 

Opt. C 

Optimal flow distribution. The only decision variables are the dynamic 

flow rates through the network. There are no cleanings. 
X O X X 

Seq. Opt 

Opt SCH  Sp 

Sequential optimization of the cleaning scheduling and dynamic flow 

distribution in the network. First the cleaning schedule is optimized 

with constant flow rates (constant at 50% for all parallel branches), and 

then the dynamic flow distribution is optimized for that cleaning 

schedule. 

O O X X 

Opt. Sp + Sch 

Opt. C + S 

Simultaneous optimization of the dynamic flow distribution and the 

cleaning schedule. 
O O X X 

HEN Retrofit 
Optimal network retrofit. Optimal allocation or removal of exchangers 

in a network without any fouling mitigation actions. 
X X O X 

HEN Retrofit + 

SCH 

Optimal network retrofit and fouling mitigation. Optimal allocation or 

removal of exchangers in a network considering optimal cleanings and 

optimal dynamic flow distribution in the time horizon. 

O O O X 

HEN-HTA 

Retrofit 

Optimal network and heat exchanger area retrofit. Optimal allocation 

or removal of exchangers in a network, and retrofit of their heat 

transfer area without any fouling mitigation actions. 

X X O O 

HEN-HTA 

Retrofit + SCH 

Optimal network and heat exchanger area retrofit and fouling 

mitigation. Optimal allocation or removal of exchangers in a network, 

and retrofit of their heat transfer area considering optimal cleanings and 

optimal dynamic flow distribution in the time horizon. 

O O O O 

Δ -X 

Suffix applied to the short notation of other solution strategies to 

indicate that the crude oil flow is pressure driven through the parallel 

branches of the network.  

X = {NM, SCH, SP, SP+SCH} 

- - - - 

One of the key aspects of this thesis is the integration of multiple decisions levels under 

the same framework, so that in many instances and for various cases, problems of optimal 

control, scheduling, retrofit and different combinations of them are solved for HEN under 

fouling. Table 1.1 presents a summary of abbreviations and descriptions used extensively in 

various chapters, which aim to facilitate the understanding of the combinations and solution 
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strategies considered. The reader is referred to this table when solution strategies are 

compared to demonstrate the advantages of integrating multiple decision levels. 

The appendices of this thesis contain supporting information for a better understanding 

of the discussion and developments presented here. They present in detail all case studies and 

their operating conditions, the fundamental equations of a distributed model for shell and 

tube heat exchangers, and a heuristic algorithm developed for the online cleaning schedule 

of HEN under fouling. 

Finally, throughout this thesis many optimization problems are solved, either NLPs or 

MINLPs, and their computational time is reported in order to compare different approaches 

or algorithms. All optimization problems are modelled in Python using the Pyomo 

environment (Hart, Watson, and Woodruff 2011) and solved in an Intel Core i7 computer, 

3.40 GHz, 16.0 GB RAM. Also, all the NLPs are solved using IPOPT, an interior point 

algorithm (Wächter and Biegler 2006). 
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Chapter 2  

 

Optimizing preheat trains under fouling: a 

review 

This chapter presents a review of model based optimization solutions for fouling 

mitigation in preheat trains. It reviews the models, assumptions, and solution strategies of the 

optimization problem of preheat trains under fouling considered as fouling mitigation 

alternatives: flow distribution in the network, cleaning scheduling, and network retrofit. In 

this review, gaps in the literature and important areas that require improvement are identified 

which set the fundamental drivers and motivation for this thesis. 

2.1. Introduction 

The aim of this literature review is to provide an overview of the current modelling 

approaches for HEN under fouling and on how they have been used to optimize their 

operation. The optimization problems reviewed here focus on the optimal definition of 

fouling mitigation action such as flow distribution, cleaning scheduling, and network retrofit. 

This review identifies various optimization opportunities in the operation of refinery preheat 

trains, their numerical difficulties, solution approaches, and their potential impact on the 

operation of the system. 

It is well known that there are other approaches than mathematical optimization that 

are useful to define fouling mitigation approaches, or to design heat exchangers or HEN 

considering fouling. The TEMA standards provide practical guidelines for the design and 

operation of heat exchanger, and include heuristics related to fouling (TEMA 2007). The 

TEMA guidelines have been used for a long time in industry and offer a practical approach 

for operating and designing shell and tube heat exchangers, although when fouling is 

considered it is in the way of safety factors or oversizing of the units. Also, pinch technology 
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has proven to be very useful for HEN synthesis and retrofit, as it provides a systematic 

methodology based on thermodynamic principles to maximize energy savings (Flower and 

Linnhoff 1980; Kemp 2006). Pinch technology has been used to design and retrofit heat 

exchangers and networks including fouling propensity minimization as an additional goal to 

energy recovery maximization (Brodowicz and Markowski 2003; Markowski 2000). These 

alternatives are useful for practical purposes. They provide relatively quick diagnostics of 

the system and solutions, but they rely on many assumptions limiting their applicability to 

more realistic and dynamic scenarios. For these reasons, alternatives different from 

mathematical programming for defining fouling mitigation strategies are not reviewed 

further in this thesis. The limitations of those alternatives can be overcome with a more 

rigorous model based approach for the problem, hence mathematical programming 

approaches are preferred. 

This review does not cover in detail the nature, mechanisms and causes of crude oil 

fouling. The reader is referred to specialised books and reviews on that subject (Deshannvar 

et al. 2010; Coletti et al. 2015; Epstein 1983; Bott 1995; Macchietto et al. 2011; Müller-

Steinhagen 2011; Bennett 2012; Watkinson and Wilson 1997; Coletti, Crittenden, and 

Macchietto 2015). A more comprehensive description of fundamental models developed for 

crude oil fouling, their assumptions, and phenomena captured can also be found in other 

sources (Wang et al. 2015; Wilson, Polley, and Pugh 2005; Wilson, Ishiyama, and Polley 

2017; Diaz-Bejarano, Coletti, and Macchietto 2017; Diaz-Bejarano et al. 2017).  

2.2. Problem definition and challenges 

The core problem addressed in this thesis is fouling in refinery preheat trains, its 

economic consequences, and how to optimally define mitigation actions using first principle 

models. Figure 2.1 shows a simplified representation of a preheat train, and illustrates its 

three main sections: cold end, intermediate section, and hot end. It has been reported that 

exchangers in the cold end exhibit minimum to no fouling because of the low wall 

temperatures (Muller-Steinhagen 2000), while severe fouling is commonly observed in the 

intermediate section and in the hot end. Fouling in the intermediate section is characterized 

by the deposition of inorganic material, and that in the hot end by organic material (Muller-

Steinhagen 2000; Mozdianfard and Behranvand 2015). The hot end usually exhibits the 
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highest levels of fouling characterized by decomposition of organic material and chemical 

reactions. The high wall temperatures in this section promotes a faster deposition than that in 

other sections of the preheat train – usually the hot streams in the hot end correspond to the 

residue of the CDU or to the bottoms of the vacuum distillation unit which are the products 

with the highest temperature. Because of this, most of the operational problems and 

difficulties are observed in this section. Also, the hot end recovers the largest fraction of the 

energy of the CDU products so fouling mitigation actions here are advantageous and have 

great potential to reduce operational costs. 

 

Figure 2.1. General (simplified) representation of a refinery preheat train. 

Fouling mitigation actions commonly performed in the preheat train, their advantages 

and disadvantages are summarized in Table 2.1. In practice, these fouling mitigation actions 

are defined in a reactive manner. After observing a significant decrease in the preheat train 

performance, or after reaching operational limits such as the firing limit of the furnace or the 

pressure drop limit of the network some actions are taken immediately to move the system 

to better operating conditions. Most of these decisions are often based on heuristics, 

engineering knowledge of the specific refinery, or simplified calculations. However, not all 

alternatives can be defined in a reactive manner. For example, surface coating or heat transfer 

enhancement modifications require long planning times and are implemented during 

turnarounds – proactive fouling mitigation. A purely reactive approach to fouling – for 

instance regarding the cleaning decisions – is risky as it eclipses the economic benefits of the 
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mitigation strategies and in the long term it can produce large economic losses when 

operational limits are reached, and production rates must be reduced. A proactive approach 

that considered the current and future implications and impacts of mitigation actions will be 

beneficial for the overall operation. 

Table 2.1. Fouling mitigation actions commonly performed in HEN. 

Fouling 

mitigation 
Description Advantages Disadvantages 

1.Antifoulant 

agents 

Chemical additives 

added directly to the 

crude to prevent 

fouling. 

Prevent agglomeration of 

large particles, inhibits 

fouling reactions, or act as 

chain terminator agent (Bott 

1990; Müller-Steinhagen, 

Malayeri, and Watkinson 

2011). 

Costly, need to be constantly 

restored, effective only for a 

short time (Coletti et al. 2015). 

2.Surface 

treatment 

Inhibits fouling by 

altering the interaction 

forces between surface 

and fluid. 

Prevent fouling from 

occurring altering its 

mechanism (Banerjee, 

Pangule, and Kane 2011) 

Costly, do not prevent fouling in 

the long term, its effectiveness 

deteriorates over time. 

3.Chemical 

cleaning 

actions 

Use of detergents, 

dispersers, basic 

solutions or acid 

solution to remove the 

deposit layer. 

Performed in place and on-

line in a short time 

Difficult matching between 

cleaning agent and deposit type, 

no guarantee of complete 

removal (Müller-Steinhagen, 

Malayeri, and Watkinson 2011). 

4.Mechanical 

cleaning 

actions 

Use of water jets, 

projectiles, drilling, 

blasting and high 

pressure water to 

remove the deposit 

Highly effective, almost 

complete removal 

Off-line, unit out of service, 

long maintenance time (Müller-

Steinhagen, Malayeri, and 

Watkinson 2011; Muller-

Steinhagen 2000). 

5.Heat 

transfer 

enhancement 

Heat transfer 

maximization by 

modifying the flow 

pattern – helicoidal 

baffles, tube inserts, 

twisted tube.  

Increase of heat transfer and 

shear stress promoting 

deposit removal 

(Somerscales and Bergles 

1997).. 

Increase in pressure drop, 

capital investment (Master, 

Chunangad, and Pushpanathan 

2003; Pahlavanzadeh, Nasr, and 

Mozaffari 2007). 

6.Flow 

velocity 

control 

Dynamic control of 

flow distribution and 

velocity using bypasses 

and parallel branches. 

Promote deposit removal 

(Rodriguez and Smith 2007; 

Wang, Zhan, and Feng 

2015). 

Complex interactions in large 

networks hinder its application 

7.Network 

retrofit 

Adding or removing 

exchangers in a 

network, or changing 

their connectivity. 

Cheaper than purchasing 

new units, increase of heat 

transfer. 

May promote faster fouling, or 

lower heat transfer in the long 

term (Ishiyama et al. 2013; Pan, 

Bulatov, and Smith 2016) 

Accurate predictive models for the operation of preheat trains under fouling have a 

great potential to improve the performance of the system by defining proactive fouling 
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mitigation approaches. When mitigation actions are defined in advance and their benefits 

quantified properly, a long term feasible and profitable operation of the preheat train is more 

likely without the need of drastic reactive measures to recover the system performance. 

For some of the fouling mitigation alternatives, (1,2,3) described in Table 2.1, it is 

challenging to predict their effectiveness, their interaction across the system and to quantify 

their potential benefits. This hinders the use of predictive models for smart decision making 

and proactive fouling mitigation. To quantify the effectiveness of antifoulant agents (1) and 

coated surfaces (2) it is necessary a deep understanding of the chemical reactions causing 

crude oil fouling, the interaction forces among the particles, the crude composition and how 

it changes dynamically. Including these features in a high level techno-economic model of a 

complete preheat train is not practical considering that these mitigation alternatives are 

expensive, their effectiveness last for short periods, and the mechanistic models are poorly 

understood (Gomes da Cruz et al. 2015). In the case of chemical cleanings (3), similar 

features, in addition to a detail characterization of the deposit, are required to quantify their 

performance and cost. Although models for chemical cleanings have been developed 

(Lanchas-Fuentes et al. 2016), they have not been validated and rely on empirical factors; 

hence the insights obtained through them can be inaccurate. For these reasons, these three 

fouling mitigation alternatives are not reviewed further and are excluded from the mitigation 

actions that can be defined proactively using a predictive model.  

The fouling mitigation alternatives that have been optimized using predictive models 

are: time and allocation of mechanical cleaning, flow control in a network to modify the flow 

velocity, network retrofit options, and using heat transfer enhancement technology. Only the 

first three alternatives are considered in this thesis and reviewed further from the point of 

view of optimal fouling mitigation. Heat transfer enhancement decisions – which exchanger 

to retrofit with a certain technology – have been studied, and optimization methods have been 

used for that purpose, although their application is limited to a single type of technology, 

HiTRAN®, and a rather simple modification of the shear stress and heat transfer coefficient 

is used (Pan, Bulatov, and Smith 2016, 2013b; Wang and Smith 2013). It is also unclear how 

different technologies affect fouling rates at different time scales or in a wide range of 

operating conditions. Therefore, this approach is limited to certain technologies and 
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applications, thus defying the purpose of this thesis to have a general modelling and 

optimization framework for preheat trains under fouling. 

Finally, a single fouling mitigation alternative may not be enough to guarantee a 

feasible and profitable operation of the preheat train. The interactions among the various 

mitigation alternatives, the operating conditions of the system, and variability of the crude 

processed are important to maximize energy recovery. Mathematical programming offers a 

robust framework to optimize the cleaning schedule, the flow distribution, and retrofit 

decisions of preheat trains under fouling, although the size of the problem and number of 

possibilities may be a limitation for its application. The rest of this chapter reviews modelling 

approaches for preheat trains under fouling that have been used to optimally define these 

three fouling mitigation actions, the solution strategies employed, their assumptions and 

limitations. 

2.3. Optimization alternatives for preheat trains under fouling 

This section revises and classifies optimization approaches and formulations, based on 

the fouling mitigation strategy they use to minimize the operating cost or maximize the 

energy recovery of preheat trains. Mathematical programming has been used to individually 

define: i) the flow distribution in the preheat train, ii) the cleaning schedule of the network, 

and iii) network retrofit alternatives. The models and assumptions used in these formulations 

are different as they serve different purposes, although they share a common goal of mitigate 

the effects of fouling and reduce the operating cost. Table 2.2 presents a summary and 

comparison of key contributions in these areas. The contributions are classified according to 

the fouling mitigation alternative used to optimize the preheat train operation, and this defines 

the nature of the optimization problem. The preheat train optimization can be formulated as 

an NLP when flow or velocity distributions – continuous variables – are considered, and as 

a MINLP or MILP when cleaning or retrofit decisions – integer variables – are included to 

mitigate fouling. Therefore, the complexity of the optimization problem is dictated by the 

decision variables defining the fouling mitigation strategies. 
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Table 2.2. Mathematical programming applications on fouling mitigation alternatives 

Reference 
Fouling mitigation 

alternative 

HEX 

model* 
Fouling model+ Key assumptions 

Decision 

variables 
Objective 

Problem 

classification 

(Rodriguez and 

Smith 2007) 
Flow velocity P-NTU 

Semi-empirical 

threshold model 

Thin layer 

No variability 

No pressure drop 

Bypass fraction 

per HEX 

Total operating 

cost 
NLP 

(Assis et al. 2013) Flow velocity P-NTU Constant  

No dynamics 

Steady state 

No pressure constraints 

Flow in parallel 

branches 
CIT NLP 

(Wang, Zhan, and 

Feng 2015) 
Flow velocity P-NTU 

Semi-empirical 

threshold model 

Thin layer 

No variability 

Pumping power 

New pumps 
Annual total cost NLP 

(Assis et al. 2015) Flow velocity P-NTU 
Semi-empirical 

threshold model 

No variability 

No pressure constraints 

Flow in parallel 

branches 
Utilities cost NLP 

(Georgiadis, 

Papageorgiou, and 

Macchietto 2000) 

Cleaning schedule LMTD 
Empirical linear 

model 

Linearized models 

Constant  

No pressure drop 

Cleaning time 

HEX to clean 

Total operating 

cost 
MILP 

(Lavaja and 

Bagajewicz 2004, 

2005a, 2005b) 

Cleaning schedule LMTD 
Empirical linear 

model 

Linearized models 

Constant  
HEX to clean 

Total operating 

cost 
MILP 

(Ishiyama, Paterson, 

and Wilson 2011) 
Cleaning schedule LMTD 

Empirical linear 

model 

Constant  

No pressure drop 

Cyclic operation 

Thin layer 

Cleaning cycle 

time 

Total operating 

cost 
MINLP 

(Pogiatzis, Wilson, 

and Vassiliadis 

2012) 

Cleaning schedule LMTD 
Empirical linear 

model 

Constant  

No pressure drop 

Single HEX 

Cleaning times 

Number of 

cleanings 

Total operating 

cost 
MINLP 

(Pan, Bulatov, and 

Smith 2013a, 

2013b) 

Retrofit LMTD 

Semi-empirical 

threshold model 

or no fouling 

Linearized models 

No variability 

No pressure drop 

HTA retrofit 

Network retrofit 

Tube inserts 

Total cost MILP 

*P-NTU: number of transfer units and P effectiveness. LMTD: model based on = ( )( ) to calculate duties and temperatures 
+ Empirical models define the fouling resistance as an explicit function of time, = ( ).  

   Threshold models define the rate of change of the fouling resistance as function of the deposition and removal rates, = −  
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The first optimization alternative aims to define the flow distribution in parallel 

branches, velocities in the exchangers, and potential bypass flow rates. It uses lumped 

models, simple representations of the deposit, and ignores the variability of the operation. 

These optimization problems are relatively easy to solve with respect to the other optimal 

fouling mitigation problems. There are cases where the optimal flow distribution and optimal 

cleaning scheduling have been integrated, such as those of Rodriguez and Smith (2007); and 

Tian, Wang, and Feng (2016) where the bypass flows or the velocity of the cold stream in 

each exchanger are defined simultaneously with the cleaning scheduling of the preheat train. 

The second optimization alternative aims to define the cleaning schedule of a HEN, 

and it includes the starting time of the cleanings, the allocation of the cleanings to units, and, 

in some cases, the type of cleaning. This is a challenging MINLP problem because of the 

large number of feasible solutions and the nonlinearities present in the model. Here, it is 

common to find approaches that simplify the predictive models – linearizing the heat transfer 

models and using empirical linear fouling models – so that the optimization problem can be 

solved with commercial tools. These simplifications compromise the accuracy of the models 

and the validity of the solutions achieved with them. 

The optimal cleaning scheduling problem of HEN has been widely research and there 

are several approaches to solve this problem which range from simple reactive heuristics to 

deterministic optimization algorithms. This is reviewed in detail in Section 2.5 because these 

approaches differ significantly in their modelling assumptions and solution strategies.  

The research on the final optimization alternative – optimal retrofit – is not as abundant 

as that in the other fields. The work of Pan, Bulatov, and Smith (2013a, 2013b), Table 2.2, 

deals with the optimal heat transfer area retrofit of exchangers under fouling in a preheat 

train. The optimization variables in that case are continuous and define the additional area 

required in certain units, but they proposed a separate algorithm – iterative MILP – to 

optimally define network modifications such as the introduction of new exchangers or new 

connections in the network at steady state conditions. Mathematical programming methods 

have not been used extensively to optimize these retrofit decisions for preheat trains under 

fouling. However, they have been used in retrofit problems at steady state conditions ignoring 

fouling (Ciric and Floudas 1989; Yee and Grossmann 1991). Also, there are alternative 

methods to mathematical programming for the retrofit of HEN without fouling. Those 
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methods can be based on pinch analysis (Lal et al. 2018) or on heuristic algorithms that 

consider the improvement in energy recovery (Walmsley et al. 2018). Despite the extensive 

research on HEN retrofit, there is still a need to include the effects of fouling, fouling 

mitigation, and system dynamics. The benefits of a retrofit option can be diminished by 

higher deposition rates, constrained operating points, and higher energy cost in the long term. 

Current optimal retrofit approaches maximizing steady state energy recovery without 

considering fouling have serious limitations. An increase of the heat transfer area or of the 

heat transfer rate in a given network will increase the fouling rates because the wall 

temperature increases, hence the deposition rate increases and the performance of the 

retrofitted network decays much faster than that of the original network (Bott 1990). The 

same pattern is observed when heuristics, such as match the hottest stream with the cold 

stream at its hottest point, or retrofit approaches based on pinch analysis are used (Bott 1990). 

Even allowing for extra area at the design stage to prepare for future effects of fouling is not 

a good approach, as the higher wall temperatures reached increases the fouling rate. 

Improvements in energy recovery using these retrofit approaches are most likely observed 

during the initial operation of the retrofitted network, and then fouling effects overtake those 

benefits. On the other hand, an optimal retrofit approach that considers fouling may not 

maximize the energy recovered at steady state, but it will maximize the overall energy 

recovered during the whole operation of the network. Considering fouling, and fouling 

mitigation alternatives at the retrofit level is important to ensure that the retrofitted network 

operates at its maximum efficiency possible over long times. 

The fouling mitigation alternatives discussed in this section have typically been 

considered independently. The interactions among various mitigation actions have been 

ignored so the potential to exploit synergies among them has not been considered. These 

alternatives are usually considered in a sequential manner, first the network retrofit, then the 

cleaning scheduling for the resulting network, and finally the flow distribution optimization, 

hence important information about the interactions is lost in this process.  

2.4. Problem formulation and modelling considerations 

While the previous section reviewed the instances in which mathematical programming 

has been used to tackle the problem of fouling in preheat trains, this section reviews the 
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models used to represent the operation of the heat exchangers, networks, and fouling 

phenomena. These models are an important component of the mathematical optimization 

formulation. An accurate and realistic representation of the preheat train operation is 

paramount to ensure the real benefits and potential of fouling mitigation actions, and to assess 

the performance of the system. 

 

Figure 2.2. Schematic representation of the modelling approaches for shell and tube heat 

exchangers 

There are many models for describing the operation of shell and tube heat exchanger 

covering a wide range of applications, and each captures in more detail than the others a 

specific part of the problem. The models can be classified according to their complexity or 

amount of information provided about the operation of a unit, and this is summarized in the 

scheme of Figure 2.2. Only first principle models are considered here because of their 

prediction and extrapolation capabilities, while data driven model are ignored. The first kind 

of models are simple macroscopic models based on the overall energy balance around the 

exchanger to estimate the outlet temperate of the streams. Then, there are the models that 

define an overall efficiency term (e.g. P-NTU) lumping all the phenomena that occurs inside 

the unit in a single term (Thulukkanam 2013; Hewitt, Shires, and Bott 1994). The next kind 

of models arise from the combination of various lumped models in a given arrangement such 

that the exchanger is divided in interconnected cells or compartments, and an efficiency term 

is defined for each (Varbanov, Klemeš, and Friedler 2011). If instead of defining a discrete 

partition of the exchanger, a continuous domain is used, the resulting model is distributed in 

the axial and/or radial direction of the exchanger. These distributed models do not need to 

define an efficiency term as they consider the local heat transfer phenomena explicitly 

(Coletti and Macchietto 2011). The last kind of models are those based on CFD that consider 
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in detail the hydrodynamics and heat transfer in all domains of the exchanger and provide a 

more realistic representation of the problem. 

Table 2.3. Applications of shell and tube heat exchanger models 

 Macroscopic 

energy 

balance 

Lumped 

models 

(NTU) 

Cell models 
Distributed 

models 

CFD 

models 

Duty calculations O O O O O 

Control X O O O X 

Data reconciliation O O O O X 

Optimal cleaning scheduling X O ~ X X 

Identify flow patterns  X X ~ ~ O 

Hydraulic design X X X ~ O 

Fouling diagnostic X ~ ~ O ~ 

Fouling monitoring O O O O X 

Unit retrofit X ~ ~ O O 

Network retrofit X O O O X 

O: the model has been used successfully for the application 
X: the model cannot be used for the application because it cannot predict the relevant variables 
~: the model can be used for the application with limited prediction capabilities 

Each of the previous models have been used in different applications, and do not aim 

to solve the same problem, nor a single model can be used to solve all possible problems in 

heat transfer applications. Table 2.3 summarizes some key applications or problems in the 

operation of heat exchangers and their networks. Simple macroscopic models are useful for 

quick calculations of the heat duty in energy integration, but they do not provide any other 

practical information for the operation of the system. Lumped models are the most commonly 

used in different applications including control, cleaning scheduling of networks under 

fouling (Diaby et al. 2012; Wilson, Ishiyama, and Polley 2017; Assis et al. 2015; Lemos et 

al. 2015), and retrofit of the network or exchangers (Wang and Smith 2013; Pan, Bulatov, 

and Smith 2016). Similarly, cell or compartment models can be used for the same 

applications as lumped models, although poor understanding on how to define the 

compartments of a unit hinder their application. The compartmental approach gives insights 

about the state of the variables inside the unit, and distributions along the axial direction – it 

serves to identify areas of high fouling limiting the operation – but is subject to the accuracy 

of each individual model and the definition of the compartments. On the other hand, 

distributed models do not require to define arbitrary divisions in the unit to capture the spatial 

variability of the key variables (Diaz-Bejarano, Coletti, and Macchietto 2016;Coletti and 

Macchietto 2011). They define continuous domains that are representative for each region of 
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the exchanger – tube, wall, shell, deposit – although the representation of the shell side is 

rather simple and do not consider the actual flow patterns. Finally, CFD approaches give a 

detailed representation of the flow patterns in the tube and shell sides, but to couple them 

with fouling models is a complex task that demands high computational power. 

There are two other modelling approaches that could be used to represent the operation 

of heat exchangers, but they have not been explored in sufficient detail. In the first category 

are surrogate models. These models are simplified representations of a more complex model 

or an approximation of experimental data that still capture the effect of the inputs on the 

outputs of the model within a range of validity. For example, a surface response can be a 

surrogate model of CFD model of an exchanger which is developed using the information of 

multiple runs. This modelling approach has been used for the design of heat exchangers in 

other applications different from refining (Wansaseub, Pholdee, and Bureerat 2017; Qian et 

al. 2005). In the second category are hybrid models. These models integrate first principle 

modelling with data driven models. The data driven part is usually employed to represent a 

complex phenomenon for which experimental data is available or for which a different 

approach, such as CFD or molecular dynamics, is the correct way to represent it. This 

modelling approach has been used to represent the fouling state of a single heat exchanger, 

while macroscopic energy balance characterized its performance (Navvab Kashani et al. 

2012). 

Similar to heat exchanger models, there also have been many models developed for 

crude oil fouling. The simplest modelling approach consist of defining the fouling resistance 

as an explicit function of time. These models are empirical models fitted from experimental 

or plant data and mainly used for quick engineering calculations on the field (Scarborough et 

al. 1979; Yong Wang et al. 2015). On the contrary, deterministic models for fouling try to 

capture the mechanistic driving forces of the phenomena such as mass transfer and molecular 

forces. However, this is a complex task because the large number of components present in 

the crude can deposit at different rates following different mechanism. Salts, asphaltenes and 

heavy component in the crude can deposit because of corrosion, chemical reactions, thermal 

decomposition, precipitation or adhesion (Wilson, Polley, and Pugh 2005; Paterson and Fryer 

1988). The lack of understanding of crude oil fouling mechanisms and the poor prediction 
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capabilities of deterministic models have hindered their application at a refinery level 

operation (Yong Wang et al. 2015; Alimohammadi, Zendehboudi, and James 2019). 

Semi-empirical models for the deposition or fouling rate have been proposed to 

overcome the disadvantages of the previous two models – completely empirical or 

completely deterministic – so that they can provide meaningful insights about the operation 

and fouling mitigation of the preheat train. Threshold models are semi-empirical models that 

try to encompass all the parameters and effects leading to fouling in a simple and practical 

expression. The fouling rate is a function of two competing mechanism, deposition and 

suppression or removal. Although there are many variations of the threshold fouling model, 

in general the deposition rate is a function of the Reynolds and Prandtl numbers, the 

temperature effect is captured in an Arrhenius expression, and the removal or suppression 

rate is function of the shear rate (Wilson, Polley, and Pugh 2005). Good compilations of 

threshold fouling models, their different assumptions, and simplifications can be found in 

(Wilson, Ishiyama, and Polley 2017; Wang et al. 2015). The main advantage of this type of 

models is that they capture the effect of the operational variables on the deposition rate, and 

after they are fitted against experimental or plant data, their predictions can be sufficiently 

accurate to assess the preheat train performance and the effect of mitigation actions. 

Additional approaches to model crude oil fouling are: a) data driven models and neural 

networks, which may have good prediction capabilities but lack to capture the physical 

meaning of the operation and cannot be extrapolated to other exchangers (Aminian and 

Shahhosseini 2009; Kashani et al. 2012); b) molecular models, which give insights to 

distinguish among different fouling mechanism and the interactions between the foulant and 

the surface. However, this approach requires significant computational effort, limiting its 

applicability to model complete heat exchangers (Müller-Steinhagen 2011; Puhakka, 

Riihimäki, and Keiski 2007); and c) CFD models where the fouling layer is modelled either 

as a very viscous fluid, a moving interface, or as particles disperse in a fluid that interact with 

a surface (Yang et al. 2015; Emani, Ramasamy, and Shaari 2019; Gounder and Emani 2017). 

These models are not suitable for optimizing the operation of preheat trains and to decide on 

optimal mitigation actions because they require a large computational effort to solve or they 

cannot be generalized in terms of heat exchangers configurations and range of operating 

conditions. 
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Table 2.4. Review of heat exchanger and fouling models used in preheat train operation 

Reference(s) 
HEX 

model* 
Fouling model 

Hydraulic 

effects 
Variability Purpose and use Special considerations 

(Georgiadis, Papageorgiou, 

and Macchietto 2000) 
LMTD 

Empirical lineal 

model 

Critical deposit 

thickness 
Constant conditions Optimal cleaning schedule 

Pseudo steady state 

Constant   

(Smaïli, Vassiliadis, and 

Wilson 2001) 
NTU-ε 

Empirical lineal and 

asymptotic models 
Pressure drop Constant conditions Cleaning scheduling 

Pseudo steady state 

Constant   

Heuristic algorithm for cleanings 

(Lavaja and Bagajewicz 

2004, 2005a, 2005b) 
LMTD 

Empirical lineal and 

asymptotic models 
None Constant conditions Optimal cleaning schedule 

Pseudo steady state 

Constant   

Linearization of all models 

(Ishiyama, Paterson, and 

Wilson 2009; Ishiyama et 

al. 2010) 

NTU-ε 
Semi-empirical 

threshold model 
Pressure drop Constant conditions 

Cleaning schedule 

Control 

Pseudo steady state 

Constant   

Thin layer assumption 

Heuristic algorithm for cleanings 

(Coletti and Macchietto 

2011; Diaz-Bejarano, 

Coletti, and Macchietto 

2016) 

Distributed 

Local semi-

empirical threshold 

model 

Local pressure 

drop 

Variable input 

streams condition§ 

Constant conditions 

Conditioned cleaning 

Performance assessment 

Retrofit 

Diagnostic 

Dynamic model 

Moving boundary condition 

Large PDAE system 

(Assis et al. 2015) P-NTU 
Semi-empirical 

threshold model 
None Constant conditions 

Optimal flow and velocity 

distribution 

Pseudo steady state 

Constant   

Thin layer assumption 

(Trafczynski et al. 2016) Cell NTU-ε Data driven None 

Noise and variable 

input streams 

conditions 

Regulatory control 
Pseudo steady state 

Constant   

(Emani, Ramasamy, and 

Shaari 2019) 
CFD Discrete particles  

Full hydraulic 

profiles 
Constant conditions Performance assessment 

Dynamic model 

Model of inter particle forces 

Short operation time 

(Ismaili et al. 2019) LMTD 
Empirical 

asymptotic model 
None 

Variable input 

streams conditions 
Optimal cleaning schedule 

Stochastic optimization 

Pseudo steady state 

Constant   

*P/ε -NTU: number of transfer units and P/ε effectiveness. LMTD: model based on = ( )( ) to calculate duties and temperatures.  
  Distributed: first principle models based on heat balances in axial and radial directions of the exchanger 
§ Variable conditions are only used for performance assessment and in all other situations constant conditions applied 
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Table 2.4 summarizes key contributions on modelling shell and tube heat exchanger 

integrated with crude oil fouling and their uses. The models used cover a wide range of 

approaches to represent the heat transfer and fouling phenomena, but models of different 

complexity are used for different purposes. The simplest models – only a few algebraic 

equations – are used to optimize the cleaning schedule of preheat trains and in some cases 

those models are linearized to simplify even further the optimization problem, so that it can 

be solved with commercial MINLP/MILP solvers and algorithms. Such models have also 

been used for control and optimal flow distribution in HEN, but their limitations are 

recognized and other approaches that represented better the heat transfer – distributed or 

compartment models – offer more accurate representations.  

The process variability arising from changes in the input stream conditions have been 

ignored in the modelling approaches and in the optimization of preheat trains. The distributed 

model proposed in Coletti and Macchietto (2011); and Diaz-Bejarano, Coletti, and 

Macchietto (2016) has been tuned with actual variable plant data, and used to assess the 

performance of preheat trains under dynamic operating conditions. However, it has not been 

employed to optimally define fouling mitigation actions. On the other hand, Ismaili et al. 

(2019) consider the effect that the variability in the input streams has on the expected 

operating cost and on the optimal cleaning schedule, although each scenario of the 

optimization formulation assumes constant conditions over time. The large scale and many 

combinatorial alternatives of the MINLP formulation lead to big assumptions and 

simplifications on the fouling and heat exchanger models that make the solution less 

representative of the actual performance of the system. 

The main aspects of the optimal fouling mitigation problems in preheat trains that have 

not been widely research and have a significant impact on the process performance are: i) the 

use of accurate and detailed models in the formulation and solution of the optimization 

problem, and ii) accounting for the effects of variable operating conditions on the optimal 

fouling mitigation actions and network performance. For the first aspect, the main challenge 

is to solve large scale MINLP problem where the model representing the preheat train may 

include a large number of nonlinear constraints, differential equations and discontinuities. 

Whereas the second aspect is a practical problem related to ways to include variability and 
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uncertainty in a deterministic optimization formulation while allowing the process to react 

and adapt to changing conditions. 

2.5. Mathematical considerations and solution strategies 

Optimal fouling mitigation actions in crude preheat trains have been addressed using 

mathematical programming. The flow distribution problem in large networks has been 

formulated as an NLP which, despite its large scale, can be easily solved with current 

commercial solvers. On the other hand, cleaning scheduling and network retrofit problems 

have been formulated as MINLPs with large number of binary decisions and nonlinearities 

which hinder their solution with current strategies – branch and bound, outer approximation. 

This section reviews the solution strategies and algorithms that have been applied to solve: 

1) the optimal cleaning scheduling problem, 2) the optimal network retrofit problem, and 3) 

the optimal integration of control and scheduling decisions in general applications. 

The main decision variables of the optimal cleaning scheduling problem are the starting 

time of the cleanings – continuous decisions – and the assignment of cleanings to exchanges 

– binary decisions. The large number of binary variables – there are many exchangers (10 – 

30) in a preheat train and it operates for long periods (2 – 6 years) – defines a combinatorial 

problem which makes it impossible to evaluate all feasible schedules. Also, different 

schedules can have the same or very similar objective function values introducing degeneracy 

and multiplicity in the solution (Lavaja and Bagajewicz 2005a; Georgiadis, Papageorgiou, 

and Macchietto 2000). Another complicating factor is the presence of discontinuities and 

disjunctions that arise from the cleaning decisions that model the state of the exchangers, and 

the nonlinear models representing their operation. To address these difficulties heuristic 

algorithms, stochastic optimization algorithms, and algorithms based on deterministic 

optimization have been proposed. 

Table 2.5 summarizes the evolution of different approaches and algorithms developed 

to solve the optimal cleaning scheduling problem of HEN. All formulate the optimization 

problem as an MINLP or MILP, but their assumptions and solution strategies are different. 

Those formulations that use simplified models – linear models for the exchanger and 

empirical fouling models – and ignore the effect of operating conditions are often solved to 

optimality using standard MILP solvers, or an outer approximation / equality relaxation 
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algorithm implemented in the solver DICOPT in the case of MINLP problems. These 

problems are solved to local optimality without major computational effort, although they 

representation of the problem is not accurate and oversimplified. In addition, the nonlinear 

representation of the problem are usually nonconvex – the heat exchanger models and heat 

transfer correlations are nonconvex – and the solvers used assumes nonconvexity so that the 

solution found is only locally optimal. Using global optimization algorithms such as BARON 

or ANTIGONE has not been explored for this MINLP instances, but it is expected that 

because of the large size of the problem the computational time required to find a solution 

will be a limitation. Despite their limitations, global optimization algorithms can still be used 

to find good feasible solutions to bound the objective function. On the other hand, 

formulations that use more realistic models – threshold fouling models and nonlinear 

representations of the exchangers – cannot be solved to optimality with standard MINLP 

solvers because a prohibitively large computational time is required. In these cases global 

optimization solvers are not an option. To solve those problems either stochastic optimization 

algorithms or heuristic algorithms are used. The stochastic algorithms rely on a partially 

random or pseudo random search that does not guarantee optimality. Also, these algorithms 

demand high computational effort as each new alternative or iteration requires a complete 

simulation of the system, which may be infeasible. 

The performance of stochastic optimization algorithms applied to the cleaning 

scheduling problem is not guaranteed. It has been shown that multiple stochastic algorithms 

– genetic algorithms, particle swarm optimization, simulated annealing – provide different 

solutions to the same cleaning scheduling problem (Rennard 2006; Deka and Datta 2017) 

and that their performance is extremely sensitive to the initialization of the problem (Tian, 

Wang, and Feng 2016). Also, different solutions to the same problem have been observed 

even under constant operating conditions and assuming perfect models. Since it is expected 

that the uncertainty in crude operation – due to varying conditions of input streams and 

properties of the crude or blends processed – will have a significant effect on the optimal 

fouling mitigation actions, a solution algorithm that increases the uncertainty and variability 

on the solution is detrimental to the operation. 
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Table 2.5. Review of solution strategies and formulation of the optimal cleaning scheduling problem of preheat trains 

Reference 
HEX / fouling 

models 
Formulation Time discretization Simplifications Solutions strategy 

(Georgiadis, 

Papageorgiou, and 

Macchietto 2000) 

LMTD / 

Empirical 

MINLP and 

MILP 
Fixed grid, 1 month step 

Linearization of models 

Simple exchanger models 

Constant conditions 

DICOPT for MINLP 

OSL for MILP 

(Smaïli, Vassiliadis, 

and Wilson 2001) 

LMTD / 

Empirical 
MINLP 

Fixed grid, 1 month step 

Periods divided in cleaning + operation 

Threshold cost for definition 

of cleanings 

 constant 

Moving window optimizing one 

period at the time  

(Smaïli, Vassiliadis, 

and Wilson 2002) 

LMTD / 

Empirical 
MINLP 

Fixed grid, 1 month step 

Periods divided in cleaning + operation 

Simple exchanger models 

 constant 
DICOPT 

(Lavaja and 

Bagajewicz 2004, 

2005a, 2005b) 

LMTD / 

Empirical 
MILP 

Fixed grid, 1 month step 

Periods divided in cleaning + operation 

 constant 

Linearization of models 

1) Deterministic + 

2) Moving window 

3) Heuristic sequential 

(Rodriguez and Smith 

2007) 

P-NTU / 

Threshold 
MINLP Fixed grid, 1 month step  constant Simulated annealing 

(Ishiyama et al. 2010) 
NTU- ε / 

Threshold 
MINLP 

Fixed grid, 1 month step 

Periods divided in cleaning + operation 
 constant 

Moving window 

Economic heuristic 

(Pogiatzis, Wilson, 

and Vassiliadis 2012) 

LMTD / 

Threshold 
MINLP 

Fixed grid, 1 month step 

Periods divided in cleaning + operation 
Cyclic operation DICOPT multiple initializations 

(Gonçalves et al. 

2014) 

NTU- ε / 

Empirical 
MINLP Fixed grid, 1 month step 

Sequential solution of model  

Simple  models 
Heuristic based on random search 

(Lemos et al. 2015) 
P-NTU / 

Empirical 
MILP Fixed grid, 0.25 month step 

Linearization of models 

 constant 

Solution of MILP in a moving 

window 

(Biyanto et al. 2016) 
LMTD / 

Empirical 
MINLP Fixed grid, 1 month step 

Max. one cleaning per HE 

 constant 

Stochastic algorithms: Genetic, 

Imperialist competitive, Duellist, 

Particle swarm 

(Diaby et al. 2016) 
NTU- ε / 

Threshold 
MINLP Continuous integration, 1 day step  constant 

Heuristic 

Conditional cleanings 

(Diaby, Miklavcic, 

and Addai-Mensah 

2016) 

NTU- ε / 

Threshold 
MINLP 

Double time grid for integer decisions 

1 month major step 

1 day minor step 

 constant Genetic algorithm 

(Ismaili et al. 2018) 
P-NTU / 

Empirical 

MINLP / 

MIOCP 
Multiperiod variable length 

 constant 

Relax and round up integer 

variables 

Multiperiod optimal bang-bang 

control 
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There are two types of heuristic algorithms that have been applied to solve the cleaning 

scheduling problem. The first type uses predictive models and an extensive search to evaluate 

potential benefits of cleanings, and define cleanings based on a threshold criteria over a 

moving window (Ishiyama et al. 2010; Diaby et al. 2016). The second type also uses a 

moving window to define the cleaning actions, but at each instance a deterministic 

optimization problem – MILP or MINLP – is solved (Lemos et al. 2015). This type of 

heuristics aims to reduce the problem size, but they are still based on simplified models 

assuming constant operating conditions  

Regardless of the solution approach adopted for the cleaning scheduling problem, all 

above references use a similar simplification to represent the time horizon. Most of the works 

reviewed use a fixed time step to discretize the operating horizon, and this is usually set as 

one month, although some divide the discretized time step in two, one for cleaning and other 

for normal operation. Using this coarse grid to integrate DAE models compromises the 

accuracy of the solution and completely ignores the dynamic effects and changes on shorter 

time scales. For instance, it is not possible to capture the variability of the flow rates and 

temperature of the input streams to the network, which occur on a time scale of days. Another 

limitation of this discretization approach is the pre-assignment of intervals or time instances 

at which cleanings are possible. This limits the number of possible cleaning schedules and 

restricts the starting time of the cleanings.  

In summary, to solve the cleaning scheduling problem of HEN either the prediction 

model is simplified and accuracy is lost, but the optimization is done with deterministic 

algorithms; or more representative models are used together with heuristics that does not 

guarantee optimality. Also, a better and more precise representation of the time horizon is 

needed to capture the fast dynamics in the system. 

In contrast to the optimal cleaning scheduling of HEN under fouling, the optimal 

retrofit problem including fouling has not received as much attention. True, the optimal 

synthesis and retrofit of HEN have been widely studied for a long time using mathematical 

programming approaches (Yee and Grossmann 1990; Papoulias and Grossmann 1983a, 

1983b; Floudas and Grossmann 1987), but they are based on steady state models that ignore 

the process dynamic and fouling. 
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Addressing the problem of HEN retrofit while including fouling mitigation alternatives 

in the optimization problem is challenging because of the dynamic effects, the many 

possibilities of network retrofits, and the large number of binary decisions involved. 

Regarding network retrofit – where to include a new heat exchanger, or which one to remove 

from the network – the most common approaches used are pinch technology methods, and 

mathematical programming. Pinch technology uses thermodynamic principles to compute 

the minimum heating and cooling duties in the network, and to identify in the enthalpy-

temperature space possible matches for the cold and hot streams (Tjoe and Linnhoff 1986). 

This approach has been used to identify possible streams splits and where to add new 

exchangers to an existing network (Lal et al. 2018; Li and Chang 2010), although it only 

considers the heat duty and area of the units without any more level of detail about the 

operation of the network. Mathematical programming approaches arise from the optimal 

HEN synthesis problem (Papoulias and Grossmann 1983a, 1983b), and define an MILP or 

MINLP problem to decide where to include additional heat exchangers. The retrofit problem 

is usually formulated using the stage-wise model of Yee and Grossmann (1990) and adapting 

it to fix certain units in the network while deciding where additional area is required and 

beneficial for the operation; or using a superstructure model for the network with all possible 

connections between existing and new exchangers (Floudas, Ciric, and Grossmann 1986; 

Ciric and Floudas 1989). These problems are usually solved using decomposition approaches 

based on an iterative solution of two subproblems: a MILP and an NLP. The stage-wise 

model is used for retrofitting in Liu, Luo, and Ma (2014) where the MINLP problem is solved 

using stochastic optimization algorithms, while the same problem is addressed by Angsutorn, 

Siemanond, and Chuvaree (2014) using a hybrid approach between pinch technology and 

mathematical programming. All these approaches for network retrofit assume steady state 

operation, fix inlet and outlet streams temperature, and ignore fouling. 

In some HEN retrofit applications fouling has been considered. Using detailed and 

distributed dynamic models (Coletti, Macchietto, and Polley 2011) or dynamic simulations 

with lumped models (Yeap et al. 2004, 2005), retrofit approaches and fouling have been 

simulated, although the network retrofit– modifying the network structure, or adding new 

units – is defined ad hoc or based on pinch technology analysis. These works proved that a 

retrofitted network maximizing energy recovery at steady state is not always the best 
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alternative for long time operation under fouling. However, the retrofit alternatives 

considered are few and limited to the criteria of the analyst, therefore optimization based 

solutions will be beneficial to explore all possible network retrofit alternatives and define the 

best structure with minimum operating cost over time. Optimization based approaches have 

been used to retrofit HEN considering fouling, but they are limited to the use of heat transfer 

enhancement technology (Pan, Bulatov, and Smith 2016; Wang and Smith 2013) and ignore 

possible network modifications. Even if fouling is considered within the HEN retrofit 

problem, the possibility of performing fouling mitigation actions, such as cleanings, is 

ignored at this decision level, and at best their effect is evaluated a-posteriori, after retrofitting 

the network (Ishiyama et al. 2013). This fails to capture the compromise between extra 

energy recovered, and operation cost due to fouling and frequent cleanings. 

The final group of solution strategies reviewed here is related to the integrated 

optimization of control and scheduling in general applications. This set of problems is 

important in the operation of preheat trains under fouling since there are two time scales 

involved: one for the fast dynamics associated with changes in the operation and optimization 

of the flow distribution of the network, and another for the slow dynamics of fouling and the 

long term effects of optimal cleanings. Also, this is a highly dynamic process prone to 

disturbances where the decisions at different time scales have important interactions. Some 

attempts to integrate these two levels of decisions have been performed for the refining 

application of interest. In Tian, Wang, and Feng (2016) and Rodriguez and Smith (2007) the 

velocity distribution and the bypass flow rates are simultaneously optimized with the 

cleaning schedule. However, the same coarse grid used for the scheduling problem is also 

used in the control problem, which limits the ability of the continuous manipulated variables 

to react faster to changes in the operation – they use a time step of one month, and it is not 

realistic to assume that the split fraction in parallel branches change once a month. Better 

integration approaches have been proposed in other applications and the optimal operation 

of preheat trains under fouling could benefit from them. 

There are two general philosophies for integrating scheduling and control decisions: i) 

a top-down approach where the scheduling formulation is attained and control elements 

included, and ii) a bottom-up approach where scheduling elements are included in the 

dynamics of the control problem (Baldea and Harjunkoski 2014). Inevitable in each approach 
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some key elements of control or scheduling are left out because of the complexity of the 

problem. 

Top-down approaches aim to include the dynamic representation and control of the 

system in the scheduling problem. The dynamic model of the system or PID controllers have 

been directly included in the formulation of the optimal scheduling problem and applied to a 

multiproduct CSTR and batch polymerization reactors (Nie et al. 2015; Flores-Tlacuahuac 

and Grossmann 2006). These approaches are equivalent to open loop control as they ignore 

the effect of feedback in the system. An alternative for closed-loop integration of control and 

scheduling following a top-down approach was proposed where the KKT conditions of an 

MPC controller are directly included in the optimal scheduling problem of a multiproduct 

batch reactor (Simkoff and Baldea 2019). However, the integrated problem is only solved 

once assuming perfect knowledge of the disturbances – product demand and prices. 

Bottom-up approaches aim to include the objectives of the scheduling problem in the 

control layer and the feedback control loops. The most common way of doing so is using an 

economic objective in (N)MPC control loop (Ellis and Christofides 2014; Subramanian, 

Rawlings, and Maravelias 2014). This formulation inherits the benefits of the control loops 

in handling large variability, uncertainties, and disturbances in a closed-loop, but it is usually 

limited to continuous decisions. It is a complex task to include integer decisions, which are 

characteristic of a scheduling problem, in a feedback control loop. To overcome this issue 

parametric MPC strategies (Pistikopoulos and Diangelakis 2016) or online rescheduling – 

solving a scheduling problem in a receding horizon or when large disturbances are observer 

– have been proposed (Dias and Ierapetritou 2016). More recently “grey box” optimization 

which combines first principle models with data driven models has been proposed for the 

integration of control elements at the scheduling layer (Dias and Ierapetritou 2020b, 2020a).  

Economic (N)MPC has been successfully used to integrate the operational optimization 

layer – real time optimization – and the advanced control layer in process operations, so it 

has great potential to also include decisions of the scheduling layer as the time scale divisions 

become less evident. Economic (N)MPC uses a general objective function defining the 

performance of the operation instead of the common tracking function of regulatory control 

applications, and it can include performance constraints – for instance, average concentration 

of the product or  total production (Rawlings, Angeli, and Bates 2012). Another advantage 
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of economic (N)MPC is that it optimizes dynamic trajectories of the variables and not steady 

state conditions, which can perform better for an operation that is dynamic and subjected to 

time varying disturbances (Ellis, Liu, and Christofides 2017). However, desirable properties 

of tracking (N)MPC formulations such as closed-loop stability and convergence cannot 

always be guaranteed with an economic oriented controller, and modifications of the 

formulation are needed – introducing, for example, terminal constraints, terminal costs, 

periodic constraints (Ellis and Durand 2014; Ellis, Durand, and Christofides 2016). 

From a control perspective, a dual loop control approach allows to integrate decisions 

over two-time scales and its principles can be applied on the integration of scheduling and 

control decisions. In this case, two time scales of the system are identified, control loops are 

designed for each one, and solved at their own frequency, although they interact to ensure 

consistency of the decisions (Kadam et al. 2003). Usually, the control loops are solved at 

asynchronous frequency to keep the division between the two time scales, and the outer layer 

correspond to a controller with economic objectives or a dynamic real time optimization 

procedure (Kadam et al. 2002). In some instances the two layers has been defined as 

economic (N)MPC controllers to maximize the close loop performance – economic profit – 

of the process over all time scales (Ellis, Liu, and Christofides 2017; Ellis and Christofides 

2014). The dual loop control approach is versatile enough that the control models of each 

layer can have different levels of complexity and do not need to have the same structure, 

although it can be desirable for consistency of the decisions, and they can potentially include 

binary decision variables (Marquardt 2002) – assuming that the computational time is not a 

limitation for their application. For these reasons, a dual control approach can potentially 

integrate scheduling and control decisions for dynamic system operating under high 

variability and disturbances, which is the case of HEN under fouling, although their 

application has been limited to process with only continuous decision variables. 

The interaction of control and scheduling has usually been ignored for fouling 

mitigation in HEN, but their integration becomes attractive when: i) the system is subject to 

large fluctuations so that the time scale of scheduling and control decisions overlap, and ii) 

the process is highly dynamic and prone to frequent disturbances. The operation of preheat 

trains have all these features, so the online integration of flow control and cleaning scheduling 

decisions should, in principle, improve the overall performance of the system (Shi, Chu, and 
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You 2015). Most alternatives that integrate control and scheduling decisions are done offline 

and are equivalent to operating the system in open loop, ignoring the variability of the system 

and the effect of disturbances. Although they may include PID (Chu and You 2012) or MPC 

controllers (Simkoff and Baldea 2019), disturbances are not considered explicitly. On the 

other hand, integration approaches that uses feedback to cope with the process variability 

cannot handle efficiently discrete decisions like those related to scheduling (Ellis and 

Christofides 2014; Subramanian, Rawlings, and Maravelias 2014). In the case of HEN under 

fouling Pitarch et al. 2017 have proposed an online approach to monitor and optimize the 

performance of an evaporation system considering the cleanings of the units. However, it is 

done sequentially as first the state of the system is estimated and its operation optimized, and 

then the cleaning cycle is defined for each individual unit without considering the interactions 

in the network. 

The integration of scheduling and control decisions at the same decision level has 

proven to be more efficient and better able to reduce the operational cost in various 

applications than the common sequential optimization and operation. However, most of the 

applications and case studies have involved small systems with a single multiproduct reactor 

or few units with multiple variable targets. Another simplification of these integration 

approaches is assuming a perfect knowledge of the variability and disturbances. The closed-

loop performance and online application of integrated scheduling and control have not been 

analysed. Finally, the optimal operation and fouling mitigation of crude preheat trains can 

benefit from the optimal integration of scheduling and control decisions as long as closed 

loop performance is considered, due to the large variability observed in the process. 

2.6. Concluding remarks 

Fouling mitigation is paramount for a reliable and profitable operation of crude preheat 

trains. There are many mitigation strategies, but among those the most studied and effective 

are cleaning periodically the exchangers, controlling the flow distribution in the network, and 

design retrofits. Mathematical models and optimization approaches have been used to 

individually define these three mitigation alternatives, although most of the progress and 

work have been focused on the optimal cleaning scheduling problem. Not much attention has 
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been directed to the optimization of the flow distribution, the optimal network retrofit, or the 

optimal integration of various mitigation actions. 

To efficiently determine optimal fouling mitigation actions in crude preheat trains, two 

elements are necessary: 1) an accurate predictive dynamic model of the network 

performance, and 2) an efficient solution approach. The most descriptive and detailed models 

of heat exchangers and fouling have proved to be accurate and useful to assess the 

performance of preheat trains, but their large scale hinder their use in optimization algorithms 

for real industrial applications. From a modelling perspective significant progress has been 

made to model heat exchangers and crude oil deposition. There is a vast range of models 

developed under different assumptions that capture different parts of the problem. However, 

the models used for optimization purposes have been restricted to lumped models coupled 

with empirical or semi-empirical models for fouling. These simplified models compromise 

the accuracy of the predictions and ignore the effect of important variables in the system. 

Despite the simplification of the models, the optimal cleaning scheduling problem and 

optimal retrofit problem are still challenging, and the use of heuristics and linearization of 

the models has typically been necessary to achieve feasible solutions and explore alternatives. 

Even though mathematical programming solutions have been proposed to optimize the 

operation and to define fouling mitigation strategies of crude preheat trains, there are key 

aspects that need to be addressed to achieve a better representation of the actual problem, or 

to improve the quality of the solution: 

1. The use of more accurate, descriptive and predictive models of fouling and heat 

transfer within the optimization– flow distribution, cleaning scheduling, retrofit – of 

preheat trains. 

2. The simultaneous optimization of multiple fouling mitigation actions to exploit their 

interactions and synergies. 

3. The time representation and discretization of the cleaning scheduling problem 

should be refined to consider the influence of fast dynamics and disturbances 

occurring at shorter time scales. 

4. Accounting for the effect of variability and uncertainty in the operation and 

optimization of preheat trains – variable input stream conditions and changes in the 

properties of crude oil. 
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5. Efficient algorithms to solve the deterministic optimization problem associated with 

the cleaning scheduling and/or retrofit of preheat trains under fouling when they are 

represented using rigorous models. 

6. Validation of the predictive models under the varying operating conditions observed 

in industrial preheat trains. 

7. A closed-loop implementation that optimally defines fouling mitigation actions – 

flow distribution and cleanings – considering the process variability. 

These aspects are addressed in this thesis. New modelling approaches, solution 

strategies, algorithms to integrate multi-scale decisions, and online practical applications are 

developed.  
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Chapter 3  

 

Optimizing preheat trains under fouling: 

general mathematical formulation 

This chapter presents the models developed to represent the elements of HEN, their 

interactions, and the heat transfer, mass transfer, and deposition phenomena. These models 

are used in the formulation of the optimal cleaning scheduling and flow distribution problem 

(MINLP) along with operational constrains. The generality and flexibility of the models, and 

the benefits of optimally integrating control and scheduling decisions, are demonstrated in 

small but realistic case studies covering a wide range of conditions observed in refining 

operations. In addition, an efficient representation of the logic disjunctions and time 

discretization is proposed to reduce the number of complicating variables of the problem. 

3.1. Introduction 

One of the objectives of this thesis is to develop predictive models that accurately 

capture the behaviour of HEN under fouling in refining applications with the purpose of 

optimising their operation. The predictive models should capture all important interactions 

of the system, including the main physical phenomena such as heat transfer, deposition, 

changes in the streams temperature, and in the pressure drop of the exchangers. These 

features represent the equality constraints of an optimization problem formulation. Also, 

these models should provide insights about the key performance indicators of the operation 

– energy consumption, total cost – and they should allow to quantify the effect and benefits 

of possible fouling mitigation actions such as cleaning units of the network. These key 

performance indicators are part of the objective function of the optimization problem. 

In this chapter a flexible and general mathematical model is introduced to represent the 

operation of HEN under fouling. It has the right balance between complexity and accurate 
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representation of the phenomena making it suitable for optimization purposes. The model is 

used to formulate and solve the optimal cleaning scheduling and flow distribution problem 

of HEN under fouling. Different formulations, time representations, and solutions strategies 

are evaluated and applied to realistic case studies. 

3.2. Model building blocks 

The model developed to represent heat exchangers is specific to shell and tube heat 

exchangers as they are the most commonly found in refinery preheat trains. The model 

considers the radial heat transfer and temperature distribution, and it includes a detailed 

representation of the deposit layer, but it does not consider axial effects. Instead, it only 

considers the average effects between inlet and outlet conditions of the exchanger to 

characterize the heat transfer, pressure drop, and their interactions with the deposition 

mechanisms.  

The following are the constituent equations and additional considerations of the model. 

3.2.1. Network representation 

The HEN is represented as a directed multigraph, in which each stream type or fluid 

corresponds to a graph, and the connections between two nodes defines an arc. The nodes of 

the network are: heat exchangers, sources, sinks, mixes, splitters, and furnace. Figure 3.1 

shows an example of a network that illustrates each node. The network used in this example 

has two stream types: crude oil and naphtha defining two directed graphs. All the nodes in 

the network are considered adiabatic except the furnace where additional heat is provided as 

fuel is burnt to increase the temperature of the crude oil stream before entering the CDU. All 

nodes satisfy mass and energy balances, and only in the heat exchanger nodes two graphs 

interact as heat is transferred from one stream to the other. 

To define the HEN model in a compact mathematical representation the following sets 

and indexes are used: 

• =  {1,2, … , }. Set of heat exchangers in the network. 

• = 1,2, … , . Set of splitters in the network. 

• = {1,2, … , }. Set of mixers in the network. 

• = {1,2, … , }. Set of source nodes 
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• = {1,2, … , }. Set of sink nodes 

• = ∪ ∪ ∪ ∪ . Set of all nodes in the network. 

• = {1,2, … , }. Set of stream types (e.g. crude, naphtha) in the network, where 

each type is a different fluid. 

• = {( , , )|∃( , , ) ∈  ×  × }. Set of arcs that define the connection 

between nodes for a given stream type. 

• = {1,2, … , }. Set representing time. It is represented as a sorted sequence of 

discrete points. Its structure can change depending on the way time is represented 

and on the discretization technique. This is discussed in more detail in Section 3.3. 

 

Figure 3.1. Representation of a HEN as a graph showing all the nodes and arcs. 

The arcs are defined in terms of the node of origin, node of destination, and stream 

type. A stream type refers to the fluid that flows through the network – single graph – and 

defines the physical properties of those streams. The physical properties of each stream are 

function of temperature, and a linear relation is used for the specific heat capacity, the 

density, and the thermal conductivity, while an exponential relation is used for the viscosity. 

These functions are fitted either from data or from more rigorous correlations depending on 

the case study. In most of the cases the crude oil and CDU product streams physical properties 

correlations are fitted from API relations (Riazi 2005). Appendix A presents the temperature 

dependent functions for calculating the physical properties of the fluids in refinery preheat 

trains, and the various sources from where data is acquired.  

HEX2

Crude

Naphtha

HEX1

Mx1 Sp1

Mx2

Sp2

So1

So2

Si2

Si1

Furnace

CIT COT

Mixers

Sources

Splitters

Sinks

Exchangers

Stream types



69 

The mass balances for all the nodes are defined in Eq. (3.1) – (3.2) , and the energy 

balances in Eq. (3.3) – (3.5). Note that the mass flow rate, and the inlet temperature of the 

source nodes are additional degrees of freedom, or they can be fixed depending on the 

scenario. Also, for the splitter nodes an additional constraint is imposed to ensure that the 

temperature of all outlet streams is the same.  

, , ,∈ |( , , )∈ = , , ,∈ |( , , )∈ , ∀ ∈ \{ ∪ }, ∈ , ∈  (3.1) 

, , ,∈ |( , , )∈ = , ∀ ∈ , ∈ , ∈  (3.2) 

, , , , , , ,∈ |( , , )∈ = , , , , , , ,∈ |( , , )∈ , ∀ ∈ { ∪ }, ∈ S, ∈  (3.3) 

, , ,∈ |( , , )∈ = , ∀ ∈ , ∈ , ∈  (3.4) 

, , ,∈ |( , , )∈ = , , , , ∀ ∈ , ∈ , ∈ , ∈ ( , , ) ∈  (3.5) 

The mass and energy balances assume steady state operation, although fouling is a 

dynamic process. The fouling rate is much slower than the heat transfer rate, so that a pseudo 

steady state assumption is valid. The time evolution of the system follows a series of steady 

states and the only dynamic behaviour is given by the deposition rate. While the time scale 

of the heat transfer is in the order of seconds – a fast process –, that of the deposition rate is 

in the order of days and months – a slow process. The energy balance for the heat exchanger 

is defined later in this section considering the interaction between two streams. 

Finally, the furnace is considered as an additional node in the network for which the 

mass balance is trivial, and the energy balance, Eq. (3.6), defines the furnace duty. The inlet 

temperature to the furnace – coil inlet temperature, CIT – varies because of fouling and 

operational changes in the network, but its outlet temperature – coil outlet temperature – is 

fixed based on the operation of the atmospheric distillation unit. The COT target is usually ~ 

350°C, but it is a controlled variable to ensure the quality and production targets of the 

refinery. Hence, to maintain a constant COT, the furnace duty must react to the changes in 

the CIT, and because of the performance decay of the heat exchanger due to fouling, the 

furnace duty increases as well as the operating cost of the network. 
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, , , , , , ,∈ |( , , )∈ = , + , , , , , , ,∈ |( , , )∈ ,
∀ = , ∈ S, ∈  

(3.6) 

3.2.2. Heat exchanger model 

The heat exchanger model adopted here is the P-NTU model for shell and tube 

exchangers (Thulukkanam 2013; Hewitt, Shires, and Bott 1994). It is based on the definition 

of the temperature effectiveness  to quantify the ratio of temperature change of the tube side 

with respect to that of the shell side. The effectiveness is a function of the flow patterns of 

the shell and tube side. The most common configuration is: counter current flow, single shell, 

multiple tube passes exchangers for which the effectiveness is defined by Eq. (3.7), where its 

dimensionless terms are defined in Eq. (3.8) for the number of transfer units, and Eq. (3.9) 

for the ratio of heat capacities. From this exchanger configuration others more complex can 

be built. Exchangers with multiple shell passes are modelled using two or more single shell 

pass exchanger with the appropriate connections for the streams. All the physical properties 

are temperature dependent, so for all calculations they are averaged between inlet and outlet 

conditions of the exchanger.  

, = 2 1 + , + 1 + , ⁄ 1 + exp − , 1 + , ⁄
1 − exp − , 1 + , ⁄ , ∀ ∈ , ∈  (3.7) 

, = , ( )
, , , ∀ ∈ , ∈  (3.8) 

, = , ,
, , , ∀ ∈ , ∈  (3.9) 

The number of transfer units (NTU) is a function of the overall heat transfer area, and 

of the overall heat transfer coefficient. The overall heat transfer coefficient, defined in Eq. 

(3.10), represents the inverse of the total resistance to heat transfer from the shell side to the 

tube side, and it includes the convective heat transfer coefficient of the tube side and of the 

shell side; the conductive heat transfer coefficient of the tube wall and of the deposit layer, 

and the fouling resistance. The convective heat transfer coefficient on the tube side is 

calculated using the McAdams correlation for convection in tubes in turbulent regime 

(McAdams 1954), and that on the shell side is calculated using the Bell-Delaware method 

(Bell 1963, 1981). The additional terms in Eq. (3.10) are correction factors so that all the heat 
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transfer resistances are defined with respect to the external area of the tubes of the exchanger, 

Eq. (3.11). 

1
, = 1ℎ , + 2 , + ,

1ℎ , + , , , ∀ ∈ , ∈  (3.10) 

= ( , ), ∀ ∈  (3.11) 

The main key performance indicators of heat exchangers are their duty, outlet streams 

temperature, and pressure drop. All of them are affected by fouling, so they change 

dynamically as material deposits over the surface. The first two performance indicators are 

estimated using the temperature effectiveness, Eq. (3.12) – Eq. (3.14), while the pressure 

drop is a function of the friction factor and the flow diameter. Only the changes in the tube 

side pressure drop due to fouling are considered in the model, while those of the shell side 

pressure drop are neglected. It is assumed that fouling only takes place inside the tubes of the 

exchangers because generally the fouling propensity of crude oil – which flows on the tube 

side most of the times – is much higher than that of heating streams which are products of 

the CDU. Crude distillation products have a low fouling propensity as much of the fouling 

agents – asphaltenes – deposit on the preheat train or are carried away in the bottoms of the 

column to the vacuum distillation unit (Coletti et al. 2015; Jones and Pujado 2006). As 

deposition takes place inside the tubes, the flow diameter decreases, and the surface 

roughness increases, which affects significantly the pressure drop and may compromise the 

feasibility of the operation. Eq. (3.15) defines the tube side pressure drop as a function of the 

Fanning friction factor, surface roughness, and tube length. Although crude oil deposition 

changes the surface roughness, it is assumed to be constant for simplicity and because it has 

been proven to reach an asymptotic level relatively fast, and its evolution to have a negligible 

effect on the overall performance of the unit (Coletti and Macchietto 2011).  

, = , , , , , − , , , ∀ ∈ , ∈  (3.12) 

, , = , , + , , , − , , , ∀ ∈ , ∈  (3.13) 

, , = , , − , , , , − , , , ∀ ∈ , ∈  (3.14) 

Δ , = ,2 ,
,

,
,
,

.
, , ∀ ∈ , ∈  (3.15) 
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In summary, this is a lumped model to predict the heat transfer and outlet conditions of 

each exchanger, and to have a complete representation of the preheat train it must be linked 

with a fouling model that considers the radial effects, and with a network model. 

3.2.3. Fouling model 

The deposition rate, and the deposit properties define the additional thermal resistance, 

the flow diameter, and their time evolution. Also, changes of the deposit structure due to long 

exposure to high temperature affect the heat transfer in the exchangers as they can change 

the nature and properties of the deposit such as its thermal conductivity. Ageing or coking is 

of interest in crude oil fouling, and it refers to the structural change of a fresh gel-like deposit, 

to an aged hard coke-like deposit that has a higher thermal conductivity and that is more 

difficult to remove from the surface (Ishiyama et al. 2010; Coletti et al. 2010). Figure 3.2 

shows a schematic representation of all the domains involved in the radial heat transfer. It 

shows the various resistances: shell side, tube wall, aged deposit, fresh deposit, and tube side, 

and the expected temperature profiles along the radial direction indicating the labels of the 

variables at the boundaries of the domains. These boundary temperatures can be calculated 

by solving explicitly an energy balance in the radial direction, assuming steady state – the 

fouling dynamics characterize the system evolution – and using the heat transfer coefficients 

of each section. 

 

Figure 3.2. Multi-layer representation for the heat transfer in the radial direction of a shell 

and tube heat exchanger. a) frontal view for a tube, b) representative temperature profile 

and notation. 
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Eq. (3.16) – Eq. (3.19) are the solution of steady state energy balances in the radial 

direction, used to calculate the temperature at the boundaries. They are function of the overall 

heat transfer coefficient, and of the thickness of each deposit layer or fouling resistance of 

the layer. Note that this energy balance is solved at the inlet and outlet conditions of the 

exchange assuming a counter current flow. In this model, it is assumed that the deposit is a 

discrete domain with two compartments that do not mix, one for the fresh deposit and other 

for the aged deposit as proposed by Ishiyama, Paterson, and Wilson (2010). In contrast to a 

continuous representation of the deposit in which its evolution and composition is defined at 

every point in the radial direction (Diaz-Bejarano, Coletti, and Macchietto 2018), the 

approach adopted here does not require additional differential equations to model the deposit; 

and it is still capable of predicting with reasonable accuracy the average effect of the deposit 

and its composition on the operation of the exchangers. The compactness of the model is a 

desired feature for optimization purposes.  

, , =
⎩⎪⎨
⎪⎧ , , + ,ℎ , , , − , , , =

  , , + ,ℎ , , , − , , , = ,   ∀ ∈ , ∈ , ∈ { , } (3.16) 

, , = , , + , , , , , − , , , =  , , + , , , , , − , , , = ,   ∀ ∈ , ∈ , ∈ { , } (3.17) 

, , = , , + , , , , , − , , , =  , , + , , , , , − , , , = ,   ∀ ∈ , ∈ , ∈ { , } (3.18) 

, , =
⎩⎪⎨
⎪⎧ , , + ,ℎ , , , , − , , , =

  , , + ,ℎ , , , , − , , , = ,   ∀ ∈ , ∈ , ∈ { , } (3.19) 

Fouling is a local phenomenon, and it is function of the local conditions at which the 

deposition or the changes in the deposit occur. The deposition of asphaltenes that generates 

the fresh layer of the deposit takes place at the thermal boundary layer between the tube side 

and the deposit surface. Hence, the deposition rate is function of the film temperature, which 

is calculated in Eq. (3.20) as a weighted average between the tube side temperature and the 

temperature at the boundary between the tube bulk and the deposit (Ebert and Panchal 1995). 

In the case of ageing or coking reactions that take place in the aged deposit layer, they are 

assumed to be function of the average temperature of that layer at the inlet and outlet 



74 

conditions of the exchanger, Eq. (3.21). The average temperature is calculated from the 

solution of the steady state temperature profile in the aged deposit layer.  

, , = , , + 0.55 , , − , , , =  , , + 0.55 , , − , , , = ,   ∀ ∈ , ∈ , ∈ { , } (3.20) 

, , = , , + , , − , , ,2 , + 1ln 1 − 2 , ,⁄ ,   ∀ ∈ , ∈ , ∈ { , } (3.21) 

The explicit solution of the radial temperature profiles and the definition of the thermal 

resistance considering the curvature effects is a novelty of this work. The thermal resistance 

of the deposit has been usually defined applying a thin layer assumption which restrict the 

application and validity of the model to small deposits ( ≪ ) (Ishiyama, Paterson, and 

Wilson 2010, 2014). Using a rigorous radial representation of the deposit allows to accurate 

represent the operation of exchanger with large obstructions of the tubes and high thermal 

resistances. 

The Ebert-Panchal model, Eq. (3.22), is used to characterize the deposition rate, and in 

this case it defines directly the total fouling resistance (Ebert and Panchal 1995). It is a semi 

empirical model that defines the deposition rate as the competition of the processes of 

deposition and removal. The deposition is function of the tube side Reynolds number, tube 

side Prandtl number, and of the film temperature following an Arrhenius expression, while 

the removal rate is assumed to be proportional to the shear stress. The film temperature is 

calculated at the inlet and outlet conditions of the exchanger, so each extreme has a different 

fouling rate. Because the heat exchanger model is lumped in the axial direction the effective 

fouling rate is defined as the average fouling rate between those calculated at the inlet and 

outlet conditions. 

, , = 〈 , . , . exp − ,
, − , , 〉 , ∀ ∈ , ∈  (3.22) 

The fouling model parameters: deposition constant ( ), removal constant ( ), and 

activation energy ( ) can be calculated based on experimental observation or on operational 

plant data and are adjustable tuning parameters. This model can be adapted to different 

applications depending on the conditions observed, while still being able to predict the effect 

of the process variables such as flow rates and temperature on the deposition rate. 
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There are other models in the literature for crude oil fouling beyond the Ebert-Panchal 

one. They can be of three types: completely empirical, semi empirical, or based on 

fundamental principles. The empirical ones are simple linear or exponential relations of the 

fouling resistance and time, they require a large data set, and do not capture the effect of the 

process variable on the deposition rate. The semi empirical models are usually variations of 

the Ebert-Panchal model with additional terms to consider the effect of geometry in more 

detail (Wilson, Polley, and Pugh 2005), different values for the exponents of the 

dimensionless number, or ignoring the removal rate (Wang et al. 2015). They present the 

same characteristics of the Ebert-Panchal model, although the number of tuning parameters 

may vary. The final type of models is based on the fundamental principles behind the 

deposition of asphaltenes and their attachment to the surfaces. These models consider mass 

transfer processes, and some may be as detail as to introduce molecular dynamic approaches 

(Yang et al. 2015; Bennett 2012). The main limitations of these models are the large number 

of parameters to determine (e.g. mass transfer coefficients), the still lack of understanding of 

crude oil fouling mechanisms, and their limited accuracy for predicting macroscopic effects 

of fouling in the operation of heat exchangers. Considering these features, and with the goal 

of developing a model suitable for optimization purposes the Ebert-Panchal model has a good 

compromise between prediction capabilities, and model complexity. 

To model the effects of deposit ageing or coking a first order kinetic approach is used, 

Eq. (3.23). Because the ageing rate changes from inlet to outlet conditions of the exchanger, 

the effective ageing rate is defined as the average rate between those conditions. It has been 

previously reported that a first order kinetics best represents the ageing process in crude oil 

fouling, but there is still a need to fit the model parameters using data (Ishiyama et al. 2010). 

The ageing model defines the age of the deposit using a “youth” variable which represents 

the mass fraction of fresh deposit in the overall deposit layer. Ageing changes the physical 

properties of the deposit affecting the total fouling resistance. The higher the coke fraction – 

low values of the “youth” variable – the higher the thermal conductivity of the deposit which 

can be wrongly interpreted as reduction in fouling as the deposit thickness is still increasing, 

and no deposit has been removed (Ishiyama, Paterson, and Wilson 2014). Not considering 

this in the predictive model may lead to wrong decisions, and even compromise the operation 

of a HEN by delaying cleaning actions and causing blockages of the tubes. For these reasons 
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it is important to consider the pressure drop caused by the flow diameter reduction in the 

performance analysis of the system. 

, = 〈− exp − , , 〉 , ∀ ∈ , ∈  (3.23) 

Using the “youth” variable the total deposit thickness, which affects the pressure drop, 

can be calculated as well as the individual fouling resistance of each layer. Eq. (3.24) – Eq. 

(3.28) are a set of implicit algebraic equations that define the individual layer and total 

thicknesses and fouling resistances. Each of the individual fouling resistance considers the 

radial effects of heat transfer, and their expressions are derived from solving an energy 

balance in the radial direction. This overcomes the thin layer assumption (Ishiyama, Paterson, 

and Wilson 2010) that restrict the application and accuracy of the model to situations with 

small deposits. In addition, Eq. (3.29) defines the free flow diameter which affects directly 

the tube side pressure drop. These set of variables are used as the key indicators of the 

performance decay of each heat exchanger. 

, = , − , ,
, − , , + , − , , , ∀ ∈ , ∈  (3.24) 

, = , + , , ∀ ∈ , ∈  (3.25) 

, , = 2 ln , − 2 ,
, − 2 , , ∀ ∈ , ∈  (3.26) 

, , = 2 ln ,
, − 2 , , ∀ ∈ , ∈  (3.27) 

, , = , , + , , , ∀ ∈ , ∈  (3.28) 

, = , − 2 , , ∀ ∈ , ∈  (3.29) 

Overall the fouling model consists of a set of differential algebraic equations that are 

linked to the model of a heat exchanger. The presence of differential equations requires the 

definition of consistent initial conditions for the problem, but they may vary depending on 

the case. For instance, the initial state of some networks may be cleaned so that = 0 and = 1, but for other cases some exchangers may exhibit some initial deposit. Also, 

differential equations add complexity to the problem because they need an appropriate 

discretization scheme, and the optimization decision variables become a function of time 
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(e.g. when to clean a unit). The time discretization alternatives and dynamic optimization are 

discussed later in the chapter. 

3.2.4. Operating mode disjunctions 

Two possible states are defined for a heat exchanger in a network: “operating” or 

“idle”. The idle state is defined as an exchanger taken out of operation for cleaning. These 

two states are associated with a logic variable , ∈ { , } ∀ ∈ , ∈  which 

is True (1) when the exchanger is idle or being cleaned, and False (0) when the exchanger is 

operating normally. Each of these states are associated with a set of equations defining the 

operation of the exchanger. For the operating state the models defined in Sections 3.2.2 and 

3.2.3 characterize the normal operation of the units, whereas for the idle state a new set of 

equations is required to model the behaviour of the network. 

To model the idle state of the heat exchangers bypass streams are included in the 

network representation so that the flow can be diverted when the unit is being cleaned while 

ensuring the complete connectivity of the network. Figure 3.3 shows the additional bypass 

streams for the tube and shell sides of a single heat exchanger which are included in the HEN 

representation. These streams are defined for all the units and are only active – mass flow 

rate greater than zero – when the unit is idle, otherwise there is no flow in those streams. 

Besides the bypass streams, splitters and mixers are introduced in the network representation 

around each exchanger – Figure 3.3b – to model correctly the switching of the flow streams 

between changes of state. These elements introduce more variables and constraints as each 

additional node must satisfy mass and energy balances, although they are simple linear 

constraints. 

 

Figure 3.3. Representation of a heat exchanger in a network (a), and the addition of bypass 

streams for idle state (b). 
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Considering the introduction of bypass streams and additional nodes around each 

exchanger, the disjunctions in Eq. (3.30) define the two possible states of each unit at every 

time. In the “operating” state the heat transfer, fouling, and pressure drop models are active 

and the bypass flow rates are zero, while in the “idle” state the bypass flow rates are equal to 

the inlet flow rates of the exchangers. Hence, in the idle state the actual inlet flow rates to the 

exchanger are zero, which leads to a trivial solution of the mass and energy balances – no 

heat transfer – and it forces the tube side pressure drop to be zero as it is proportional to the 

mass flux of the tube side. In addition, during the “idle” state there is no fouling nor ageing 

of the deposit. When the unit is back in the operating state after a cleaning, the exchanger is 

at cleaned conditions – no deposit, no ageing – or, depending on the effectiveness of the 

cleaning, it may still have a small deposit thickness. In this thesis, only mechanical cleanings 

that can completely remove the deposit are considered, although the modelling approach can 

easily incorporate other type of cleanings, such as chemical cleanings, that partially remove 

the deposit and have shorter cleaning times and lower cleaning cost. This assumption does 

not diminish the generality of the mathematical formulation. 

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡ ,, = 0Δ , = 0

, , = 0
, = 1
, = 0
, , > 0
,, > 0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎤

∨
⎣⎢
⎢⎢
⎢⎡ ¬ ,Eq. (3.7)  −  (3.15)Eq. (3.22)  −  (3.29)

, , = 0
,, = 0 ⎦⎥

⎥⎥
⎥⎤ , ∀ ∈ , ∈  (3.30) 

This set of logic disjunctions is introduced as constraints in the model. They are 

translated into equality constraints using a BigM reformulation, and the M parameter is 

chosen independently for each equation based on the variable bounds. The BigM formulation 

is preferred because of the linear nature of the additional constraints that facilities the 

converge of standard MINLP solution algorithms. Additional considerations, like 

introducing slack variables, are necessary in some of the nonlinear equations to avoid 

numerical inconsistencies such as divisions by zero when a unit is idle. 

To introduce the disjunctions into the mathematical model the logic variable ,  is 

replaced by the binary variable , ∈ {0,1} ∀ ∈ , ∈ . All the BigM constraints are 

defined with respect to this binary variable to indicate the state of each exchanger over time. 
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3.2.5. Operational constraints 

The main decision variables of the optimal operation and cleaning scheduling of HEN 

under fouling are: the flow rates of the network, continuous variables, and the timing and 

allocation of the cleaning actions, integer variables. The two types of variables are time 

dependent, and they have strong interactions. The flow rates of the network respond 

dynamically to maximize the energy recovery at each time instant, and when the state of the 

unit change – from idle to operating or vice versa – they also change. 

One of the main factors that make the cleaning scheduling problem complex and 

difficult to solve is the large number of binary variables – of the order  – that 

generates many feasible combinations and solutions with similar objective function values. 

Inequality constraints related to the binary variables and the structure of the cleaning schedule 

are introduced to reduce the size of the search space. For instance, Eq. (3.31) is a constraint 

that avoids consecutive cleanings of the same exchanger, which is well known to be an 

inefficient strategy, Eq. (3.32) is a constraint to fix the state of all exchanger at the end as 

operating because cleanings are not profitable towards the final time, Eq. (3.33) defines the 

maximum number of simultaneous cleanings, and Eq. (3.34) the maximum number of 

cleanings per unit over the operating time. In the case of heat exchangers with multiple shells, 

the various shells must be cleaned at the same time, and this is ensured using Eq. (3.35). 

Other scenarios involving simultaneous cleanings or exclusive cleanings are modelled with 

similar constraints, but they are case specific depending on the HEN, the requirements of the 

refinery, or the layout of the units in the plant. This set of constraints help to discard a priori 

cleaning schedules that are known to be non-optimal or infeasible.  

, + . ≤ 1, ∀ ∈ , ∈ \{1} (3.31) 

, = 0, ∀ ∈ , ∈ { } (3.32) 

,∈ ≤ , ∀ ∈  (3.33) 

,∈ ≤ , ∀ ∈  (3.34) 

, = , , ∀ ∈ ⊆ , ∈ ⊆ , ∈  (3.35) 

Besides the constraints related with the binary variables, the HEN is also constrained 

by the operating limits and capacity of the system. Common constraints of this type are: a 
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firing limit that indicates the maximum duty of the furnace, Eq. (3.36); the minimum and 

maximum throughput of the distillation column, Eq. (3.37); the minimum pressure, or 

maximum pressure drop, allowed at the end of the network based on the pumping capacity, 

Eq. (3.38). If the HEN has parallel branches, additional constraints are required to capture 

the correct operation of that specific section. The split fraction of the branches can be 

constrained, Eq. (3.39); and if the flow thought the branches is pressure driven, an equality 

constraint must ensure that the outlet pressure of each branch is balanced to avoid backflow, 

Eq. (3.40). These constraints represent possible operational limitation of HEN under fouling 

observed in real refineries, but they are case specific so that only some may apply. 

, ≤ , ∀ ∈  (3.36) 

≤ , , ,∈ |( , , )∈ ≤  , ∀ = , ∈ , ∈  (3.37) 

≤ , , ,∈ |( , , )∈ , ∀ = , ∈ , ∈  (3.38) 

, , ,∈ |( , , )∈ ≤ , , , ≤ , , ,∈ |( , , )∈ ,
∀ ∈ , ∈ , ∈ , ∈ |( , , ) ∈  

(3.39) 

Δ ,∈ ⊆ = Δ ,∈ ⊆ , ∀ ∈  (3.40) 

Most of the above operational constraints are linear equalities or inequalities that do 

not represent a significant increase in the complexity of the problem, instead they help to 

reduce its combinatorial nature. The only nonlinear operational constraint is the equality of 

pressure drop in parallel branches – the pressure drop calculation is a nonlinear expression – 

but it is only one additional nonlinear constraint among many others from the heat transfer 

and fouling models.  

3.2.6. Objective function 

The objective of optimizing the operation and cleaning scheduling of HEN under 

fouling is the maximization of the economic benefits: minimal operational cost, and 

maximum profit. The objective function is mathematically represented in Eq. (3.41). The 

operational costs are: cost of energy, cost of carbon emissions, and cost of cleanings, while 

the only source of profit is the production rate. The cost of energy is proportional to the 
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furnace duty, as well as the cost of carbon emissions. The cleaning cost is specific to each 

exchanger, and it may vary depending on the type of cleaning, location and size of the 

exchanger. Another possible operational cost is the electricity cost that arise from the power 

of pumps used to move the crude through the network. However, this cost is negligible 

compared to the others and it can be neglected (Coletti and Macchietto 2011a).  

= min + + , ,∈∈ −  (3.41) 

This objective function only considers the operational costs, and it ignores any capital 

cost. Capital cost should be included in the objective function if retrofit alternatives decisions 

are part of the optimization problem. This is discussed in Chapter 6 of this thesis. 

3.3. Time representation: discrete and continuous formulation 

The time representation is key for a successful integration of scheduling and control 

decision in the operation of HEN under fouling. The requirements of any time representation 

approach are: to represent accurately the differential equations of the model, and to be able 

to model scheduling decisions such as task assignment, task sequencing, and timing of the 

tasks. In addition, it should accurately capture the slow long-term dynamics – scheduling 

decisions – and fast dynamics – control decisions – of the process without additional 

complexity. The difficulty of finding a solution to the optimization problems addressed in 

this thesis comes from the number of binary variables which are indexed in time, so that a 

time representation that requires many discrete time instances increases the combinatorial 

aspect of the problem (Bassett, Pekny, and Reklaitis 1996). 

There are two alternatives for representing time and time events for the integrated 

scheduling and control problem of HEN: a discrete time formulation, and a continuous time 

formulation. Depending on the time discretization approach, the time related events are 

modelled differently, and it may be necessary to introduce additional binary variables and 

constraints. Figure 3.4 shows a schematic representation of the two discretization approaches. 

In both alternatives the time domain is divided in a fixed number of intervals. For the discrete 

approach the length of the intervals is set, while for the continuous one it is variable, and it 

is assumed to be global – the same for all the units. The specifications of the formulation, 

variables, and constraints associated with each discretization alternative are described in the 



82 

following sections. In addition, in this continuous time representation, the time events in a 

scheduling problem can be modelled based on the precedence of the task executed in the 

units – immediate precedence relationships or general precedence relationships – but this is 

not suitable for the HEN cleaning scheduling problem because they have limitations to model 

inventory constraints (Méndez et al. 2006). A HEN has a high level of connectivity among 

the nodes, they interact through the flow rates at every single point in time, and the mass and 

energy balances – inventory – must be satisfied. 

 

Figure 3.4. Time domain discretization for scheduling problems, adapted from (Pinto and 

Grossmann 1998). 

3.3.1. Discrete time approach 

Using the discrete time approach the time horizon is divided in  periods of equal 

length, Τ, defining a uniform grid. Then the set representing time is defined as ={1,2, … , }, which elements correspond to equally distributed fixed points in the time 

horizon. The fixed time grid of this approach limits the occurrence of time events to the 

discrete points specified, although an event can occur at more than one event point. The 

length of the periods should capture all relevant time dependent events of the scheduling 

problem, and it is usually defined as the greatest common factor of the characteristic time of 

the problem (Floudas and Lin 2004). In the cleaning schedule problem of HEN, the length of 

the periods is defined as the minimum factor of the cleaning times. For instance, if all the 

mechanical cleanings last 10 days, then this defines the length of the periods. However, 

shorter period lengths can be used for a more accurate representation of the time events – 

also in the case of units with different cleaning times – and integration of the differential 

equations. The more periods used to represent the time horizon, the larger the number of 

binary variables, making the optimization problem more challenging. 
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In this time representation, the binary variables of the problem, , , represent the 

starting time of the cleaning actions. Cleanings that last more than one discrete period are 

modelled by Eq. (3.42), where  is the fixed duration of the cleaning expressed in terms of 

number of periods. In this modelling approach all cleaning times must be a factor of the 

length of the period, Τ.  

, − 1 ≤ 1 − , , ∀ ∈ , ∈  (3.42) 

The differential equations of the model are discretized using a backward finite 

difference approach. They are transformed into a set of algebraic constraints given by Eq. 

(3.43) and Eq. (3.44). Here,  indicates a differential variable that could be the fouling 

resistance or the composition of the deposit in the fouling problem;  is a short notation 

for the right-hand side of the corresponding differential equation, and  is a slack variable 

which is active when the unit is idle and the differential equations of the model are not active. 

The accuracy of the integration of the set of equations depends on the value of Τ used in the 

discretization of the time horizon.  

= , ∀ ∈ {1} (3.43) − = Τ( ) + , ∀ ∈ \{1} (3.44) 

The discrete time representation of the scheduling problem allows an easy formulation 

of the scheduling decisions, although it has shortcomings such as the large number of binary 

variables required, and the inherit inaccuracy of the solution. 

3.3.2. Continuous time approach 

Using a continuous time representation the timing, sequence, and duration of events 

are represented by continuous variables, while the change of states are represented by binary 

variables (Floudas and Lin 2004). This reduces the number of binary variables needed in the 

model and provides more flexibility and accuracy to define the starting time of the cleaning 

actions. Comparing this representation with the discrete time one, it generates a better and 

more realistic abstraction of the problem, but the relaxation of the MINLP formulation is not 

as tight, which may compromise its solution (Sundaramoorthy and Maravelias 2011). 
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The continuous time representation used defines the events at global time points, so 

that all the units in the network share the same time scale and the mass and energy balances 

are satisfied at every time point. Continuous time representations in which the events are unit 

specific or defined based on the precedence of tasks are not suitable for the HEN cleaning 

scheduling problem because of the generality of the networks and the high level of 

connectivity among the nodes at all times, although they are can be advantageous for batch 

production scheduling problems (Mouret, Grossmann, and Pestiaux 2011; Méndez et al. 

2006). 

In this approach, the time horizon is divided in a fixed number of periods  of variable 

length Τ . The length of the period is an additional decision variable, but it is bounded 

between a minimum and maximum value. Including realistic bounds for the period length 

allows to retain the same solution accuracy through all the time horizon. In addition, each 

period is further discretized using orthogonal collocation in finite elements, and for all 

applications in this thesis a Radau scheme with three collocation points is used, although 

other discretization alternatives can be used (Biegler 2010). The internal points of the periods 

help to increase the accuracy of the integration of the differential equations. Considering this, 

the set representing time is defined as = (1,1), (1,2), … , ( , ) , where each pair 

element represent a point in the time horizon, and the first element of the pair correspond to 

the period, while the second to the discretization point within that period.  

Figure 3.5 shows a schematic representation of the continuous time discretization 

approach, and how each period is divided in discrete points to improve the accuracy with 

which the differential equations are integrated. Each period only has one state for each 

exchanger, so that changes in the state of the units are only allowed in the transition from one 

period to the other. Hence, the binary variables indicating the state of the units are only 

indexed in the number of periods and not in all the time points. This reduces significantly the 

number of binary variables as the periods are much fewer than the elements of the time set. 
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Figure 3.5. Representation of the time horizon using a continuous time approach 

The continuous time representation introduces additional variables to the problem 

formulation: ∀ ∈ 1,2, … ,  which is a binary variable indicating whether one or more 

units are at an idle state, and Τ ∀ ∈ 1,2, … ,  which is the length of each period. In 

addition, constraints to model correctly the time evolution, and time dependent events are 

required in this approach. For instance, Eq. (3.45) defines the cleaning time, Eq. (3.46) 

defines the lower and upper bounds for the length of each period depending on the states of 

the exchangers, Eq. (3.47) defines the actual time at the end of each period, and Eq. (3.48) is 

the constraint that ensure completion of the operation and reaching the final time. Note that 

the cleaning time is defined as the maximum cleaning time of the units, so that when two or 

more are cleaned simultaneously all of them are idle for their maximum cleaning time. The 

maximum expression used in this constraint is approximated using a smooth function based 

on the logarithm of the exponential of each element (log-sum-exp function), but for simpler 

cases, when the cleaning time of all units is the same or when there are no simultaneous 

cleanings, it can be expressed as a linear constraint. Hence, the cleaning time expression is 

defined accordingly to the specific case, and the constraint is simplified if possible. 

Τ , = max , ,  ∀ ∈ , ∀ ∈ 1,2, … ,  (3.45) 

Τ , + 1 − Τ ≤ Τ ≤ Τ , + 1 − Τ , ∀ ∈ 1,2, … ,  (3.46) 

= Τ , ∀ ∈ 1,2, … ,  (3.47) 

= , ∀ ∈  (3.48) 

≤ ,∈ ≤ , ∀ ∈ 1,2, … ,  (3.49) 

, ≤ , ∀ ∈ , ∈ 1,2, … ,  (3.50) 

Time

Period 1

Period 2
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These additional time constraints in the continuous time discretization approach are 

defined with respect to the new binary variable  because in this case is not possible to 

individually track the time evolution of the states of each unit. Eq. (3.49) and Eq. (3.50) 

represent the logic implications of the original binary variables, , , on the new one, , so 

that the cleanings are properly represented. 

The differential equations of the model are discretized for each period using a 

dimensionless time, and equality constraints are introduced to ensure continuity of the 

differential variables between consecutive periods. Eq. (3.51) represents the initial conditions 

of the problem, Eq. (3.52) represents the continuity condition of the differential variables 

between two periods, and Eq. (3.53) the discretization of the differential equations. Here,  

indicates any differential variable,  the right-hand side of the differential equations, ̅ 
is the dimensionless derivative of the variable which is approximated by orthogonal 

polynomials in finite elements, and  is a slack variable for when the units are idle and the 

differential constraints of the model are inactive. This discretization approach is applied to 

all differential equations in the model. 

( , ) = , ∀( , ) ∈ {(1,1)} (3.51) 

( , ) = ( , ) + , ∀ ∈ 2, … ,  (3.52) 

 ̅( , ) = Τ ( , ) + ( , ), ∀( , ) ∈ (1,2), … , ( , ) | > 1 (3.53) 

When the differential equations are discretized using a continuous time representation 

a bilinear term arises, the multiplication of the period length and the right-hand side of the 

differential equation. This introduces complexity into the problem because as the length of 

the period tends to zero, the problem becomes ill conditioned (Biegler 2010), but this is 

avoided including realistic bounds for the length of the period. 

3.3.3. Scalability and comparison of time representations 

So far, the formulation of the discrete and continuous time representations has been 

presented in the context of HEN under fouling and cleaning scheduling problem, also their 

advantages and disadvantages have been discussed. Now, a quantitative comparison of the 

scalability of the problem using each formulation is presented. 
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Consider a hypothetical HEN of 20 units to compare the scalability of the two 

discretization approaches. This number of units is sufficiently large to be representative of 

most academic examples and industrial applications. To enable a realistic scenario for the 

comparison some parameters of the operation are fixed: the maximum number of units that 

can be cleaned simultaneously is two, the time horizon is set as one year, the maximum 

number of cleanings per unit per year is two, and the cleaning time of each unit is 10 days. 

These parameters are used to estimate the feasible number of cleanings and structure of the 

cleaning schedule for different scenarios. 

Table 3.1. Scenarios to define problem size and scalability using the continuous time 

discretization 

Scenario 
Max. number 

of cleanings 

Simultaneous 

cleanings 
Sequence of network states 

Worst-case  No Operating > Cleanings > Operating 

Normal-case 1 No Operating > Cleanings > Operating 

Best-case 1 Yes Operating > Cleanings > Operating 

Three scenarios are defined based on the number of periods required to correctly 

capture the sequence of cleanings. In all the scenarios it is assumed that all the exchangers 

are cleaned the maximum number of times within the time horizon which is a worst-case 

assumption as there may exist exchangers in a network with low fouling rates that do not 

need to be cleaned at all. Table 3.1 summarizes the scenarios considered, and they are labelled 

according to the number of cleanings expected and periods required to define correctly that 

schedule. It is also assumed that there are no cleanings at the beginning of the operation, 

neither at the end.  

Figure 3.6 compares the number of periods or time events (a) and the number of binary 

variables (b) estimated for the stated problem. While the number of time events is constant 

in the discrete time approach, it increases linearly using a continuous time approach. Also, 

the complexity of the problem – measure as the number of binary variables – increases 

linearly for the discrete time approach, and quadratically for the continuous time approach. 

However, for most networks the number of periods and problem size is lower when the 

continuous time discretization is used than when the discrete one is used. For example, a 

network of 5 heat exchangers requires 105 binary variables for the “worst-case” scenario 
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with the continuous time discretization and 185 binary variables with the discrete time 

approach. There is a critical point in the number of units after which the discrete time 

approach may be favoured over the continuous one – specifically for the wort case scenario 

– but only under the conditions considered to define the three cases of the continuous time 

discretization. 

a) 

 

b) 

 

Figure 3.6. Problem size comparison and scalability for time discretization approaches. a) 

Number of time events, b) total number of integer variables. (CT: continuous time, DT: 

discrete time). 

The estimation of the problem size for the continuous time approach is based on the 

assumptions that all units are cleaned within the time horizon, and that there is an operating 

period between two cleaning periods. These assumptions are not general, and there are cases 

in practice where the fouling rate of exchangers is negligible or mitigated by shear stress 

alone and cleanings are not necessary; or other cases where consecutive or simultaneous 

cleanings of units are possible. In those cases, an optimal solution may require fewer periods. 

In addition, depending on the number of units, the number of periods of the continuous time 

approach have a wide range, so it is a good strategy to start solving the optimization problem 

with the lowest number of periods possible, and increase it systematically until there is no 

improvement in the objective function. This strategy avoids dealing with complex unsolvable 

problems in some situations. 

General purpose MINLP solvers can typically handle hundreds of variables and based 

on this scalability analysis it will be difficult to use them to solve to optimality problem with 

more than 3 units that have over 100 binary variables. In addition, in the problem formulation 

there are not many constraints among the binary variables increasing the number of feasible 
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combinations. Equality and inequality constraints on the decision variables are helpful when 

solving large scale MINLP problem because reduce the size of the search space – for instance 

in branch and bound approaches those constraints are essential to prune nodes because of 

feasibility. The computational time required for the sort of problems addressed in this thesis 

may become prohibitive, and for realistic applications more efficient solution are necessary. 

3.4. Optimal integration of cleaning scheduling and control 

The mathematical formulation introduced here for the optimal cleaning scheduling and 

control problem of HEN under fouling is tested with four case studies, and both time 

discretization approaches are compared. All the case studies used in this thesis are presented 

in detail in Appendix A, including all operating conditions and unit specifications, and those 

used in this chapter are: 1HE, 2HE-S, 2HE-B, and 4HE-S. For completeness, the network 

structure of each case is shown in Figure 3.7. These cases are small networks that range from 

one to four heat exchangers, but they include all the elements found in industrial preheat 

trains, such as interaction of the exchangers though the hot streams, parallel branches, mixers, 

and flow splitters, as well as commonly found operational constraints.  

a) 

 

b) 

 

c) 
 
 

 

d) 

 
Figure 3.7. HEN representation of the case studies of this chapter. a) Case 1HE, b) Case 

4HE-S, c) Case 2HE-S, d) Case 2HE-B. 

These networks are utilized for different purposes. First, cases 1HE, 2HE-S, and 2HE-

B are used to compare the efficiency of both time discretization approaches when the 

optimization problem is solved with standard MINLP solvers based on branch and bound 

algorithm. Second, case 4HE-S is used to illustrate the advantages of using a continuous time 
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formulation to optimize a partially pre-set cleaning schedule, which is not possible with a 

discrete time formulation (Section 3.4.2). Third, the fouling parameters, such as ageing rate, 

of case 1HE are modified to analyse their effect on the optimal cleaning schedule. This case 

study is also used to demonstrate the prediction capabilities of the model, and the phenomena 

it can capture (Section 3.4.3). Fourth, the operational conditions and limiting constraints of 

case 2HE-S are modified to analyse their effect on the optimal cleaning schedule (Section 

3.4.4). Finally, the synergies of simultaneously optimizing the flow distribution and the 

cleaning schedule are evaluated defining different instances of case “2HE-B” (Section 3.4.5). 

For all the optimization problems the same initialization procedure is followed and it 

is described in Appendix A. For those problems involving scheduling decisions, all the binary 

variables are initialized at 0.5, and the length of the periods is initialized with the same value 

for all assuming they are evenly distributed. 

3.4.1. Summary of problem formulation 

The overall optimal cleaning scheduling and flow distribution problem of HEN under 

fouling can be summarized in Eq. (3.54). It shows, in a short notation, all elements included 

in the problem formulation, and all the aspects of the operation considered. The time related 

constraints, number of binary variables, and disjunction formulation change depending on 

the type of time discretization approach used. This is a large scale nonconvex MINLP 

problem which is solved to local optimality in this case as only local solvers – sequential 

branch and bound – are used. The nonconvexities of the problem arise from the heat 

exchanger and fouling models, and from the integer nature of the decisions which define 

discontinuities in the search space. Global optimization solvers such as BARON or 

ANTIGONE have strong limitations to be applied in this case because of the large scale of 

the problem, and the large number of binary decision variables.  

min, , ,   −  . (3.41) 
. .  −  3.2.1  ℎ  −  3.2.2  −  3.2.3   −  3.2.4  −  3.2.5      −  3.3.1  3.3.2  

(3.54) 
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This mathematical formulation is general, and it applies to all case studies considering 

that there are constraints that are case specific and that the network connectivity and number 

of units dictates the set dimension, hence the size of the optimization problem. The decision 

variables for all cases are the timing and allocation of cleaning actions regardless of the time 

discretization approach, and additional control decision variables arise for those networks 

that have parallel branches. 

The constraints in the formulation are derived from the specifications of the case 

studies presented in Appendix A, and if some of them are modified, or parameters of the case 

study changed, it is mentioned explicitly during the analysis of the results in the following 

sections. 

3.4.2. Comparison of time discretization approaches 

The mathematical model and the optimal cleaning scheduling formulation presented in 

this chapter are used to compare the two discretization approaches: discrete (DT) and 

continuous (CT) for three case studies, 1HE, 2HE-S, and 2HE-B. The models implemented 

can predict all important variables of the performance of the network such as the CIT, furnace 

duty, and overall pressure drop; they can also predict those specific to each heat exchanger 

such as deposit thickness, temperature radial distribution, duty, and outlet temperatures. For 

the goal of this section of comparing the performance of two discretization approaches, the 

analysis is limited to the overall performance of the network and the computational resources 

required to find a solution. In the following sections various scenarios are analysed in which 

the individual performance variables of the exchangers are more relevant, and they show the 

broad prediction capabilities of the model. 

The optimal cleaning scheduling problem is solved for the three case studies, and Table 

3.2 presents the results for case 1HE, while Table 3.3 present those of cases 2HE-S and 2HE-

B. For each case the optimization problem is solved using the discrete time approach, and 

the continuous time approach with two different number of periods. These results include the 

problem size, computational load, optimal cost and profit of the operation, optimal cleaning 

schedule, and optimality gap. In addition to the optimal solution of each scenario, the no 

mitigation (NM) case is included – see Table 1.1. This scenario serves as a reference point 

to compare the potential benefits of optimizing the operation of a given HEN.   
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Table 3.2. Computational results and optimal solution of cleaning scheduling problem for 

case: 1HE 

Case 1HE 

Discretization* DT DT CT CT 

Mode ** NM SCH SCH SCH 

 + 37 37 5 10 

Continuous variables 1218 1218 702 1407 

Binary variables 0 37 10 20 

Equality constraints 992 992 565 1130 

Inequality constraints 2697 2697 1409 2819 

CPU time [min] 0.03 65.71 2.6 32.86 

Total energy [MW-h] 4.092x105 4.078x105 4.076x105 4.077x105 

Production profit [$] 6.617x108 6.617x108 6.617x108 6.617x108 

Fuel cost [$] 1.105x107 1.101x107 1.101x107 1.101x107 

Carbon cost [$] 1.866x106 1.859x106 1.859x106 1.859x106 

Cleaning cost [$] 0 30000 30000 30000 

Cleaning schedule 

(HEX#, time [days]) x 
None  (1, 180) (1, 182) (1, 180) 

Lower bound (cost) 1.123x107 1.123x107 1.122x107 1.122x107 

Upper bound (cost) 1.123x107 1.123x107 1.122x107 1.122x107 

Optimality gap [%] 0.00 0.00 0.00 0.00 

* DT: discrete time approach, CT: continuous time approach 
** NM: no mitigation operating mode (no cleanings considered), SCH: optimal cleaning 

scheduling problem solved 
+ Number of time steps for DT, and number of periods for CT 
x Cleaning time rounded to the closest integer value for the CT approach 
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Table 3.3. Computational results and optimal solution of cleaning scheduling problem for cases: 2HE-S and 2HE-B. 

Case 2HE-S 2HE-B 

Discretization* DT DT CT CT DT DT CT CT 

Mode ** NM SCH SCH SCH NM SCH SCH SCH 

 + 37 37 9 13 37 37 9 13 

Continuous variables 2284 2284 2362 3414 2740 2740 2794 4038 

Binary variables 0 74 27 39 0 74 27 39 

Equality constraints 1908 1908 1962 2834 2288 2288 2322 3354 

Inequality constraints 4824 4824 4517 6525 6040 6040 5669 8189 

CPU time [min] 0.08 3000.00 548.64 3000.00 0.12 3000.00 374.38 3000.00 

Total energy [MW-h] 3.873x105 3.804x105 3.800x105 3.801x105 3.982x105 3.914x105 3.910x105 3.910x105 

Production profit [$] 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 

Fuel cost [$] 1.046x107 1.027x107 1.026x107 1.026x107 1.075x107 1.057x107 1.056x107 1.056x107 

Carbon cost [$] 1.766x105 1.735x105 1.733x105 1.733x105 1.816x105 1.785x105 1.783x105 1.783x105 

Cleaning cost [$] 0 90000 90000 90000 0 90000 90000 90000 

Cleaning schedule 

(HEX#, time [days]) x 
None 

(2, 120) 

(1, 190) 

(2, 250) 

(2, 115) 

(1, 182) 

(2, 250) 

(2, 114) 

(1, 182) 

(2, 250) 

None 

(1, 80) 

(2, 180) 

(1, 270) 

(1, 88) 

(2, 180) 

(1, 278) 

(1, 80) 

(2, 172) 

(1, 261) 

Lower bound (cost) 1.063x107 1.033x107 1.052x107 1.039x107 1.093x107 1.067x107 1.083x107 1.074x107 

Upper bound (cost) 1.063x107 1.054x107 1.052x107 1.052x107 1.093x107 1.084x107 1.083x107 1.083x107 

Optimality gap [%] 0.00 2.02 0.00 1.29 0.00 1.57 0.00 0.83 

* DT: discrete time approach, CT: continuous time approach 
** NM: no mitigation operating mode (no cleanings considered), SCH: optimal cleaning scheduling problem solved 
+ Number of time steps for DT, and number of periods for CT 
x Cleaning time rounded to the closest integer value for the CT approach 
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In terms of problem size, the number of binary variables is lower in the continuous time 

representation than that in the discrete one. Reducing the number of binary variables while 

having the same representation of the problem is advantageous because it reduces the size of 

the search space. In these cases, the reduction of binary variables ranges from 47% to 73% 

depending on the case study, which reduces exponentially the number of possible schedules. 

On the other hand, the number of continuous variables and equality constraints are greater in 

the continuous time representation than those in the discrete time representation as there are 

unique variables and constraints related to the variable length of the periods, and because the 

inner discretization of each period introduces more variables to the problem. Most of the 

equality constraints are those related with the heat exchanger, fouling, and mass and energy 

balance models, while the inequality constraints represent operational limits. In the cleaning 

scheduling problem, there are few constraints among the binary decision variables – 

assignment of periods of no cleanings, no consecutive cleanings, simultaneous cleanings –  

which would be useful to reduce the search space and facilitate the solution, and they scale 

in the same way as the binary variables regardless of the time discretization approach. The 

number of continuous variables and constraints in the problem is not a limitation, and current 

NLP solvers can handle problems of these sizes and much larger ones efficiently. 

Under the same conditions the continuous time approach reaches an optimal solution 

much faster than the discrete time approach. The computational time is reduced by 84% - 

96% depending on the case study using the number of periods of the “worst-case” (Section 

3.3.3). When the number of periods of the continuous time approach is increased to 10 for 

the “1HE” case and to 13 for the others, a significant reduction in the computational load is 

still observed. For the “1HE” case the computational time is reduced by 50%, while for the 

other no optimal solution is found after 3000 min of computation, but the optimality gap is 

smaller – solution closer to optimality – using the continuous time representation than the 

discrete one. Besides these computational advantages of the continuous time approach, it 

improves the time resolution of the cleaning actions. While in the discrete time approach 

cleanings can only start at the discrete time intervals – every 10 days for these cases – in the 

continuous one they can start at any time with a resolution of hours. This improves the 

accuracy of the models as the duration of the cleanings may vary from one exchanger to 

another, and it provides more precise solutions and quantification of the operation costs than 
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in most previous approaches that use a discrete time approach with a resolution of one month 

(Rodriguez and Smith 2007; Gonçalves et al. 2014).  

There are no significant differences between the optimal solutions obtained with both 

time discretization approaches. The production profit and operating cost of all cases only 

differ by few thousands of dollars which is negligible based on the order of magnitude of the 

problem. Also, the differences in the starting time of the cleaning actions is lower than 10 

days in all cases, and this corresponds to the time resolution used in the discrete time 

approach. Figure 3.8 shows the optimal profiles for the CIT and the furnace duty of each case 

study solved with two discretization approaches including the two scenarios of the 

continuous time using different number of periods (CT-#N). The cleaning actions are 

observed as a sudden decrease in the CIT followed by a drastic increase; the opposite is 

observed in the furnace duty. Both variables are measurements of the network performance, 

but the duty is directly related to the operating cost. There are no observable differences in 

those profiles, only those introduce by the differences in starting cleaning time. Both 

alternatives predict the same number of cleanings for each exchanger of the networks, one 

for the “1HE” case, and three total cleanings for each of the other cases. During the cleanings 

the CT approach provides a better representation of the evolution of the network than the DT 

one because it captures what happens during the cleaning, although it is a short time. During 

long operating times the CT start losing accuracy in the integration of problem equations – 

see CT-5N for the 1HE case – but this is easily solved by increasing the number of periods 

and tightening the bounds used to define the period length. 

It is observed in Figure 3.8 that the optimal cleaning actions improve the performance 

of each network with respect to the NM case. In all cases, the CIT achieved in the optimal 

operation is greater than that of the NM scenario during most of the operating time, and the 

opposite is observed for the furnace duty. Despite the cleaning cost, and the temporary 

increase of the furnace duty during the cleanings, an optimal allocation and timing of 

cleanings in a network brings benefits to the operation and helps to mitigate fouling. For 

these cases of small networks, the savings achieved range from $12x103 - $110x103 and they 

can escalate rapidly for larger networks and longer operating times. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Figure 3.8. Optimal CIT (a, c, e) and furnace duty (b, d, f) profiles for the cleaning 

scheduling problem of cases: 1HE (a, b), 2HE-S (c, d), and 2HE-B (e, f). 

One important advantage of the continuous time discretization approach over the 

discrete time approach is that it can optimize partially defined cleaning schedules. Partially 

define or pre-set schedules arise, for example, from expert criteria or knowledge of plant 

engineers and constraints of the refinery based on long term planning and budgets. In these 

cases, an approach that can improve those decision is advantageous. Consider the case study 
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4HE-S, where based on external knowledge a partial cleaning schedule is set as follows: 

clean HEX2 and HEX3 twice, HEX2 must be clean immediately after HEX3; clean once all 

other exchangers; the cleaning sequence should be HEX3-HEX2-HEX4-HEX1. The 

continuous time approach can be used here considering those statements as additional 

constraints for the problem, so that the cleaning times are optimized (Opt. A). In another 

scenario the cleaning times of all units and the cleaning actions of HEX4 are optimized (Opt. 

B). Note that the Opt. A scenario is formulated as an NLP problem because the decision 

variables are the cleaning times and all binary variables are fixed, while the Opt. B is 

formulated as an MINLP problem that included the binary variables associated with the 

cleanings of HEX4 only. In addition to these two scenarios, the no mitigation case (NM) is 

included for comparison purposes. 

 

Figure 3.9. Partially optimized cleaning schedule for case 4HE-S. A) Optimal cleaning 

times, B) Optimal cleaning times and cleaning schedule of HEX4. 

Figure 3.9 shows the optimal cleaning schedule obtained for the case 4HE-S under the 

cleaning sequence specifications when the cleaning times are optimized (Opt. A) and when 

the cleaning sequence of HEX4 is also optimized (Opt. B). The total number of cleanings is 

displayed on the right-hand side for each scenario. The optimal cleaning schedule satisfies 

the number of cleanings and the cleaning sequence predefined. The cleaning actions of both 

optimization cases overlap for all exchangers but HEX4. When the cleaning sequence of 

HEX4 is optimized together with the cleaning time of all cleaning actions, the optimal 

solution involves two cleanings of this unit instead of one. The optimization of pre-set 

cleaning schedules is a novelty and an advantage of the continuous time discretization 

approach as this kind of problems were not addressed before and they are relevant to the 

industry. In addition, they can be solved efficiently in short computational times. The Opt. A 
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problem is solved in 3.2 min of CPU time as it only involves continuous variables, while the 

Opt. B problem is solved in 448.6 min of CPU time because of the binary variables included. 

Optimizing partially specified cleaning schedules reduces the operating cost 

significantly. Figure 3.10 shows the CIT and the furnace duty profiles for the optimized 

schedules of case 4HE-S. When cleanings are introduced and their timing optimized the CIT 

is greater than that of the NM case during most of the operation, and the furnace duty is lower 

than that of the NM case. Note that all the cleanings are lumped towards the middle of the 

operation because the initial state of the network is clean, so early cleanings are not necessary, 

and cleanings towards the end of operation are not profitable. All scenarios have the same 

production profit as the crude flow rate is always at its maximum, but their operating cost 

changes. The Opt. A scenario reduces the operating cost from $11.667x106 of the NM case 

to $11.338x106 which translates in savings of $329.2x103 during one year of operation. The 

savings of the Opt. B scenario ($329.5x103) are marginally larger than those of the Opt. A 

scenario because of the different cleaning sequence. Comparing the performance of scenarios 

Opt. A and Opt. B, it is observed that the former has a higher furnace duty during most of the 

operation, while the later have a higher cleaning cost. These two factors generate the overall 

trade off for the network performance. 

a) 

 

b) 

 

Figure 3.10. Optimal CIT (a) and furnace duty (b) profiles for the partially optimize 

cleaning schedule of case 4HE-S. 

In summary, the model and problem formulation developed allows to solve the optimal 

cleaning scheduling of relevant HEN under fouling using two discretization approaches. The 
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continuous one proved to be more efficient in terms of computational effort, while 

guaranteeing the same optimal solution and allowing to optimize pre-set cleaning schedules. 

3.4.3. Optimal cleaning scheduling considering deposit ageing 

The 1HE case study is extensively used in this section to demonstrate the effects of 

deposit ageing, and the main trends on the key performance variables of a single exchanger. 

The no mitigation scenario (NM) and the optimal cleaning scheduling scenario (SCH) are 

compared for various ageing rates. The continuous time representation approach with five 

periods is used in all the optimization scenarios as this was proved to be sufficient and 

accurate for this case. 

To analyse the effects of ageing in the performance of the network, the NM and SCH 

scenarios are solved for the cases of no ageing ( = 0 ), and three ageing frequency 

factors of: 500 day-1, 1500 day-1, and 3000 day-1. 

 

Figure 3.11. Total operating cost of the optimal cleaning scheduling (SCH) of case 1HE for 

various ageing scenarios. 

This case study is not constrained by furnace or hydraulic limits, so the production rate 

is always at is maximum, and only the operating cost varies. Figure 3.11 shows the operating 

cost of the network for the scenarios of NM and SCH varying the ageing frequency factor. 

The optimal cleaning schedule of all scenarios involves only one cleaning. As the ageing rate 

increases, the optimal total cost decreases because of the higher thermal conductivity of the 

deposit and lower furnace duty required. However, the difference in cost between the 

scenarios NM and SCH becomes smaller as the ageing rate increases, so it is expected that 

for higher ageing rates, cleanings will not reduce the operation cost, and the optimal policy 

will be one of no cleanings. On the opposite end, optimal cleanings allocation has a greater 
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potential when the fouling rate is high and there is no ageing than when ageing rates are high. 

It is necessary to analyse individual variables of the exchanger to understand the effects of 

ageing on the operation, and on the optimal cleaning schedule. 

The most important performance indicators of the network are the furnace duty – 

thermal performance – and the overall tube side pressure drop – hydraulic performance – and 

both are affected by deposit ageing. Figure 3.12 shows the furnace duty for the NM and SCH 

scenarios varying the ageing rate. The thermal performance of the network improves as the 

ageing rate increases, although it reaches its asymptotic point faster. Contrarily, the hydraulic 

performance deteriorates as the ageing rate increases, as observed in Figure 3.13. In some 

cases, such an increase in the pressure drop may constrained the network operation as the 

pumping limit can be reached and production rate must be reduced. Regardless of the effect 

of ageing on the performance of the network, the optimal cleaning schedule is always a single 

cleaning after 180 days of operation, and the cleaning time only changes in the order of 

magnitude of hours with respect to the ageing rate. The optimal cleaning action starts when 

there are no significant differences on the network thermal performance for all the ageing 

rates. It is the thermal performance and its trade-off with the cleaning cost which defines the 

optimal solution, not the hydraulic performance of the network, unless it is constrained. 

a) 

 

b) 

 

Figure 3.12. Furnace duty for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. 
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a) 

 

b) 

 

Figure 3.13. Tube side pressure drop for various ageing scenarios of case 1HE. a) no 

mitigation operation, b) optimal cleaning scheduling solution. 

The pressure drop of the system considering ageing is much larger than that when there 

is no ageing, and these differences are still observed when the cleaning schedule is optimized. 

The pressure drop is function of the thickness of the deposit, and the deposit grows faster 

when there is ageing because of the changes in composition. Figure 3.14 shows the evolution 

of the deposit thickness for various ageing rates. This variable, as well as the fouling 

resistance and the deposit composition, are an axial average due to the abstraction and 

assumptions of the model, but in reality, they change in the axial direction of the exchanger 

according to the operating conditions. There is no difference on the optimal cleaning time for 

the cases with and without ageing, but before the cleaning starts the deposit thickness is 1.1 

mm larger with ageing than without it.  

a) 

 

b) 

 

Figure 3.14. Deposit thickness for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. 
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High ageing rates improve the thermal performance because the fouling resistance 

decreases as the coke fraction in the deposit increases. The coke deposit has a higher thermal 

conductivity than the fresh deposit. Figure 3.15 presents the time evolution of the total 

fouling resistance of the deposit for various ageing rates, which decreases when the ageing 

rate increases. Also, when the cleaning schedule is optimized, there is no significant 

difference in the fouling resistance because the cleaning time is defined based on the thermal 

performance of the system. However, the deposit removed in those cleanings is significantly 

different: while in the case of no ageing the deposit is only a fresh gel-like deposit, that of 

the high ageing rate scenario has a coke fraction of 0.8 and a fresh deposit fraction of 0.2, as 

observed in Figure 3.16. The deposit composition changes dynamically, and in some cases, 

it may be mainly coke towards the end of the operation. The deposits removed during the 

cleanings – no ageing, and high ageing rate –have different attachment properties, and, in 

principle, aged deposit should be harder to remove so the cleaning cost and cleaning time for 

those may be higher. Including these features in the model and objective function is complex 

as those deposits are rarely characterized before and during the cleanings – collecting samples 

is a difficult and expensive task that most of the time changes the composition of the deposit 

– nor the cleaning costs are reported as a function of the deposit composition or cleaning 

method in the open literature. These features are beyond the scope of this thesis, and to 

include them many assumptions must be made that cannot be validated with the scarce data 

available. 

a) 

 

b) 

 

Figure 3.15. Fouling resistance for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. 
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a) 

 

b) 

 

Figure 3.16. Deposit age for various ageing scenarios of case 1HE. a) no mitigation 

operation, b) optimal cleaning scheduling solution. 

Ageing affects the thermal and hydraulic performance of HEN, but the optimal 

cleaning schedule is usually defined only based on the long-term thermal performance for 

which ageing does not make a significant difference. Only in cases where the network is 

hydraulically limited ageing can play an important role on deciding optimal cleaning actions. 

3.4.4. Optimization of HEN with constrained operation 

Fouling in HEN can limit the operation by two factors: i) increasing the furnace duty 

until it reaches the firing limit and no more fuel can be burnt in the furnace to provide 

additional energy – thermal limit (TL) –, and ii) increasing the overall pressure drop of the 

system until the pump cannot supply the required head to make the crude flow through the 

whole network – hydraulic limit (HL). To continue the operation of the network in any of 

these limiting scenarios, the production rate or the CDU throughput must be reduced which 

translates into large economic losses. These are practical problems found in a refinery when 

fouling is severe, and they must be avoided at all cost. 

The 2HE-S case study is used to analyse the operation of the network for the thermal 

and hydraulic limiting scenarios, and a no limited (NL) scenario is included for reference and 

comparison. It is assumed that the firing limit is 44 MW and that the maximum allowed 

pressure drop is 0.25 bar. These limits are defined based on the order of magnitude for the 

operation of the small network considered. They could also be defined as bounds on 

equivalent variables such as minimum CIT or maximum pumping power. For each scenario 
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the no mitigation case (NM) and the optimal cleaning scheduling problem (SCH) are solved 

to demonstrate the advantages of the formulation when the HEN is constrained. 

 

Figure 3.17. No mitigation (NM) and optimal cleaning scheduling (SCH) operating cost 

(left) and production profit (right) for the case 2HE-S when the network operation is 

limited. 

Figure 3.17 is a bar plot showing the total operating cost (left) and the production profit 

(right) for each of the limited scenarios, and for the no mitigation (no hashed bars) and 

optimal cleaning schedule cases (diagonal hashed bars). The optimal cleaning schedule for 

the not limited operation reduces the operating cost by $ 112x103 while the production profits 

are constant. On the other hand, when the network operation is limited, the main benefits 

arise from the increase of the production rate to its maximum level, hence reaching a much 

higher production profit. Figure 3.18 shows the evolution of the CDU throughput, and how 

it decreases when a constraint is reached, while it remains almost constant at its maximum 

when optimal cleaning actions are performed. The thermally limited operation of the network 

causes a reduction of the production rate that translates into $ 2.3x106 losses in profit, but 

when this constraint is included in the problem formulation, the production rate is almost 

fully recovered, the operating cost is reduced, and the profit increases. During the cleaning 

actions of the thermally limited operation the production rate decreases slightly – less than 

0.2 kg/s for 1 day of operation – because the additional energy required cannot be supplied 

without the exchanger that is out of operation so that the firing limit is reached. Similarly, 

the hydraulically limited operation of the network reduces the production rate, hence the 
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profit by $ 38.1x106, although it reduces the operating cost by $ 652x103. The optimal 

cleaning scheduling of the hydraulically limited scenario allows to recover those losses in 

profit, but more energy and cleaning actions are necessary. The increase in operating cost 

associated with the cleanings or additional energy is negligible compared to the profit 

achieved by debottlenecking the operation of the network. 

a) 

 

b) 

 

Figure 3.18. CDU production throughput of the case 2HE-S when the network operation is 

limited. a) No mitigating actions, b) optimal cleaning scheduling. 

The general formulation of the optimal cleaning scheduling problem copes well with 

scenarios where the operation of the network is limited. Including this kind of constraints 

changes the optimal cleaning schedule because the cleanings are defined so that the operating 

limits are avoided, and the profits maximized. Figure 3.19 presents the optimal cleaning 

schedule for the three operating scenarios of the case study and the total number of cleanings. 

The optimal cleaning schedule of the hydraulic limited scenario is similar to that of the not 

limited operation, but all the starting cleaning times are move forward in time. Figure 3.20 

shows the time evolution of the overall pressure drop of the system. If no mitigating actions 

are performed the hydraulic limit becomes active after 190 days of operation and then the 

production rate decreases, while under the optimal cleaning schedule operation policy this 

limit is never reached, and cleanings are performed in a proactive way. 



106 

 

Figure 3.19. Optimal cleaning scheduling for the case 2HE-S when the network is 

thermally limited (TL), hydraulically limited (HL), and not limited (NL). 

a) 

 

b) 

 

Figure 3.20. Overall tube side pressure drop of the case 2HE-S when the network operation 

is limited. a) No mitigating actions, b) optimal cleaning scheduling. 

Contrary to the hydraulically limited scenario, the optimal cleaning schedule of the 

thermally limited scenario changes drastically as cleanings occurs earlier during the 

operation, and HEX1 is cleaned twice instead of HEX2. This cleaning sequence is necessary 

to avoid reaching the firing limit during the operation and during the cleanings when the 

furnace duty increases temporarily. Figure 3.21 shows the time profiles of the furnace duty 

for all scenarios comparing the no mitigation and optimal cleaning scheduling cases. In the 

thermal limited operation, the firing limit is reach after 200 days of operation when there are 

no cleanings, and after that the furnace duty is held constant while the production rate 

decreases. In addition, the optimal cleanings occur early during the operation to avoid 

reaching the firing limit during the cleanings, although it is reached during a short time 

towards the end of the cleanings and the production rate is reduced. Towards the end of the 

operation the furnace duty also reaches the furnace limit, but at this point it is not convenient 

to perform a cleaning of any unit as the cost is higher than the future savings. 
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a) 

 

b) 

 

Figure 3.21. Furnace duty of the case 2HE-S when the network operation is limited. a) No 

mitigating actions, b) optimal cleaning scheduling. 

The additional constraints that are included in the optimal cleaning scheduling problem 

formulation for the thermal and hydraulic limited cases do not increase the complexity of 

finding a solution. While the not limited case is solved in 548 min of CPU time using a 

continuous time formulation with nine periods, the thermally limited case is solved in 335 

min, and the hydraulic limited case in 570 min using the same time discretization parameters. 

3.4.5. Optimal integration of cleaning scheduling and control 

The “2HE-B” case study is used to investigate the operation of networks with parallel 

branches. This configuration – with more exchangers in each branch – is commonly found in 

practice to supply large thermal requirements and to give more flexibility to the operation 

(Assis et al. 2015). Here the exchangers are identical, but it is assumed that at the initial time 

HEX1 has a fouling resistance of 0.005 m2K/W and HEX2 is clean. The shell side flow rate 

of the exchangers is also distributed in parallel branches and it is considered as a control 

degree of freedom. All the split fractions are bounded between 20% and 80%. 

Various scenarios are defined according to the policy with which the tube side flow 

rate is distributed in the branches and the degrees of freedom of the optimization problems. 

The solution strategies and abbreviations defined in Table 1.1 are used here. These scenarios 

are: 1) a no mitigation scenario (NM) with fixed flow rates of all parallel branches at 50%, 

2) a pressure driven flow scenario for the tube side flow, while the shell side flow is free (Δ -

NM), 3) an optimal flow split scenario for all the branches (Opt. Sp), 4) optimal cleaning 

schedule (Opt. Sch), 5) sequential optimization of the cleaning schedule and the flow 
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distribution (Seq. Opt), 6) optimal cleaning schedule for pressure driven flow (Δ -Opt), and 

7) simultaneous optimization of the cleaning schedule and the flow distribution through all 

parallel branches (Opt. Sp + Sch). The scenarios in which only the cleaning schedule is 

optimized – 4 and 5 –, the flow distribution in the parallel branches is fixed at 50% and 

constant over time. All these scenarios cover all common operating modes found in industry, 

and they include the interactions of control and scheduling variables. The goal is to compare 

all different flow distribution policies, and to demonstrate the advantages of simultaneously 

optimizing scheduling and control for fouling mitigation in HEN. 

Table 3.4 presents the problem size summary, the operating cost, and the optimal 

cleaning schedule of each of the scenarios considered here. Scenarios 1 is a simulation case 

with no degrees of freedom to optimize, scenarios 2, 3 and 5 are NLP problems where the 

optimization variables are the flow distribution through the parallel branches – shell side, 

tube side, or both – and scenarios 4, 6, and 7 are MINLP problems including the cleaning 

schedule decisions. All the scenarios are formulated using the continuous time discretization 

approach with nine periods which introduces 27 binary variables in the MINLP problems. 

The optimal flow distribution problems or flow constrained problems formulated as NLPs 

are solved in less than 1 min of CPU time, while the optimal cleaning scheduling problems 

are challenging and solved in 330 min of CPU time average. Regardless of the flow 

distribution policy through the parallel branches of the network, the complexity of the 

problem arises from the large number of feasible cleaning schedules. 
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Table 3.4. Optimal cleaning solution and computational results of case 2HE-B for the integration of scheduling and control decisions 

Case number 1 2 3 4 5 6 7 

Case ID NM -NM Opt. Sp Opt. Sch Seq. Opt -Opt Opt. Sp+Sch 

Operating mode** NM NM NM SCH Fixed SCH SCH SCH 

Branches flow Fixed  Free Fixed Free  Free 

Continuous variables 2758 2794 2794 2758 2758 2794 2794 

Binary variables 0 0 0 27 0 27 27 

Equality constraints 2322 2358 2322 2322 2322 2358 2322 

Inequality constraints 5669 5741 5669 5669 5669 5741 5669 

CPU time [min] 0.06 0.12 0.09 329.51 0.26 288.15 374.38 

Total energy [MW-h] 3.990x105 3.987x105 3.983x105 3.934x105 3.912x105 3.943x105 3.910x105 

Production profit [$] 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 

Fuel cost [$] 1.077x107 1.077x107 1.075x107 1.062x107 1.056x107 1.065x107 1.056x107 

Carbon cost [$] 1.829x105 1.818x105 1.816x105 1.794x105 1.784x105 1.798x105 1.783x105 

Cleaning cost [$] 0 0 0 90000 90000 60000 90000 

Total cost [$] 1.096x107 1.095x107 1.093x107 1.089x107 1.083x107 1.089x107 1.083x107 

Cleaning schedule 

(HEX#, time [days]) x 
None None None 

(1, 81) 

(2, 173) 

(1, 226) 

(1, 81) 

(2, 173) 

(1, 226) 

(1, 167) 

(1, 167) 

(1, 88) 

(2, 180) 

(1, 278) 

** NM: no mitigation operating mode (no cleanings considered), SCH: optimal cleaning scheduling problem solved 
x Cleaning time rounded to the closest integer value for the continuous time discretization approach 
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All the scenarios of the 2HE-B case that have some mitigation action – flow control, 

cleaning scheduling, or both, scenarios 2 to 7 – present a reduction of the total operational 

cost relative to the NM case, with fuel consumption representing the highest contribution 

(>90%). The scenarios in which the only mitigation action is the flow distribution, either free 

or pressure driven, achieve a cost reduction lower than 0.1%. Despite this small benefit, 

controlling the flow distribution in the network is advantageous to recover more energy in 

branches that have low fouling resistance. There is an important compromise between the 

flow rate and the fouling rate in parallel branches. While low flow rates favour high outlet 

temperature, they also increase the fouling rate. Figure 3.22 shows the fouling resistance of 

each branch for the scenarios that consider flow distribution without cleanings. The fouling 

resistance of the branches at a fixed flow rate or pressure driven flow are similar, but HEX1 

has a higher fouling resistance than HEX2 when the flow split is optimized. This trend is the 

best possible trade-off between energy recovery rate and fouling rate of the exchangers in the 

branches, and a faster fouling rate in one of the branches does not imply a bad operation. 

a) 

 

b) 

 

Figure 3.22. Fouling resistance of HEX1 (a) and HEX2 (b) of case “2HE-B” under different 

flow split scenarios when there are no cleanings. 

On the contrary to the scenarios that only consider flow distribution, those that optimize 

the cleaning schedule reduce significantly the operating cost as they allow to restore the 

thermal and hydraulic performance of the network periodically. The optimal cleaning 

schedule alone – scenario 3 – provides a cost reduction of $ 65x103 with respect to the NM 

scenario, and when it is integrated with control decisions, the cost reduction is $ 125x103 for 

the sequential case – scenario 5 – and $ 131x103 for the simultaneous case – scenario 7. The 

main difference between scenarios 5 and 7 is the starting time of the cleanings. The total 
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number of cleanings of each exchanger and the cleaning sequence is the same for both 

scenarios, but the operating time between two consecutive cleanings is larger in the 

simultaneous approach than that in the sequential approach. A longer operating time is 

achieved by optimally distributing the flow through the parallel branches recovering more 

energy overall. Although the individual effect on the heat exchangers may be an increase in 

the fouling resistance or decreasing the heat duty, the overall effect on the network is a 

reduction of the total operating cost. 

a) 

 

b) 

 

Figure 3.23. Furnace duty for the case 2HE-B under different flow split scenarios. a) no 

cleanings, b) optimal cleaning scheduling. 

Figure 3.23 shows the furnace duty for all the scenarios with and without cleanings. 

The effect of the flow distribution is marginal in reducing the furnace duty, and the optimal 

flow distribution defines a duty that is always lower than the others, although the pressure 

driven flow scenario still improves the operation. There is an important synergy when the 

flow distribution is integrated with the cleaning scheduling decisions. For instance, the 

furnace duty of the sequential optimization case – scenario 5 – shows that the duty during the 

cleanings decreases as the flow is distributed towards the branch that is operating and 

diverted from the branch that is being cleaned. The crude flow rate distributed towards HEX1 

is displayed in Figure 3.24 for all the scenarios. The flow is shifted during the cleanings 

towards the branch that remains operating, and towards the cleaned unit just after the cleaning 

finishes. The dynamic flow distribution also contributes to reducing the fouling rate as it 

modifies the shear stress on the tube side, hence increasing the removal rate of the deposit. 

These interactions increase the economic benefits of the operation when both decisions are 
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considered sequentially or simultaneously, although a simultaneous optimization exploits all 

synergies and provides the greatest benefits. 

a) 

 

b) 

 

Figure 3.24. Split fraction towards HEX1 branch on the tube side of case 2HE-B under 

different flow split scenarios. a) no cleanings, b) optimal cleaning scheduling. 

The optimal cleaning schedule of the case study when the flow distribution is free or 

fixed consist of cleaning HEX1 twice – it has an initial deposit – and HEX2 once. This pattern 

changes when the flow distribution of the crude stream is pressure driven. In this case, the 

optimal cleaning schedule is to clean both exchangers simultaneously after 167 days of 

operation. This ensure that the pressure of the branches is balanced at all time, although when 

only one branch is active during an individual cleaning this constraint is relaxed. After the 

simultaneous cleaning of the two exchangers the split fraction is fixed at 50% for the tube 

and shell side because both units follow the same evolution.  

a) 

 

b) 

 

Figure 3.25. Split fraction towards HEX1 branch on the shell side of case 2HE-B under 

different flow split scenarios. a) no cleanings, b) optimal cleaning scheduling. 
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The pressure driven flow scenarios still have a control degree of freedom which is the 

flow distribution of the shell side, and it is shown in Figure 3.25 for all the scenarios. The 

hot stream flow is distributed to the exchangers so that a higher flow rate is sent to the unit 

with a lower fouling resistance and more energy is recovered. The additional constraint 

introduced in the formulation to equalize the pressure of the crude oil branches reduces the 

possibilities of improving the operation, and the cost reduction achieved is lower than that of 

scenarios where the flow distribution is completely free. 

3.5. Concluding remarks 

A general and novel mathematical formulation for the simultaneous optimization of 

cleaning scheduling and dynamic flow distribution of HEN under fouling is presented. This 

formulation exploits the synergies between scheduling and control decisions, which previous 

studies have only considered individually. The optimal integration of control and scheduling 

decisions for fouling mitigation in HEN outperforms any other mitigation alternative 

including the sequential optimization of first the cleaning schedule and then the flow 

distribution. The HEN model used in the formulation is based on fundamental principles, and 

it has an ideal trade-off between prediction capabilities, and complexity for optimization 

purposes. The heat exchanger model includes the radial heat transfer effects explicitly – 

overcoming the common thin slab assumption – and averages the axial effects. The generality 

of the formulation allows to modify or change any of the building blocks that constitute the 

overall model, to include more than one cleaning alternative, to introduce control elements, 

and to add/remove case specific operational constraints. 

The main challenges for solving the optimal cleaning scheduling and control problem 

of HEN are the large number of binary variables, and the many feasible solutions with similar 

performances. A continuous time representation is proposed to reduce the complexity of the 

problem, while retaining prediction accuracy and quality of the solution. It performs better 

than the commonly used discrete time approach as it allows solving relevant optimization 

problems much faster. In addition, this modelling approach allows to optimize scenarios not 

considered before such as the optimal timing of known cleanings, and the optimization of a 

partially defined cleaning schedules. Both scenarios arise in refining applications where some 

of the decisions are done by experts and all others can be optimized by computer algorithms.  
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Various small but realistic case studies and scenarios are evaluated to test the prediction 

capabilities of the model proposed, and to determine their effect on the optimal cleaning 

scheduling. The optimal cleaning scheduling problem is solved for a heat exchanger with 

different ageing rates, and it is shown that, for that case, the optimal solution is independent 

of the ageing rate, although the operating cost changes significantly. It is also shown, through 

the case studies, that optimally cleaning the units of a network can avoid bottlenecks in the 

operation that generate a large operating cost and production losses. No previous studies can 

include all these features in the same problem formulation for optimizing the cleaning 

schedule of HEN. 

The mathematical formulation presented here can be extended to include retrofit 

decisions (Chapter 6), and it can also be used for the online monitoring and optimization of 

HEN (Chapter 8). Despite the successful application of the problem formulation, it is still 

challenging to solve larger networks of industrial relevance. An efficient solution strategy 

for this problem is described in Chapter 5, which significantly reduces the computational 

time. Finally, validating the prediction models is necessary for any real application, which is 

done and discussed in great detail in Chapter 4. 
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Chapter 4  

 

Optimizing preheat trains under fouling: 

model validation 

The mathematical model developed in the previous chapter (lumped model) for HEN 

under fouling is validated using two approaches. In the first one, it is directly compared 

against a more detailed and previously validated model that considers the axial distribution 

of the variables in the exchanger (distributed model). The fouling parameters are determined 

based on the predictions of the detailed model. In the second one, real refinery data is used 

to fit the fouling parameters of the model, and the prediction error is quantified. A model 

fitting and validation procedure is established to improve the prediction capabilities of the 

lumped model using, simultaneously, the distributed model and plant measurements. It is 

demonstrated that the prediction accuracy of the lumped model is not different from that of 

the distributed model, that it predicts the variability observed in the actual measurements, 

and that it can be used for optimization purposes. 

4.1. Introduction 

Accurate heat exchanger and fouling models are paramount for understanding the 

operation of large HEN, their limiting conditions, causes of fouling, effects of the main 

variables, and how to improve their efficiency over time. The validity and efficiency of any 

proactive mitigation action depends on the accuracy of the model used to support the decision 

making. 

This chapter aims to validate the model developed previously using as benchmark a 

detailed and previously validated model. Also, actual plant measurements (e.g. flow rates, 

temperature, pressure) are used in a separate validation test. In all instances, the data – either 

simulated, or measured – is used to fit the fouling parameters of the model using a novel 
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estimation procedure. This chapter will demonstrate that the model developed previously can 

capture accurately the behaviour of all performance indicators in a HEN, and that it can 

efficiently be used for optimizing their operation and to define their optimal cleaning 

scheduling. 

4.2. Summary of heat exchanger models used for validation 

Among the heat exchanger models reviewed in Section 2.4 of this thesis, lumped and 

distributed models are suitable for optimizing the operation and the cleaning scheduling of 

large HEN. One lumped, and one distributed model are analysed here. The model developed 

in Chapter 3 is a lumped model that includes explicitly the radial distribution effects in a 

more complete way than other lumped models. For the rest of this chapter this model will be 

referred to as model A for simplicity. The model developed by Coletti, and later revised by 

Diaz-Bejarano is a distributed model that has been previously tested and validated for real 

applications (Coletti and Macchietto 2011; Diaz-Bejarano, Coletti, and Macchietto 2016). 

This model is commercially available as Hexxcell StudioTM (Hexxcell Ltd. 2016), and the 

software is used for all cases analysed in this chapter. Appendix B presents the fundamental 

assumptions, considerations, and model equations of this distributed model. For simplicity, 

this model is referred to as model B for the rest of the chapter. 

Models A and B, when coupled with an appropriate fouling model, for instance the 

Ebert-Panchal model which is used in this thesis, predict the key performance indicators of 

individual units and overall networks needed to optimally define fouling mitigation 

strategies. However, they differ significantly in their complexity, number and type of 

constraints. Table 4.1 shows a comparison of the two models, the axially lumped one (A) and 

the fully distributed one (B), indicating the main equations, and an estimation of the model 

size. This estimation assumes that all the differential equations, including the time 

derivatives, are fully discretized, although for simulation purposes a forward integration 

technique – Runge-Kutta methods for example – can be used reducing the number of 

equations solved at every time step.
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Table 4.1. Model size comparison and estimation of the number of equations and variables. 

 Lumped model (A) Distributed model (B) 

 Algebraic (A) or 

differential (D) 

Estimated number after 

discretization*. 

Algebraic (A) or 

differential (D) 

Estimated number after 

discretization*. 

VARIABLES     

Temperature - shell A (NHEX)NT D (NHEX*NZ)NT 

Temperature - tube A (NHEX)NT D (NHEX*NZ*NP)NT 

Temperature (wall and deposit) A (2NHEX)NT D 2(NHEX*NZ*NP*NR)NT 

Flow rates A (2NHEX)NT A (2NHEX)NT 

Pressure A (NHEX)NT D (NHEX*NZ*NP)NT 

Fouling resistance D (NHEX)NT D (NHEX*NZ*NP)NT 

Deposit thickness A (NHEX)NT A (NHEX*NZ*NP)NT 

Heat duty A (NHEX)NT A (NHEX*NZ*NP)NT 

Total  (10NHEX)NT  NHEX(2+NZ(1+NP(5+2NR)))NT 

EQUATIONS     

Mass balance A (2NHEX)NT A (2NHEX)NT 

Energy balance A (2NHEX)NT D (NHEX*NZ*(1+NP*(2NR+1)))NT 

Fouling model D (NHEX)NT D (NHEX*NZ*NP)NT 

Deposit thickness A (NHEX)NT D (NHEX*NZ*NP)NT 

Heat transfer A (3NHEX)NT A (NHEX*NZ*NP)NT 

Pressure drop A (NHEX)NT D (NHEX*NZ*NP)NT 

Total  (10NHEX)NT  NHEX(2+NZ(1+NP(5+2NR)))NT 

*NHEX, number of heat exchangers in the networks (≥ 1). 

  NT, number of discretization points in time (≥ 2). 

  NZ, number of discretization points in the axial direction (≥ 5). 

  NR, number of discretization points in the radial direction (≥ 20). 

  NP, number of tube passes (≥ 1). 
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It is observed that while the lumped parameter model size is only a function of the 

number of exchangers in the network and the number of time discretization points, the 

distributed model size also depends on the mesh size of the axial and radial domains, and on 

the number of tube passes. The additional features included in the distributed model increase 

its size rapidly, as for an accurate integration of the variables at least 10 discretization points 

are required in the axial coordinate, and 20 in the radial coordinate. Hence, the distributed 

model size can be more than hundred times larger than that of the lumped model. Another 

key difference between the models is that while model A has mainly algebraic constraints 

and the only differential equations come from the fouling model, model B uses partial 

differential equations for the energy balance of each domain, and the fouling model is a 

differential equation solved at every discrete point in space. Special considerations must be 

taken for solving the large set of PDAE of model B because of the moving boundary 

condition in the radial deposit domain – see Appendix B for the detail assumptions and 

equations. Despite these numerical difficulties, model B is able to simulate large networks of 

industrial importance in a reasonable computational time, and to use plant data over long 

periods of operation for parameter estimation and validation, and then for simulation-based 

assessment of flow control and cleaning schedules (Coletti and Macchietto 2011b; Diaz-

Bejarano, Coletti, and Macchietto 2016; Diaz-Bejarano, Coletti, and Macchietto 2017). 

Aiming to solve the optimal cleaning scheduling and control problem formulated in 

Chapter 3 with a realistic and accurate heat exchanger model, the lumped model (A) is 

advantageous over model (B). The number of binary variables and logic disjunctions, which 

are the main complicating factors, are function of the problem size and the discrete time 

points. The continuous time approach discussed in Chapter 3 cannot be used in model B 

because the solution of all the differential domains, especially the radial distribution of the 

deposit, are very sensitive to the time step of integration. However, model B has been 

successfully validated, and its accuracy proven while model A has not. Also, the features of 

model B may be necessary for monitoring in detail the development, nature and location of 

the deposit formed in a heat exchanger (Diaz-Bejarano, Coletti, and Macchietto 2018). A 

good balance between the two models is therefore necessary, but first it is necessary to 

establish that valid and accurate predictions can be achieved with model A for optimization. 

In the following section, a novel combined strategy for model validation and parameter 
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estimation is described that integrates the two models to improve the prediction capabilities 

of the lumped one. 

4.3. Model validation approach and parameter estimation problem 

The lumped model (A) described in Chapter 3 must be validated before using to support 

decision making. Figure 4.1 presents a flowchart describing the data collection, model fitting, 

and validation procedure designed for this application. It starts with the primary 

measurements from the plant which can be flow rates, streams temperature, and pressure, 

although pressure measurements are rarely available. The data is used to fit the fouling 

parameters of the distributed model (B) as described in previous works (Coletti and 

Macchietto 2011; Diaz-Bejarano, Coletti, and Macchietto 2016). Then, model B acts as a soft 

sensor to predict additional variables of the system including intermediate stream conditions 

and pressure drops that are not measured during the operation or included in the data set. The 

new and enhanced data set generated using the simulation results of model B are the inputs 

for the parameter estimation and validation of the lumped model A. This data set is filtered 

and divided in two groups: one for estimation and other for validation, and because of the 

dynamic nature of the problem this partition is based on the time horizon, by defining an 

estimation horizon ( ) – steps 2 and 3 in Figure 4.1. All data points between = 0, and =  belong to the estimation data set, and all other points ( > ) belong to the 

validation data set. Only the estimation data set is used within the parameter estimation 

problem – described later in this section – to determine the fouling parameters of model A 

that best explain the behaviour predicted by model B based on the plant observations. The 

validation data set is also used to calculate and evaluate the prediction error of the model 

after fitting. Finally, once the lumped model is validated it can be used with adequate 

confidence to analyse different aspects of the operation of HEN under fouling, and to support 

decision-making to mitigate fouling and increase energy efficiency, such as optimal flow 

distribution and optimal cleaning scheduling decisions. 

The only parameters that are considered for estimation in both models are those of the 

Ebert-Panchal fouling model. They are the deposition constant , and the removal constant 

, while the activation energy  is assumed fixed. These are referred in general as fouling 

model parameters, although they are not necessary the same for model A and model B. 
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Figure 4.1. Flowchart of model validation procedure using 2D distributed model as 

benchmark 

The procedure developed to estimate the parameters of the lumped model is indirect 

because it does not use directly the plant measurements available. The main motives to 

implement this procedure are: i) for the purpose of this thesis, the scarcity of good quality 

plant data in the open literature, and confidentiality policies that prohibit refinery operators 

to share data or information about the operation, ii) the typical lack of complete 

measurements in a whole HEN, where key pressure or temperature measurements required 

for the estimation procedure may be missing, and iii) the 2D distributed model available in 

Hexxcell StudioTM has been previously validated, and used with real refineries for commercial 

purposes. This model has shown to accurately predict the main performance variables of the 

heat exchangers such as outlet streams temperature, pressure drop, and heat duty in real 

applications (Coletti and Macchietto 2011; Diaz-Bejarano, Coletti, and Macchietto 2015). In 

Coletti and Macchietto (2011); and Diaz-Bejarano, Coletti, and Macchietto (2017) it has been 

reported that model B has a prediction error within +/- 2.0°C for the streams temperature, 

and within +/- 1.5% for the heat duty and pressure drop of the heat exchangers. These 

prediction errors are within acceptable ranges considering the large time scales of the 

operation, the errors in the measurements, and the large variability of the flow rates and crude 

blends. Hence, an indirect validation approach for the lumped model is deemed suitable and 

enables overcoming the lack of data and measurements.  

Under these considerations for model validation, and assuming that the distributed 

model (B) accurately represents the operation of any HEN, the validation of the lumped 

model (A) will depend on how well it captures the phenomena and dynamics predicted by 
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model B. A direct comparison of the predictions of the two models will indicate whether they 

capture the same phenomena observed and under which conditions.  

During the first stages of the validation procedure, a parameter estimation problem is 

solved using the primary plant data – tube and shell side temperature, flow rates, and pressure 

drop if available – to estimate the fouling model parameters in the 2D distributed model B – 

step 1 in Figure 4.1. The maximum likelihood estimation problem is presented in Eq. (3.6). 

It is a constrained optimization problem which solution is the optimal model parameters,  – 

used as a general notation. The objective function of this problem includes the variance of 

the measurements to standardize all quadratic errors between the observed and predicted 

variables. Also, the error is calculated for all variables measured. This parameter estimation 

problem can only be solved, in a reasonable time, for individual heat exchangers because of 

the scale of model B, and the large computational load required to solve the partial 

differential and algebraic system of equations at every iteration. For large networks, an 

estimation problem is solved for every exchanger, isolating the measurements around it. For 

multiple shell exchangers intermediate measurements are not available, so that the same 

fouling parameters are assumed for all the shells. The parameter estimation process for model 

B is automated using Hexxcell StudioTM. 

min 2 ln(2 ) + 12 ln , + , − ,  
,  

. .   (  ℎ  ℎ  )      

(4.1) 

The second parameter estimation problem solved – step 4 in Figure 4.1 – estimates the 

parameters of the lumped model (A), based on the predictions generated using the fitted 

distributed model (B). This problem is presented in Eq. (4.2), where the “measured” variables 

are those predicted using model B including any soft-measurements. In this case the 

estimation problem is solved for the whole network instead of individual units by minimizing 

the quadratic error observed on the tube side temperature, the shell side temperature, and the 

tube side pressure drop of each exchanger. The parameters  in the equation correspond to 

relative weights among the different errors, and they are assigned as: 1 10  for the shell and 

tube side temperature errors and 1 10  for the pressure drop error. The errors – differences 
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between the two models – are summed using weights defined by the analyst which are not 

standardized using the variance as in the previous problem. Contrary to the parameter 

estimation problem for the distributed model – step 1 – this formulation includes all three 

key performance indicators of each exchanger and of each shell because, regardless whether 

they are measured or not, they can be predicted using model B.  

min , − ,  + , − ,  + Δ , − Δ ,  

. .   (  ℎ  ℎ  )      

(4.2) 

The decision variables of the parameter estimation problems referred to as  are the 

parameters of the fouling model. In the problem defined by Eq. (4.1) these parameters are 

estimated for a single exchanger, while in that defined by Eq. (4.2) they are estimated for all 

exchangers in a network simultaneously. The solution of these problems corresponds to step 

1 and 4 in Figure 4.1. The only parameters estimated are the deposition constant, , and the 

removal constant, , while the fouling activation energy is fixed a priori because it is highly 

correlated with the other parameters (Diaz-Bejarano, Coletti, and Macchietto 2017). In 

addition, the deposit roughness of each exchanger, , is estimated for the lumped model (A). 

The deposit roughness affects the friction factor, the tube side pressure drop, and the shear 

stress, the later modifies the fouling removal rate. In many cases, the fouling removal rate is 

very small compared to the fouling deposition rate (Wilson, Ishiyama, and Polley 2017; Diaz-

Bejarano, Coletti, and Macchietto 2017) and changes of the shear stress due to changes of 

the roughness of the deposit may not have a significant effect in the thermal performance of 

the exchangers. However, it was found better to consider the thermal effects and the hydraulic 

effects simultaneously and determine all the parameters of the model at the same level using 

a weighted multi-objective formulation for the parameter estimation problem. 

The parameter estimation problem defined for the lumped model is an NLP, whose 

complexity arises from the many data points, the time varying effects, and few degrees of 

freedom. The time horizon is discretized using a discrete time approach. 

In a more general way, when actual plant dynamic data is available, there are two 

possible routes to estimate the parameters of the lumped model (A) developed in Chapter 3 

for optimizing HEN under fouling. Figure 4.2 summarizes these two routes, and comments 
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on their considerations and assumptions. The first one is a direct route that uses the measured 

data as observations in the parameter estimation problem – path 1,2,5,6,7 – and the second 

one is an indirect route in which the parameters of the distributed model (B) are estimated 

first, and then the fitted model is used to simulate the system and generate a new data set for 

the estimation problem of the lumped model – path 1,2,3,4,5,6,7. While in the direct route 

the data available is limited, and information about pressure drops and intermediate 

temperature measurements may be lacking, the indirect route makes those features available 

to estimate the parameters of the lumped model. Both approaches use primary measurements 

to estimate the fouling parameters of the model, and do not rely on the calculation of the 

fouling resistance from plant measurements as previous approaches have reported in the 

literature to simplify the parameter estimation problem. Calculating the fouling resistance 

based on the observed data amplifies the noise and error of the measurements, hinder the 

prediction capabilities of the model, and ignore the interactions among the units in a network 

(Díaz-Bejarano, Coletti, and Macchietto 2015; Tavares et al. 2013) 

 

Figure 4.2. Model fitting and validation approaches when plant measurements are available. 

In Figure 4.2 the possibility of using the validated distributed model (B) to optimize 

the network operation is also considered, although this is subject to efficient algorithms to 

cope with the complexity and large scale of the distributed model. However, model B can 

still be used at this stage to improve the operation of the system using simulations to evaluate 

many scenarios under different conditions or alternative fouling mitigation strategies.  
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4.4. Prediction errors and model validity 

A total of eight case studies are used to validate the model developed in Chapter 3, 

lumped model A, by comparing it with the fully distributed model B (Appendix B).  

a) “1HE” 

 

b) “2HE-S” 

c) “2HE-B” d) “LN-B2” 

e) “LN-S2” f) “4HE-B” 

 

g) “LN-S3” h) “REF-X” 

 

Figure 4.3. Network structure for all cases considered in the model validation 
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The network structure of the case studies is presented in Figure 4.3, and all the details 

about their operation and specifications are presented in Appendix A. The model comparison 

and validation are done for every exchanger of each network, for a total of 37 units analysed. 

The networks considered cover a wide range of operating conditions (e.g. flow rates, streams 

temperature) and specifications of shell and tube heat exchangers (e.g. number of tubes, 

number of passes, baffles) reflecting those normally found in refinery operations, especially 

in the hot end of preheat trains. Also, the network configurations are all different and include 

a wide range of features such as interactions on the shell side of various exchangers, multiple 

parallel branches, and flow split on the shell side. 

The case studies range from small to large networks with one to nine heat exchangers, 

and multiple configurations. These cases are adapted from the open literature, and case “REF-

X” is based on a preheat train of an actual refinery. For all case studies the operation is 

simulated for one year with the distributed model (B), and then those results are used as 

measurements to estimate the parameters of the lumped model (A). 

There is an inherent difference between the two models that cannot be eliminated by 

fitting the fouling parameters, and will show up both in clean and fouled dynamic conditions. 

A clean conditions error analysis is done first, followed by a dynamic error analysis. 

4.4.1. Validation under clean conditions 

Under clean conditions or constant fouling values, the two models may differ as their 

fundamental equations and assumptions are different, and there are no parameters to tune to 

make the predictions of the lumped model closer to those of the distributed model. The error 

between the lumped model (A) and the distributed model (B) is calculated at the initial time 

for every exchanger in each case studies. Figure 4.4 shows the error distribution, the average 

error ( ), and the standard deviation of the error ( ) for the outlet tube side temperature, 

outlet shell side temperature, tube side pressure drop, and heat duty..
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a) 

 

c) 

 

e) 

 

g) 

 

b) 

 

d) 

 

f) 

 

h) 

 

Figure 4.4. Histograms showing the initial error (top) and absolute error (bottom) distributions the key performance variables predicted 

by model A and B in clean conditions. a, b) tube side temperature, c, d) shell side temperature, e, f) tube side pressure drop, g, h) heat 

duty. 
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The distribution of the errors in the tube side temperature and heat duty predictions are 

approximately normally distributed with mean close to zero and ranges of +/- 1.0 K and +/- 

0.3 MW, respectively. These ranges and distributions are acceptable for the order of 

magnitude of the errors considering that the prediction errors of the distributed model with 

respect to measure pant data are within or larger than these ranges. On the other hand, the 

lumped model tends to underestimate the pressure drop, and to overestimate the shell side 

outlet temperature. The different assumptions about the shell side flow and heat transfer of 

the two models explains these trends. While the distributed one considers the heat transfer at 

every axial point for all the passes, the lumped one simplifies it in a single efficiency 

parameter. Nevertheless, both error distributions are close to zero and the extreme values of 

the errors are still acceptable given the previous validation of the distributed model against 

plant data, and that the intended use of the lumped model is in an online and real time 

optimization routine. 

At a network level, the lumped model (A) can also predict with good accuracy the 

outputs of the distributed model (B). The average error in the CIT predictions of the two 

models is 0.17 K with a standard deviation of 0.37 K, and the average error of the furnace 

duty is 0.24 MW with a standard deviation of 0.29 MW. For both network key performance 

indicators, the average error is below the estimation errors reported for the distributed model 

(B), so that that model A is a good representation of realistic HEN. The average error obtained 

in the CIT prediction is lower than that of the tube side outlet temperature of individual 

exchanger because of the network interactions. Considering all the units in a network the 

prediction errors of some exchangers may compensate for those of others. Overestimations 

and underestimations of local key performance variables may substantially reduce the overall 

differences between the predictions of the two models at a network level. 

For all key performance indicators of individual exchangers, the distribution of the 

absolute error is within the acceptable ranges of the distributed model (B) and the highest 

frequency is observed for errors that are close to zero. The absolute error of each variable is 

used as predicted variable in a partial least square (PLS) model to identify what features of 

the exchangers drive the differences observed between the models (Burnham, Viveros, and 

MacGregor 1996; Burnham, MacGregor, and Viveros 1999). Using the absolute error helps 

to identify the features that causes the lumped model to overestimate the shell side 
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temperature, and to underestimate the pressure drop. The inputs to the PLS are the inlet 

conditions of the exchangers including flow rates and temperatures, and all the geometric 

specifications such as number of tubes, shell diameters, and number of baffles. In total the 

PLS model has 17 observed variables (inputs) and 4 predicted variables (outputs). The first 

six principal components of the model can explain 63.6% of the variability of the outputs, 

which is enough to identify what exchangers are more likely to exhibit a difference between 

the two models.  

Figure 4.5 shows the percentage of the variance explained by the principal components 

in each of the variables predicted. While the PLS model explains most of the variance of the 

shell side temperature error, pressure drop error, and heat duty error, it does not capture the 

variability of the tube side temperature error because there is almost no variability among the 

exchangers considered - normally distributed variable with mean zero. The principal 

components one and three (PC1, PC3) explain most of the variance of the shell side error, 

and the heat duty error, while the principal component two (PC2) explains the tube side 

pressure drop error. The other principal components have a smaller contribution to the 

predicted variables. 

 

Figure 4.5. Variance capture by the PLS model on the error of each performance indicator 

variable. 
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Figure 4.6a shows the loads of the PLS model on the observed variables – w* loads – 

and Figure 4.6b shows the loads on the predicted variables – q loads of all the principal 

components. The contribution of the PC1 demonstrates that the baffle spacing, shell diameter, 

and tube diameter are inversely correlated with the absolute error of the predicted shell side 

temperature, while the inlet streams temperature are positively correlated with it. The lumped 

model (A) overestimates the shell side temperature for exchangers with smaller tubes, shell 

diameter, and baffle spacing – alternatively more baffles – than the average. The same applies 

for the exchanger duty as it is directly related to the shell side temperature. Similarly, the 

PC2 indicates that the lumped model (A) underestimates the pressure drop for exchangers 

with more tubes, more baffles, longer tube lengths, and higher inlet flow rates and 

temperature than average. The contribution of PC3 has the same tendency as that of PC1, but 

it includes the baffle cut with an inverse effect on the predicted error. Also, the tube diameter 

in PC3 is positively correlated with the shell site temperature error being opposite to the 

effect observed in PC1, although the percentage of the variance explained by PC3 is much 

smaller than that of PC1. All other principal components have a much lower and disperse 

distribution over the prediction errors of interest. In summary, this PLS analysis allows to 

understand the limiting conditions of the lumped model with respect to the distributed one, 

and to estimate the prediction errors only knowing the exchanger specifications. 
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a) 

 

b) 

 

Figure 4.6. PLS model loads on inputs (a) and outputs (b) for the absolute error between the lumped (A) and distributed (B) models 
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Finally, a cross validation test is performed to evaluate the prediction capabilities of 

the PLS model developed. The data of the 37 heat exchangers is divided randomly in two. 

The fist data set with 30 points – 81% of the data – is used to fit a new PLS with six principal 

components as before. This new instance of the PLS model captures 63.4% of the variance 

in the outputs, which is not significantly different from that captured by the PLS model 

developed with the complete data – 63.6% of the variance in the outputs. The principal 

components and weights of this new PLS model are not significantly different from those of 

the previous model, and the same trends and effects are observed, so that the two instances 

of the PLS model are statistically equivalent. The second data set with the remaining data 

points is used to validate the predictions of the PLS model against the actual observations of 

the absolute error on the key performance indicators of the heat exchangers.  

a) 

 

b) 

 

c) 

 

d) 

 

Figure 4.7. Cross validation results of the PLS model for 7 samples. a) Tube side 

temperature absolute error, b) shell side temperature absolute error, c) tube side pressure 

drop absolute error, d) heat duty absolute error. 
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Figure 4.7 compares the predictions obtained with the PLS model and the observations 

of the tube side outlet temperature, shell side outlet temperature, tube side pressure drop, and 

heat duty absolute errors. In most of the data points used for validation – 7 different heat 

exchangers – the difference between the observations and the PLS predictions is within one 

standard deviation, and the general trend is captured correctly – the effect of the geometric 

specifications of the exchangers on the key performance indicators error between model A 

and model B. Hence, the PLS model can be used to estimate beforehand the potential 

differences between the predictions obtained using the lumped model (A) or the distributed 

model (B) given the complete specification of an exchanger and its operating conditions. In 

this way, a decision of whether the lumped model can be adequate to represent a given 

exchanger can be done without running any simulation of the system or collecting data. 

4.4.2. Validation under dynamic fouling operation 

For the dynamic validation of the lumped model the data is divided in two sets: one 

over an estimation horizon for fitting, and another over a prediction horizon for validation. 

Four estimation horizons are considered: 90 days (24.6%), 180 days (49.3%), 270 days 

(73.9%), 365 days (100%), where the value in parenthesis is the percentage of data used for 

fitting. For all the case studies the parameter estimation problem formulated in Section 4.3, 

Eq. (4.2), is solved to determine the fouling parameters and the deposit roughness of the 

lumped model. The absolute average error (AAE), Eq. (4.3), between the dynamic profiles 

predicted by the two models is used as an indicator of the precision of the lumped model. 

The AAE is calculated for the key performance variables of each exchanger, over the 

estimation horizon, the prediction horizon, or the overall operating time. 

= 1 ( − )  (4.3) 

Figure 4.8 shows the AAE results for each key performance variable: the tube side 

outlet temperature, row 1; the shell side outlet temperature, row 2; the tube side pressure 

drop, row 3; and the heat duty of the exchanger, row 4. In each of these figures the points 

represent a single heat exchanger, and the average error is calculated at each estimation 

horizon. Also, the average trend representing the evolution of the error with respect to the 

estimation horizon is shown in the figure. The AAE calculated for the estimation horizon – 

column 1 – indicates the quality of fit of the tuned model, that for the prediction horizon – 
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column 2 – indicates the prediction error on new observations, and that for the overall 

operation – column 3 – captures the complete scenario. For all the key performance variables 

the AAE in the prediction horizon decreases as the estimation horizon increases because more 

data is included in the estimation problem so that the lumped model (A) represents better the 

behaviour of the distributed model (B). However, for estimation horizons greater than 180 

days no significant improvement on the prediction errors is observed, and on average the 

lumped model fitted with data up until 180 days of operation is as good as that fitted with the 

whole data set in predicting the dynamic trends of the distributed model.  

While, in the average, the AAE calculated within the prediction horizon decreases with 

respect to the estimation horizon, the AAE calculated within the estimation horizon remains 

almost constant. Regardless of the size of the data set used in the parameter estimation 

problem, the model adapts to the observations and predicts the dynamic behaviour of the 

distributed model with the same precision, although the variability increases in the case of 

the tube and shell side temperature. For some specific exchangers, the AAE observed for the 

overall operation is large. For instance, for HEX2A and HEX2B of case study “4HE-B” with 

an estimation horizon of 90 days, the AAE of the tube and shell side temperatures is greater 

than 5 K. These are isolated cases observed on exchangers where the shell side flow rate is 

1.5 times higher than that of the tube side, but this error decreases when more data is included 

in the estimation problem. 

The evolution of the optimal parameters of the lumped model is analysed to 

demonstrate the differences between the two models considered, and how the lumped 

parameter model adapts to the “observations” of the distributed one. Figure 4.9 shows the 

fouling parameters and deposit roughness of the two models. The parameters estimated for 

the lumped model more closely approach those of the distributed model as the estimation 

horizon increases. In cases of a short estimation horizon, the model parameters, specifically 

the deposition constant and the deposit roughness, reach their upper bound, hence the 

predictions obtained with those models exhibit a large error, as observed in Figure 4.8. The 

estimation horizon and the data available must be sufficient to capture the fouling dynamics 

and the main interactions of the system for the prediction error to be acceptable. 
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a) 

 

b) 

 

c) 

 

d) 

 

f) 

 

g) 

 

h)

 

i) 

 

j) 

 

k) 

 

l) 

 

m) 

 

Figure 4.8. AAE evaluated within the estimation horizon (column 1), the prediction horizon 

(column 2), and the overall operation (column 3) as a function of the estimation horizon for 

the tube side temperature (row 1), the shell side temperature (row 2), the pressure drop (row 

3), and the heat duty (row 4). 
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a) 

 

b) 

 

c) 

 

Figure 4.9. Optimal parameters estimated for the lumped model (A) based on the 

observations of the distributed model (B) as a function of the estimation horizon (EH). a) 

deposition constant, b) removal constant, c) deposit roughness. 
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Despite the trend observed, the optimal fouling parameters of the lumped model do not 

have to be the same as those of the distributed one because the models are based on different 

assumptions. Given the noted model mismatch, there is no guarantee that, or indeed reason 

why, the fouling parameters should converge. In addition, the parameters estimated for the 

lumped model consider all the interactions in a large HEN so that it can predict better the 

overall effects observed in the system, unlike the estimation procedure of individual 

exchangers followed for the distributed model. Considering the inherent differences between 

the models, it is noted that they achieve equivalent prediction accuracy in the key 

performance of individual heat exchangers and that of the network if their fouling parameter 

are different. However, the parameters estimated for the lumped model are correlated. The 

correlation coefficient between the deposition constant and the removal constant is 0.45 

considering all exchangers. This hinders to make a distinction between the effect of the two 

phenomena, deposition and removal, although the same difficulty is observed in the 

estimation of the distributed model parameters because it is inherent to the structure of the 

Ebert-Panchal model used to represent the deposition rates. 

The cross validation performed varying the estimation horizon to compare the two 

models – lumped (A) and distributed (B) – demonstrates that they can predict the same 

performance of individual units and that of network, but their parameters must be different 

to do so. The cross validation of the lumped model also allows to define the frequency with 

which the predictive model should be updated if used in an online application that involves 

continuous sampling to support or automate decision making. Shorter estimation horizons 

have larger prediction errors, but that can be compensated with more frequent updates of the 

lumped model. 

4.5. Model validation using real plant data 

Plant measurements were available for the case study “REF-X” for an operation period 

of 3.5 years. For each exchanger, not for each shell, the inlet flow rates, and temperature of 

the tube and shell sides were measured and reported as a daily average value. In total, there 

are 5 flow indicators and 17 temperature indicators in this network. 

The data set is filtered to eliminate abnormal observations, and a time series approach 

is used to estimate missing measurements. Abnormal operating points are usually observed 
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during cleaning periods when data is collected but are not meaningful as the unit is not 

operating. They are easily identified as large unrealistic deviations from nominal conditions. 

The Hodrick-Prescott filter is used with a smoothing parameter of 1300 (Hodrick and Prescott 

1981; Ravn and Uhlig 2002). This approach divides the time series in a trend and a cycle 

component and allows to estimate the error between the smooth approximation and the actual 

data. Using this, data that is outside the 95% confidence interval is discarded. As an example, 

Figure 4.10 shows the application of this approach to identify outliers and estimate missing 

data for the volumetric flow rate of E01A/B. It shows the actual data, the confidence intervals 

predicted by the smoothing approach, and the outliers identified. In addition, Figure 4.11 

analyses the residuals of the time series estimation proving that they are normally distributed 

and identifying the points with large errors. This filtering approach is used for all the 

measured variables in the network. 

 

Figure 4.10. Volumetric flow rate measure, time series approximation, and outlier 

identification for E01 in case “REF-X”. (95% confidence interval: dash line, ♦ outliers). 

 

Figure 4.11. Residuals plot (left) and distribution (right) for the volumetric flow rate of E01 

in case “REF-X”. 
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The filtering procedure for the measurements proposed by Coletti (2010) is followed 

to identify outliers in correlated variables. It is based on calculating the exchanger duty using 

the tube side, and shell side measurements, then computing their difference and identifying 

outliers that lay beyond a predefined tolerance (0 ≤ | − | ≤ ). Figure 4.12 shows 

the absolute error calculated for the heat duty of exchanger E04 of the case “REF-X” and the 

tolerance defined to identify outliers. The negative values observed are because of missing 

data and they are out of the acceptable range. All positive values beyond the tolerance are 

outliers because of extreme or unrealistic operating conditions observed. Using this method, 

when an outlier is discarded all the measurements at that time point for that exchanger are 

discarded. Finally, the difference in the calculated heat duties – the one for the tube side and 

that for the shell side – is not zero indicating a systematic error that may arise from the 

physical properties specifications or heat losses that are not considered.  

 

Figure 4.12. Absolute error in the heat duty calculation based on the tube and shell side for 

exchanger E04 of case “REF-X”. 

The outliers identified using the Hodrick-Prescott method, and the method based on 

the duty calculations correspond to 1.64% of the flow measurements of the tube side, 1.46% 

of the flow measurements of the shell side, 2.14% of the tube side temperatures, and 1.98% 

of the shell side temperatures. The points discarded are negligible as the total data set has 

1240 time measurements, and 22 variables measured (27280 data points). 

The parameter estimation problem is solved for the distributed model, and for the 

lumped model using the direct and indirect approaches described in Section 4.3, Figure 4.2. 
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The data set in all cases is composed by the measurements between 250 and 450 days of 

operation when no cleanings were performed. Table 4.2 summarizes the results of the optimal 

fouling parameters that best fit the measurements for each of the fitting approaches using the 

different models. While the parameters of the distributed model (B) are estimated 

individually for each exchanger, those of the lumped model (A) – regardless of the approach 

– are estimated simultaneous for the whole network. There is good agreement among the 

models with respect to the order of magnitude and variability of the fouling parameters from 

one exchanger to another. In the direct estimation approach, an additional constraint is 

included to make the parameters of all the shells in an exchanger equal because of the lack 

of intermediate measurements. On the other hand, in the indirect approach, where all the 

measurements are available from using the distributed model as soft sensor, no additional 

constraint is needed. The fewer constraints of the indirect approach give it more flexibility 

and the potential to better explain the variance observed in the data.  

Table 4.2. Summary of optimal fouling parameter estimated with each modelling approach 

for the case “REF-X” based on plant data 

 ⁄  ⁄  

HEX 
Distributed 

(B) 

Lumped 

(A) - Direct 

Lumped (A) 

- Indirect 

Distributed 

(B) 

Lumped 

(A) - Direct 

Lumped (A) 

- Indirect 

E01A 241.66 290.24 227.80 2.84x10-6 8.07x10-7 4.18x10-7 

E01B 241.66 290.24 538.23 2.84x10-6 8.07x10-7 1.52x10-6 

E02A 241.66 209.15 298.90 2.84x10-6 4.56x10-7 5.91x10-7 

E02B 241.66 209.15 320.80 2.84x10-6 4.56x10-7 6.62x10-7 

E03A 98.44 60.07 119.58 1.03x10-6 1.00x10-10 2.49x10-7 

E03B 98.44 60.07 103.54 1.03x10-6 1.00x10-10 1.79x10-7 

E04 241.66 280.75 182.46 2.84x10-6 1.00x10-10 1.57x10-7 

E05A 241.66 294.23 306.92 2.84x10-6 1.05x10-6 5.95x10-7 

E05B 241.66 294.23 335.33 2.84x10-6 1.05x10-6 7.27x10-7 

The prediction capabilities of each model are compared within a time horizon of 90 

days of operation immediately following the estimation period. These data were not included 

in the parameter estimation problem. The initial exchanger conditions – initial deposit 

thickness – are estimated using the respective model from the previous operating period, and 

inlet conditions of the network are taken from the measurements available. Figure 4.13 shows 

the prediction of the outlet temperatures of E05 for each of the modelling approaches and 

compares them against the actual observations. All models capture the observed trend, the 

dynamic variability, and the effect of the input variables on the key performance variables. 
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The tube side temperature is overestimated, and the shell side temperature underestimated by 

the lumped model using the direct approach, but when the indirect approach is used, the error 

with respect to the measurement decreases significantly. Using the indirect approach to 

estimate the fouling parameters of the lumped model, there is no significant difference 

between its predictions and those of the distributed model, although for both some mismatch 

is observed with respect to the plant measurements. 

a) 

 

b) 

 

Figure 4.13. “REF-X” case, E05 tube side outlet temperature (a), and shell side outlet 

temperature (b) predicted with each modelling approach. 

The prediction errors on the tube side and shell side outlet temperatures are calculated 

for all the exchangers in the network and for all the data points – a time horizon of 1240 days. 

The distributions of these errors are presented in Figure 4.14, the mean and standard deviation 

are also presented in the figure as the parameters of a normal distribution, ( , ). For all 

the models the distribution of the errors follows an approximately normal distribution with 

mean close to zero. The variance of the errors can be large, up to 10 K in some cases, mainly 

caused by the uncertainty on the initial conditions of the network, and the quality and 

variability of the data available. Based on these frequency distributions it is not possible to 

affirm that there is as statistical difference among the prediction accuracy of the thermal 

performance achieved with the various models. However, there is a significant improvement 

in the prediction accuracy when the indirect approach is used to determine the fouling 

parameters of the lumped model with respect to the direct approach. The average prediction 

error of the tube side temperature achieved with the lumped model is reduced from 3.2 K to 

0.8 K using the indirect approach. The shell side temperature average prediction error is also 

reduced from 1.5 K to 1.3 K, although the variance increases for this variable. These 
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improvements in the prediction of the thermal performance demonstrate the advantages of 

using the distributed model as a soft sensor to estimate missing measurements, and then use 

those in the parameter estimation problem of the lumped model to have a better 

understanding of the system. Among the three modelling approaches, the distributed model 

is the one that in average predicts better the outlet streams temperature of the exchangers – 

average error closer to zero. 

a) b) 

Figure 4.14. Distribution of the prediction error for the tube side outlet temperature (a) and 

the shell side temperature (b) using three modelling approaches for the case “REF-X”. 

Finally, the hydraulic performance predicted by the lumped model (A) is validated 

against of that predicted by the distributed model (B). It is not possible to perform a direct 

validation against plant data because pressure measurements were not available. Figure 4.15 

shows the distribution of the pressure drop errors calculated between the lumped and the 

distributed models for all heat exchangers in the case study. The parameters of the lumped 

model have been determined using the direct and indirect approaches – see Figure 4.2. The 

mean and standard deviation of the errors are presented in the figure as parameters of a 

normal distribution. It is observed that the predictions of the lumped model improve 

significantly when the indirect estimation approach is used instead of the direct one – the 

variability in the distribution of the errors decreases while the average error is close to zero 

in both cases. In the indirect approach, the deposit roughness, and all other fouling parameters 

of the exchangers, are estimated using the soft measured pressure drop and intermediate 

temperatures predicted by the distributed model (B). This allows to achieve better predictions 

with the lumped model (A). On the other hand, in the direct approach there are no pressure 
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measurements available to estimate the deposit roughness, and this parameter is assumed to 

be fixed and constant for all exchangers at the same value used in the distributed model. 

These results also show that the parameters used locally in the distributed model do not 

necessary match those of the lumped model that can best explain the variability in the data. 

Therefore, the lumped model can accurate predict the dynamic performance of HEN under 

fouling when this estimation procedure is followed. 

 

Figure 4.15. Distribution of the prediction error for the tube side pressure drop using two 

estimation approaches for the lumped model parameters for the case “REF-X”. 

4.6. Concluding remarks 

The axially lumped, radially distributed model for HEN under fouling developed in 

Chapter 3 was demonstrated to be valid in a wide range of scenarios, and operating 

conditions. The model has been validated in two ways. The first, by comparing its prediction 

capabilities against those of a benchmark previously validated model – a 2D axially and 

radially distributed model for the heat exchangers. The second, by the ability of the model to 

predict actual field data observed in a preheat train. Under both circumstances, the model 

developed has been proven sufficiently accurate and reliable to explain the system dynamics, 

fouling behaviour, and the effect of the operating variables on the performance of individual 

heat exchangers and of the whole network. 

A parameter estimation approach was used to determine the optimal fouling parameters 

of the lumped model based on the prediction of the distributed model. This procedure allowed 
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to achieve comparable prediction accuracy of the key performance variables between the two 

models, hence the models are interchangeable. However, at clean conditions the lumped 

model underestimates the tube side pressure drop and overestimates the outlet shell side 

temperature, and those errors cannot be corrected by a better estimation of the fouling 

parameters. A PLS analysis is performed and the baffle spacing, baffle cut, and shell diameter 

are identified as the main features that explain the base error on the shell side temperature. 

The number of tubes and tube length are identified as the features that explain the pressure 

drop error. Hence, the PLS model developed can be used to estimate the prediction errors 

and differences between the lumped and distributed models a-priori – without performing 

any simulation – using only the heat exchanger specifications and operating conditions. This 

procedure helps to identify which model is best suitable to accurately describe the 

performance of a given unit. 

A methodology has been developed to estimate the fouling parameters of the lumped 

model. It exploits the advantages of the two modelling approaches considered here – lumped 

and distributed models for heat exchangers – using the fitted benchmark model as a soft 

sensor to estimate missing or unmeasured data. This indirect estimation procedure reduces 

the average prediction error on tube side temperature from 3.2 K to 0.8 K, and that on shell 

side temperature from 1.5 K to 1.3 K. It also improves the predictions of the hydraulic 

performance of the network by narrowing the variability of the errors.  

Additional measurements can be helpful to further validate the model developed under 

different realistic operating conditions, and pressure measurements are valuable to improve 

the prediction capabilities of any of the models. The validated lumped model for HEN under 

fouling has the potential to be used within optimization algorithms to determine operation 

policies, cleaning schedules, and retrofit alternatives without the burden of a huge 

computational load. In addition, the model parameters can be updated in real time for online 

applications that support decision making in the operation and maintenance of large HEN. 
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Chapter 5  

 

Optimizing preheat trains under fouling: 

solution strategy for large problems 

The application of the formulation for optimizing HEN under fouling presented in 

Chapter 3 is limited by the complexity of the problem and the computational load required 

to find a solution. In this chapter, an efficient reformulation and solution strategy based on 

complementarity constraints is presented. It relaxes the integer variables transforming the 

MINLP problem into an NLP, but it introduces additional constraints so that the relaxed 

problem converges to the solution of the original formulation. It is demonstrated that the 

proposed strategy solves the cases presented in Chapter 3 much faster, reducing the 

computational time by 99%. This allows to address industrial-size problems with many more 

units and long operating periods in feasible computational times. Finally, the optimal 

cleaning scheduling and dynamic flow distribution solution achieved with this strategy are 

validated by implementing them in Hexxcell StudioTM for an industrial preheat train. The 

optimal solution reduces significantly the operating cost ($ 4.3 MM savings) compared to the 

actual operation of the refinery despite the differences between the models used for 

optimization and validation. 

5.1. Introduction 

Solving the simultaneous optimal cleaning scheduling and flow distribution problem 

for HEN under fouling is a challenging problem. This problem is formulated as a large scale 

MINLP after discretizing the differential equations – the model developed in Chapter 3 of 

this thesis. Its main complicating factors are: the nonlinearities and nonconvexities of the 

expressions, the various time scales involved, and its combinatorial nature because of many 

discrete decision variables. Nevertheless, the model developed was proven and validated – 
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Chapter 4 – to be accurate and predictive for the dynamic behaviour of HEN and their main 

key performance variables.  

The integrated optimal cleaning scheduling and flow distribution problem was solved 

for small case studies involving all important features of large networks, but these cases are 

still not representative for real industrial applications. In some of the cases analysed in 

Chapter 3, increasing the number of periods in the time horizon increased the number of 

feasible schedule combinations such that the problem could not be solved to optimality in a 

reasonable time. Efficient algorithms for solving this problem are required. 

In this chapter, an efficient solution algorithm is presented for the optimization problem 

formulated in Chapter 3. The first part of the chapter introduces a reformulation of the 

optimal cleaning scheduling and control problem, and then it presents the mathematical 

background and assumptions of the solution algorithm. The computational advantages and 

capabilities of the new solution strategy are demonstrated solving previous case studies and 

new challenging real industrial problems. 

5.2. Problem reformulation with complementarity constraints 

The optimal cleaning scheduling and control problem of HEN under fouling is 

formulated as a MINLP in Eq. (3.54) and in a more general way in can be defined as in Eq. 

(5.1), where  are the continuous variables, and  the binary variables of the problem. This 

formulation assumes that the differential equations characterizing the dynamic behaviour of 

the system have been discretized using an appropriate approach, and that the time horizon is 

represented by a continuous time discretization. Usually, solution algorithms for MINLP 

problems treat continuous and discrete variables at different levels. For example, by relaxing 

and branching on the binary variables, or decomposition strategies segregating the variables 

in two different optimization subproblems solved iteratively. In those approaches relaxed 

optimization problems are solved sequentially, and the number of those problems increases 

with the number of permutations of the binary variables making the computational time 

prohibitively large rapidly. Avoiding consecutive solutions of subproblems to solve the 

original MINLP formulation and handling all variables at the same level will be advantageous 

to reduce the computational time. 
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min, ( , ) . . ℎ( , ) = 0 ( , ) ≤ 0 ∈ ⊆ ℝ  ∈ = {0,1}  

(5.1) 

Complementarity constraints are nonlinear constraints that offer an alternative to model 

switches, discrete decisions, and any other exclusive ‘OR’ relationship between two 

variables. Hence, these constraints can model discrete decisions in an optimization problem 

that is formulated as an NLP, and that formulation is referred as mathematical problem with 

complementarity constraints, MPCC (Biegler 2010). 

A complementarity constraint can be defined between two bounded variables, and it is 

represented in Eq. (5.2) assuming one of their bounds is zero. This constraint indicates that 

either one the inequalities is active at the optimal solution, so that one of the variables is at 

its bound while the other is free.  

= 0, > 0 ′  > 0, = 0 ⇒ 0 ≤ ⊥ ≥ 0 (5.2) 

Complementarity constraints can be used to model binary decisions. The binary 

variables are relaxed and bounded within a [0,1] interval, and slack variables are introduced 

to the formulation. Two slack variables are required per binary variable, one to use as a 

complement for the true (1) value of the variables, and the other as a complement for the 

false (0) value of the variable. To ease convergence of the problem, those two slack variables 

are bounded and must be exclusive between each other. As the binary decisions can only take 

one of two states at the optimal solution, the slack variables associated follow the same 

principle (Powell et al. 2016; Ramos, Gómez, and Reneaume 2014). Eq. (5.3) presents the 

set of constraints necessary to model binary decisions. This set of constraints efficiently 

replace the binary variable ∈ {0,1}, for its continuous relaxation ∈ 0,1  without losing 

its ability to model discrete events and true/false decisions. 

0 ≤ ⊥ ≥ 0 0 ≤ (1 − ) ⊥ ≥ 0 0 ≤ , ≤ 1 + = 1 

(5.3) 

The original MINLP problem, Eq. (3.54) or in short notation Eq. (5.1), is reformulated 

as an MPCC relaxing the binary variables and introducing complementarity constraints, Eq. 
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(5.4). At the optimal solution the MPCC reformulation satisfies all the constraints of the 

original problem and their solutions are equivalent. In this way, the principal complicating 

factors of solving the MINLP problem – mainly its combinatorial nature – are avoided, but 

new nonlinearities and nonconvexities are introduced in the resulting formulation.  

A key difference between the two solution approaches is that standard MINLP solution 

strategies provide a lower and upper bound for the optimal solution at every major iteration 

allowing an early termination with a feasible solution, while the MPCC strategy does not and 

it solves the problem to a local optimum directly. In addition, MPCC problems are not well 

posed as they do not satisfy constraint qualification conditions for optimality. For instance, 

they do not satisfy the linear independency of the gradients of the active constraints at the 

optimal point – linear independency constraint qualification, LICQ – hence some of the 

constraints multipliers may be unbounded at the optimal solution (Biegler 2010). 

min, ( , ) . . ℎ( , ) = 0 ( , ) ≤ 0 0 ≤ ⊥ ≥ 0, = 1,2, … ,  0 ≤ (1 − ) ⊥ ≥ 0, = 1,2, … ,  + = 1, = 1,2, … ,  ∈ ⊆ ℝ  , ∈ = 0,1  ∈ = 0,1  

(5.4) 

MPCC reformulations have been successfully used for solving dynamic optimization 

problems involving binary decisions such as the start-up of a batch distillation column 

(Raghunathan, Soledad Diaz, and Biegler 2004), the operation of a cryogenic distillation unit 

(Raghunathan, Soledad Diaz, and Biegler 2004), and the relief valve operation for safety 

considerations in a CSTR operation (Raghunathan and Biegler 2003). This motivates using 

the MPCC reformulation to solve the optimal cleaning scheduling and flow control problem 

of HEN for real time applications. 

Under the MPCC reformulation, the way operational disjunctions, Eq. (3.30), are 

considered in the model can be different than using BigM constraints. Although BigM 

constraints were proven to work well for optimizing small networks, they introduce 

additional constraints and slack variables and may define a loose relaxation of the problem. 

While they were advantageous solving the optimal cleaning scheduling MINLP problem 
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because they only introduce linear constraints, in the MPCC reformulation this is not a 

significant advantage as important nonlinearities arise from the complementarity constraints. 

Hence, to reduce the size of the problem and to tighten its integer relaxation – important 

features when solving a MPCC formulation to avoid local minima or infeasible solutions – 

the operational disjunctions are formulated as the product of a binary variable and a nonlinear 

expression. The BigM constraints associated with the heat transfer of each exchanger under 

either idle or operating states are replaced by the nonlinear expression of Eq. (5.5). This 

nonlinear expression defines the two possible states of each unit regarding the heat transfer. 

In addition, the disjunctions associated with the differential equations, those describing 

fouling and ageing, are redefined as Eq. (5.6) assuming a continuous time representation, and 

Eq. (5.7) represents the continuity constraints for the variables between two periods. If a unit 

is idle for a given period, then the derivative of the variable is zero, and the initial condition 

of the next period is the clean state defined for the unit. All other disjunctions derived 

previously for the model are not modified, and the BigM formulation is used. Those are the 

bypass flow around the exchanger and the tube side pressure drop when the units are idle or 

operating.  

, = 1 − , 1ℎ , + 2 , + ,
1ℎ , + , , , ∀ ∈ , ∈  (5.5) 

 ̅( , , ) = 1 − , Τ ( , , ) , ∀ ∈ , ( , ) ∈ (1,2), … , ( , ) | > 1 (5.6) 

, , = 1 − , , , + , , ∀ ∈ , ∈ 1, … , ) | > 1 (5.7) 

A new formulation for the optimal cleaning scheduling and flow distribution problem 

is obtained using the MPCC strategy and redefining the operating disjunctions. Solving the 

MPCC reformulation of the problem requires an explicit definition of the complementarity 

constraints, and a way to handle optimization problems that do not satisfy LICQ. These issues 

are discussed and addressed in the next section. 

5.3. Solution strategy using MPCC 

The complementarity between two variables can be defined by their product 

( = ), by the Fischer-Burmeister function = + − + , or by the 

Natural residual function 2 = + − ( − )  (Herty and Steffensen 2012). First 
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and second derivatives exist for all these functions, although for the last two the first 

derivative is not defined when both variables are at their bound. The formulation as a bilinear 

product of variables is preferred because of its simplicity. 

Introducing complementary constraints as equality constraints in the problem 

formulation, = 0, causes numerical issues for most of NLP solvers as it does not satisfy 

LICQ. Hence, these constraints are relaxed as inequality constraints by a parameter, , such 

that ≤ . This is a regularized reformulation of the MPCC problem and it is solved 

sequentially as → 0 (Biegler 2010; Fletcher and Leyffer Sven 2004). Note that this 

approach to handle complementarity constraints is similar to the strategy used in interior 

point optimization algorithms. Those algorithms use a barrier parameter to solve for the 

inequality constraints and their multipliers. The barrier parameter can be compared to the  

term used in the relaxation of the complementarities, or it can even substitute it and update it 

within the interior point solution algorithm. These features of the MPCC problem 

formulation make interior point algorithms, such as IPOPT (Wächter and Biegler 2006), 

perform well for solving large scale problems efficiently. 

The complementarity constraints arising during the reformulation of the optimization 

problem of interest, Eq. (3.54), are defined as inequalities using the regularized  strategy. 

The resulting MPCC problem is solved as a series of NLPs as  is decreased from 1.0 to 

1x10-6 using a logarithm sequence. Hence, to obtain the optimal solution, seven NLPs are 

solved sequentially, and the solution of the final one corresponds to the optimal solution of 

the original MINLP. For ease of convergence the optimal solution of each relaxed problem 

is used as initialization of the following one which has a tighter value of , so that the initial 

point is close to feasibility. However, for the initial instance of the sequence, = 1.0, the 

initialization is defined accordingly to the procedure described in Appendix A for all case 

studies. Also, because of the initialization of the first NLP problem of the sequence is 

significantly different to the others, it is expected that this instance requires a longer 

computational time than the other 

5.4. Applications of MPCC reformulation and advantages 

A set of HEN, ranging from small ones to those of importance for industrial 

applications, are considered here to demonstrate the capabilities and advantages of the MPCC 
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reformulation strategy. First, the case studies used in Chapter 3 to demonstrate the 

capabilities of the model developed are revised and solved using the new solution strategy. 

Then, larger problems of industrial relevance, that cannot be solved with standard MINLP 

algorithms, are addressed to demonstrate the advantages of the proposed solution strategy 

and the benefits of integrating scheduling and control decisions for fouling mitigation. 

Finally, the optimal solution obtained for a real preheat train is validated with a more detailed 

model following a similar validation approach as that presented in Chapter 4. 

5.4.1. Comparison with standard solution strategies 

Three case studies used in Chapter 3 to demonstrate the capabilities of the model and 

the advantages of optimal fouling mitigation strategies are revised here. The cases are: 1HE, 

2HE-S, and 2HE-B, whose networks are shown in Figure 5.1, and all their specifications and 

operation conditions are detailed in Appendix A. All cases are modelled under the same 

conditions as Chapter 3 using a continuous time representation. The optimal cleaning 

scheduling and flow distribution problem is solved with the MPCC reformulation for each, 

and the solution is compared against that obtained in Chapter 3. Both solution approaches 

use the same problem initialization – constant time profiles for all the variables – so that the 

local optimum found, and the computational effort can be directly compared.  

a) 

 

b) 
 

 

c) 

 
Figure 5.1. HEN representation of the case studies of this chapter. a) Case 1HE, b) Case 

2HE-S, c) Case 2HE-B. 
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Table 5.1. Comparison of optimal solution for small case studies using two solution strategies: branch and bound, and problem 

reformulation with complementarity constraints. 

Case 1HE 2HE-S 2HE-B 

Solution strategy* BB-CT MPCC BB-CT BB-CT MPCC MPCC BB-CT BB-CT MPCC MPCC 

 + 10 10 9 13 9 13 9 13 9 13 

Continuous variables 1407 1307 2362 3414 2182 3154 2794 4038 2614 3778 

Binary variables 20 0 27 39 0 0 27 39 0 0 

Equality constraints 1130 1100 1962 2834 1908 2756 2322 3354 2268 3276 

Inequality constraints 2819 2599 4517 6525 4121 5953 5669 8189 5273 7617 

CPU time [min] ** 32.86 0.11 548.64 3000.00 0.29 0.55 374.38 3000.00 0.27 0.38 

Total energy [MW-h] 4.077x105 4.077x105 3.800x105 3.801x105 3.802x105 3.801x105 3.910x105 3.910x105 3.910x105 3.910x105 

Production profit [$] 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 6.617x108 

Fuel cost [$] 1.101x107 1.101x107 1.026x107 1.026x107 1.026x107 1.026x107 1.056x107 1.056x107 1.056x107 1.056x107 

Carbon cost [$] 1.859x106 1.859x106 1.733x105 1.733x105 1.734x105 1.733x105 1.783x105 1.783x105 1.783x105 1.783x105 

Cleaning cost [$] 30000 30000 90000 90000 90000 90000 90000 90000 90000 90000 

Total cost [$] 1.290x107 1.290x107 1.052x107 1.052x107 1.052x107 1.052x107 1.083x107 1.083x107 1.083x107 1.083x107 

Cleaning schedule 

(HEX#, time [days]) x 
(1, 180) (1, 180) 

(2, 115) 

(1, 182) 

(2, 250) 

(2, 114) 

(1, 182) 

(2, 250) 

(2, 82) 

(1, 174) 

(2, 237) 

(2, 114) 

(1, 181) 

(2, 248) 

(1, 88) 

(2, 180) 

(1, 278) 

(1, 80) 

(2, 172) 

(1, 261) 

(1, 80) 

(2, 172) 

(1, 263) 

(1, 80) 

(2, 172) 

(1, 262) 

Lower bound (cost) 1.122x107 - 1.052x107 1.039x107 - - 1.083x107 1.074x107 - - 

Upper bound (cost) 1.122x107 - 1.052x107 1.052x107 - - 1.083x107 1.083x107 - - 

Optimality gap [%] 0.00 - 0.00 1.29 - - 0.00 0.83 - - 

* BB-CT: branch and bound algorithm using a continuous time formulation, MPCC: reformulation with complementarity constraints 

** For the MPCC approach, it represents the total computational time of all sequential solutions of the problem as → 0 
+ Number periods used to discretize time with a continues time representation 
x Cleaning time rounded to the closest integer value for the continues time approach 
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Table 5.1 presents a detailed comparison of the problem size, computational load, 

optimal operating cost, and optimal cleaning schedule for each case study using two solution 

strategies: branch and bound for the MINLP formulation of the problem, and sequential 

regularized  approach for the MPCC reformulation. There are differences between the two 

formulations in terms of problem size and nature of the variables involved, the local optimum 

found, and the computational load necessary to solve it. From an overall perspective, the 

MPCC reformulation and solution strategy performs better than or as well as the MINLP 

approach. 

In terms of problem size, the MPCC reformulation has fewer variables and constraints 

than the MINLP formulation using the same number of periods in the time horizon. The 

reformulation reduces the number of variables and constraints by ~7% which is an 

improvement, but, given the large scale of the problem, this is not a main advantage in 

reducing computational time. The main advantage of the MPCC reformulation is that it does 

not use binary variables to model the states of the units. For all the problems solved to 

optimality – optimality gap of 0% – the computational time required to find an optimal 

solution decreases by 99% using the MPCC reformulation instead of the MINLP formulation. 

The computational time reported for the MPCC is the total time required to solve the 

sequence of NLP problems, which in this case corresponds to seven instances decreasing the 

value of . It was observed that the solution time of the first instance in the sequence of NLPs 

may represent up to 40% of the total time of the MPCC reformulation because of the 

initialization – all other instances uses a better initialization which the optimal solution of the 

previous one. The reduction in the computational time, enables to solve much larger and 

challenging problems in reasonable times. For instance, the previous formulation of the 

optimal cleaning scheduling problem of cases 2HE-S and 2HE-B with 13 periods in the time 

horizon could not be solved to optimality using the branch and bound algorithm in 3000 min 

of computation, but with the proposed reformulation they are solved in less than 1 min. In 

this sense, solving the optimal cleaning scheduling and flow distribution problem for large 

HEN operating over long horizon is feasible using the proposed MPCC reformulation. 

The optimal solutions found using the MINLP and MPCC formulations are equivalent. 

Both solutions achieved the same economic benefits, as the difference in operating costs is 

not significant, although the optimal cleaning schedule may be different. For the cases with 
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two exchangers in the network, the optimal cleaning schedule changes with respect to the 

number of periods used in the time horizon, and with respect to the formulation of the 

problem, though only the starting time of the cleanings changes while the allocation of the 

cleanings is the same. These differences can be attributed to: i) the accuracy of the integration 

that changes with the number of periods, ii) the different representation of the operation 

disjunctions used in the MINLP and MPCC formulations, and iii) the existence of multiple 

local optima with the same or similar objective function values. The latter indicates that the 

timing of the cleaning is not as important as their allocation and sequence. If the cleaning 

time changes for a given cleaning schedule and within reasonable bounds – for instance, case 

2HE-S solved with the MPCC formulation for two time discretization – its effect on the 

overall cost of the operation can be negligible. In addition, the existence of multiple optimal 

solutions to the problem, and the low sensitivity of the objective function to the cleaning 

times hinders closing the optimality gap when standard MINLP solution approaches are used. 

The MPCC reformulation has proven to be efficient and precise. The capabilities and 

advantages of this approach are evaluated with realistic case studies in the following section. 

5.4.2. Solving industrial size case studies 

The optimal cleaning scheduling and control problem is solved for the following case 

studies: LN-S1, LN-B1, and REF-X. The structure of the networks is shown in Figure 5.2, 

and all the operating conditions and specifications of exchangers are presented in Appendix 

A. All networks correspond to the hot end of preheat trains, so they operate at high 

temperatures and fouling rates are the highest in the system. The first network has all units 

in a series configuration and some of them interact through a hot stream in a counter flow 

configuration. The second network has parallel branches so that control elements – flow split 

between the branches – are additional degrees of freedom, and the flow distribution in the 

network can be dynamically adapted with respect to the cleanings. These two cases represent 

the most common configurations found in refining applications, and all others can be derived 

from combinations of the two, adding more units or flow splits. The final network is taken 

from the same real industrial application used in Chapter 4, for which measurements and the 

fouling mitigation actions taken by the refinery are known. The actual operation of the REF-

X case is used to demonstrate the benefits of the optimization approach using a MPCC 

reformulation with respect to heuristic approaches used in industry. 
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The large number of units and periods needed to discretize the time horizon – using a 

continuous time approach – introduce many binary decisions (> 100 for each case). The 

optimization problems become computationally prohibitive to address with MINLP 

algorithms, thereby the MPCC reformulation and solution strategy are advantageous.  

a) 

 
b) 

 
c) 

 
Figure 5.2. HEN representation of the case studies of this chapter. a) Case LN-S1, b) Case 

LN-B1, c) Case REF-X. 

HEX1 HEX2 HEX3 HEX4 HEX5

HEX6 HEX7 HEX8

Crude oil

Kerosene

VR

PA kerosene LGO PA LGO

HVGO
Furnace

HEX3

HVGO
HEX5

Sp_crude
Mx_crude

Sp_HVGO

Mx_HVGO

HEX4

HEX6

Sp_VR

Sp_VR

HEX1

Crude

HEX2

PA LGO

VR

Furnace

E01A

Crude

E01B

E05A

E05B

E04

BPA

Sp_crude

Mx_crude

E02A

E02B

E03A

E03B

SS4 RS

SS5

Furnace



155 

The optimization problem for the case LN-S1 is solved by discretising the time horizon 

with 20 periods of variable length, and an optimal solution is found in 21.8 min of CPU time 

using the MPCC reformulation. The optimal cleaning schedule for this case has 10 cleanings 

over a year of operation, and it is displayed in Figure 5.3a. HEX5 – HEX8 are cleaned twice, 

HEX3 and HEX4 once, and HEX1 and HEX2 are never cleaned. The optimal solution does 

not have cleanings at the beginning of the operation nor towards the end because the initial 

state of the network is clean, and cleanings do not have a positive economic trade off close 

to the end of the operation. Some exchangers are cleaned simultaneously – there is a 

constraint of maximum two simultaneous cleanings – which is a good compromise between 

the operating time with fewer units, hence higher energy consumption, and the heat recovery 

capacity after cleanings.  

Figure 5.3b shows the furnace duty for the case LN-S1. The effect of the cleanings is 

observed as a peak increase in the duty for the duration of the cleaning, followed by a 

significant decrease when the unit is back in operation. The energy consumption of the 

optimal cleaning scheduling solution is lower than that of a no mitigation (NM) strategy, and 

it is observed in the furnace duty profiles. Despite the temporary increase in furnace duty 

during cleanings, the overall effect over the operating horizon is a reduction of energy 

consumption. This energy savings represents a cost reduction of $ 1.28 MM with respect to 

the alternative of no cleanings.  

a) 

 

b) 

 

Figure 5.3. Optimal cleaning schedule (a) and furnace duty (b) for case LN-S1. 

In the optimal cleaning schedule solution, the exchangers at the end of the network are 

cleaned more times than those at the beginning because the high temperatures of the crude at 

those locations promote chemical fouling. Other factors affecting the cleaning sequence are 

the heat duty of the units at cleaned conditions, and the interaction among the units through 
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the hot streams. Figure 5.4 shows the fouling resistance and the heat duty for all the 

exchangers in the LN-S1 network when no cleanings are performed. Those exchangers that 

are never cleaned – HEX1 and HEX2 – have the lowest fouling resistance, and the lowest 

heat duty under clean conditions so cleanings are not attractive for those units. On the other 

hand, units with a large heat duty located at the end of the network loose performance faster 

than those at the beginning, and cleaning these units is profitable. The importance of the 

interaction of the units through the hot streams is observed in the heat duty of HEX3 and 

HEX6 as they reach a maximum, whereas their fouling resistance always increases. While 

the performance of HEX8 decreases, the outlet temperature of its shell side increases so that 

the temperature difference in the following exchangers interacting with this stream is larger. 

Because of this increase in the temperature difference in HEX3 and HEX6 their heat duties 

increase although their fouling resistances increase.  

a) 

 

b) 

 

Figure 5.4. Fouling resistance (a) and heat duty (b) for exchangers of case LN-S1 when 

there are no cleanings. 

a) 

 

b) 

 

Figure 5.5. Heat duty of heat exchangers HEX3 (a) and HEX8 (b) for case LN-S1 
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The interaction among the units in a large HEN are still important when the cleanings 

are optimally defined. Figure 5.5 shows the heat duty of HEX3 and HEX8 of case LN-S1 for 

the no mitigation and optimal cleaning scheduling scenarios. HEX3 interacts with the hot 

stream coming from HEX6, and its heat duty exhibits a maximum, while HEX8 does not 

interact with other hot streams and its heat duty follows the expected decay and recovery 

behaviour after cleanings. The heat duty of HEX3 is also affected by the cleanings of 

exchangers that interact with the VR hot stream. For instance, when HEX8 and HEX6 are 

being cleaned the duty of HEX3 increases – around the first 100 days of operation – because 

its shell side inlet temperature increases, but after the cleanings of those units, the duty of 

HEX3 decreases to a value lower than that at which the unit was operating before the 

cleanings. While cleaning HEX8 or HEX6 allows to recover their thermal efficiency, it 

decreases that of HEX3, and similar interactions are observed among these three exchangers 

when another is cleaned. These are complex trade-offs when the units in the network are 

linked with different streams, but the modelling approach and optimization formulation allow 

to capture them and make optimal decisions to mitigation fouling and minimize cost. 

Two scenarios for the case LN-B1 are considered: one where the tube side flow of the 

parallel branches is pressure driven (Δ  prefix), and other where it can be freely controlled 

(no prefix). In both scenarios, the flow distribution of HVGO and VR streams are control 

degrees of freedom and they can be dynamically modified to minimize the total operating 

cost. For each of these scenarios four operating modes are analysed – see Table 1.1 for 

notation and definitions. These are: i) no mitigation (NM), ii) optimal flow control (Sp), iii) 

optimal cleaning scheduling (SCH), and iv) simultaneous optimal control and scheduling (Sp 

+ SCH). All the split fractions that are degrees of freedom are bounded between 20% and 

80%. These operating modes serve to demonstrate the advantages of integrating optimal 

scheduling and control decisions for relevant industrial applications. 

Table 5.2 shows the computational results and the total operating cost of all scenarios 

of case LN-B1. The pressure flow constrained scenarios require a longer computational time 

to solve because of the additional nonlinear constraint introduced, although this does not 

represent a limitation. All optimization problems defined, including those with many binary 

decisions, are solved in a reasonable computational time – less than 30 min of computation. 
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Table 5.2. Computational results and optimal solution for various operating modes of LN-B1 case study 

Tube side flow*  Free 

Operating mode (i) NM (ii) Sp (iii) SCH (iv)  Sp + SCH (i) NM (ii) Sp (iii) SCH (iv)  Sp + SCH 

 + 20 20 25 25 20 20 25 25 

Continuous variables 15459 15619 15567 15727 15219 15459 15327 15567 

Binary variables 0 0 0 0 0 0 0 0 

Equality constraints 13840 13840 13840 13840 13760 13760 13760 13760 

Inequality constraints 29959 29959 29959 29959 29639 29639 29639 29639 

CPU time [min] ** 18.38 19.17 21.77 30.64 11.32 12.49 18.36 20.57 

Total energy [MW-h] 3.215x105 3.214x105 2.775x105 2.722x105 3.166x105 3.160x105 2.733x105 2.633x105 

Production profit [$] 6.470x108 6.470x108 6.470x108 6.470x108 6.470x108 6.470x108 6.470x108 6.470x108 

Fuel cost [$] 8.681x106 8.678x106 7.493x106 7.349x106 8.549x106 8.533x106 7.378x106 7.110x106 

Carbon cost [$] 1.466x105 1.466x105 1.266x105 1.241x105 1.444x105 1.441x105 1.246x105 1.201x105 

Cleaning cost [$] 0 0 270000 300000 0 0 270000 300000 

Total cost [$] 8.827x106 8.825x106 7.890x106 7.773x106 8.694x106 8.677x106 7.773x106 7.530x106 

*Δ : pressure driven tube side flow rate in parallel branches, Free: freely controlled tube side flow rate in parallel branches 

** For scheduling problems, the MPCC approach is used, and it represents the total computational time of all sequential solutions  
+ Number periods used to discretize time with a continues time representation 
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In the LN-B1 case the optimal control strategies marginally reduce the total operating 

cost, while the optimal cleaning schedule, and the integrated optimal cleaning scheduling and 

control strategies results in significant savings – all relative to the NM operating mode. The 

savings achieved with only optimal control strategies are on the order of thousands of dollars, 

whereas those achieved with any strategy involving cleanings are in the order of millions of 

dollars. In addition, integrating optimal control and scheduling is the best alternative as the 

synergies between flow distribution and cleanings are exploited. The alternative of 

optimizing first the cleaning schedule, and then the flow distribution is not considered at this 

stage because it ignores important interactions, and it was previously demonstrated in 

Chapter 3 that it is not as effective as the simultaneous optimization approach. Finally, all 

the free flow scenarios have a lower operating cost than that of the flow constrained scenarios 

because of the additional degrees of freedom and the interaction of the flow rates with the 

cleanings. 

a) 

 

b) 

 

Figure 5.6. Furnace duty of case LN-B1 when the tube side flow is pressure driven or freely 

controlled. a) No mitigation and optimal control strategies, b) optimal cleaning scheduling 

and integrated strategies. 

The differences between the scenarios where the tube side flow rate is pressure driven 

and where it can be freely controlled are observed in the furnace duty for each operating 

mode. Figure 5.6 shows the furnace duty for these two scenarios, and for all the operating 

modes. Dynamically distributing the tube side flow rate among the branches is advantageous 

and reduces the energy consumption because the branches in the network are not balanced, 

the exchangers on each branch have different sizes and operate at different conditions, so 

their fouling rates are different. For the cases with no cleanings, distributing the flows of the 
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hot streams – on the shell side – does not have a significant effect and only a marginal 

reduction in the furnace duty is observed. However, for the simultaneous optimization of the 

scheduling and control – flow rates of the hot and cold streams – the furnace duty decreases 

significantly during most of the operating time. Also, the optimal cleaning schedule changes 

when the flow is pressure driven or when it is freely controlled. 

Figure 5.7 displays the optimal cleaning schedule with and without optimal flow 

distribution for the case LN-B1 when the flow is pressure driven, and when it is free. When 

the flow through the parallel branches is pressure driven and the hot streams split is fixed, 

exchangers on opposite branches are cleaned simultaneous so that the pressure of the 

branches is easily balanced. When the hot streams split is optimized, exchangers of the same 

branch are cleaned at the same time so that crude flows only through one branch – no need 

to balance pressure during the cleanings as one branch is completely idle – and all of the hot 

stream is diverted towards the active units. Also, in this case, cleaning one exchanger of one 

of the branches is feasible and profitable as the pressure drop of the branches is balanced and 

the hot stream distribution is adjusted to interact with the changing flow rates of the cold 

streams. On the other hand, when the tube side flowrate on parallel branches can be freely 

controlled the economic advantages are higher, and there are more interactions among the 

cleanings and the system dynamics. In this case, there are no simultaneous cleanings of the 

exchangers in the parallel branches, as there is no pressure constraint. All the flow rates of 

the network can respond dynamically in this scenario so that when a unit is idle, they are 

distributed among the remaining units to maximize the heat recovered.  

a) 

 

b) 

 

Figure 5.7. Optimal cleaning schedule of case LN-B1 when the tube side flow is pressure 

driven (a) and when it is freely controlled (b). 
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a) 

 

b) 

c) 

 

d) 

e) 

 

f) 

Figure 5.8. Flow split distribution of LN-B1. a, b) Crude split fraction to HEX3 with and 

without cleanings. c, d) HVGO split fraction to HEX3 with and without cleanings. e, f) VR 

split fraction to HEX4 with and without cleanings. 

Figure 5.8 shows the split fraction of the crude, HVGO, and VR streams of case LN-

B1 for all the operating modes. When there are no cleanings and the flow distribution is 

optimized for all the network, the split fraction of the crude and of the HVGO streams 

saturates at their upper bound, and that of VR stream exhibits a maximum close to the 

beginning operating and then it stabilizes at 73%. HEX3 and HEX4 have a higher duty than 

those on the opposite branch as their configuration has more tubes and passes than the others, 
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so it is advantageous to divert most of the flow to this branch. Similar trends are observed 

when the tube side flow is pressure driven, although the split fraction of the hot streams does 

not react to the same extent. On the other hand, when the cleaning schedule is optimized 

together with the flow distribution, the heat duties of the branches change dynamically 

causing the split fractions to change. Even when exchangers of opposite branches are cleaned 

simultaneously, all split fractions respond dynamically during and after the cleaning. For 

instance, when HEX3 and HEX6 are cleaned simultaneously at 100 days of operation and 

the crude split fraction is free, the crude flow is diverted from the HEX3 branch to the HEX5 

branch and then it remains split around 50% until the next cleanings scheduled in the 

network. For the same case, the HVGO flow is diverted to HEX5 during the cleaning, and 

that of VR to HEX4 which remains operating. Both hot streams react in the same way when 

the crude flow rate is pressure driven, but less variability in the split fraction of the crude 

stream is observed, and it only changes significantly when a whole branch is idle. 

The LN-B1 case demonstrates the advantages of simultaneously optimizing cleaning 

scheduling and flow distribution in HEN under fouling, the efficiency of the MPCC 

reformulation, and how realistic constraints, such as balanced pressure in parallel branches, 

affect the optimal operation of the system. The final network considered in this section – the 

REF-X case study – also has parallel branches, and the interactions and advantages discussed 

are also observed there. It is assumed that the crude flow rate can be freely controlled with 

split fractions bounded between 20% and 80%. 

The model used to characterize the operation of REF-X case is obtained solving a 

parameter estimation problem. The fouling parameters and deposit roughness of each 

exchanger are estimated to best predict the plant measurements. The parameter estimation 

procedure was presented in Chapter 4, and the parameters for this case study are taken from 

there. Because this model has been successfully validated, the benefits obtained from using 

it for optimal fouling mitigation can be directly compared with the actual refinery past 

operation. The cleaning schedule implemented in the refinery for this preheat train during the 

1500 days of operation is known and, based on the plant measurements, it is reasonable to 

assume that the flow distribution of the parallel branches remained constant at 50%. 

The optimal cleaning scheduling (SCH), and integrated optimal cleaning scheduling 

and flow control (Sp + SCH) problems are solved for the case REF-X based on the operating 
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conditions of the refinery. The effect of the time discretization on the optimal solution is 

evaluated varying the number of periods in the time horizon. Figure 5.9 shows the effect of 

the number of periods on the optimal operating cost, and the optimal cleaning cost, and it 

compares them with the no mitigation alternative (NM), and with the cost of the actual 

refinery operation. There is an almost constant difference between the optimal total operating 

cost of the SCH problem, and that of the Sp + SCH problem, although the trend of both is 

similar. In both cases the total operating cost decreases with the number of periods. However, 

for a number of periods greater than 30 there is no significant reduction of the total operating 

cost, though the number of cleanings increases. The cleaning cost increases almost linearly 

with respect to the number of periods for the case without flow distribution optimization, and 

it reaches an asymptotical value for the other case. The cleaning cost is proportional to the 

number of cleanings, and they increase with the number of periods because there are more 

alternatives available to allocate cleanings as the time horizon grid becomes finer.  

a) 

 

b) 

 

Figure 5.9. Effect of the number of periods in the time horizon on the optimal cleaning 

schedule of REF-X case. a) Total operating cost, b) Cleaning cost 

One clear advantage of the optimal cleaning scheduling approach is that with around 

the same cleaning budget of the actual operation – $ 0.75MM, solution with 20 periods in 

Figure 5.9 – the operating cost can be reduced by $ 2.8 MM at most. Hence, the timing and 

sequence of the cleanings are key for the operation, and not only the total number of 

cleanings. All optimization alternatives, except that with 10 periods and no flow distribution 

optimization, perform better than the actual operation of the refinery, and much better than 

the no mitigation alternative. The optimal operation of the network reduces the total operating 

cost by $ 0.5 MM - $ 3.0 MM relatively to the actual operation. 
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The number of units in the REF-X case and its long operating horizon are not a 

limitation to optimize its cleaning schedule when the MPCC reformulation is used. The 

computational time required to solve all optimization problems is presented in Figure 5.10, 

and it increases with the number of periods for the only reason that the problem size is larger. 

The time reported is the total time required to solve the sequence of NLPs using the 

regularized  approach. There is no significant difference between the computational effort 

required to solve the optimal cleaning scheduling problem, and that of the integrated optimal 

cleaning scheduling and flow control problem. The computational load for solving both 

problems scales up in the same way – linear trend – for the number of periods explored. 

Finally, considering that the time horizon is 1500 days and the large size of the problem, the 

computational load required to find an optimal solution pose no limitations to a recurrent 

evaluation of the problem, and to frequent monitoring and optimization of the operation of 

HEN under fouling. 

 

Figure 5.10. Effect of the number of periods in the time horizon on the computational time 

required to solve the optimal cleaning schedule of REF-X. 

The optimal solutions of REF-X case using 30 periods to discretize the time horizon 

are chosen for a further analysis. Figure 5.11 compares the actual cleaning schedule 

implemented in the refinery with the optimal ones with and without optimal dynamic flow 

distribution. The optimal cleaning schedules have more cleanings than the actual operation, 

and their sequence and timing are different. While the actual operation is conservative with 

respect to the cleanings, the optimal solutions are more aggressive and have more frequent 

cleanings of the same units because the overall economic trade-off between energy savings 
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and cleaning cost is positive. Another difference is that E05A/B is cleaned twice in the actual 

schedule, but never cleaned in the optimal alternatives. This is the largest heat exchanger 

with the highest cleaning cost, but not the largest heat duty under clean conditions. Its heat 

duty in clean conditions (5.2 MW) is comparable to that of E04 which is a single shell 

exchanger, meaning that the energy savings of cleaning E05A/B are rather low. On the other 

hand, E01A/B and E04 are cleaned frequently in the optimal solutions, and they were cleaned 

the most during the actual operation. These two exchangers have the two highest duties of 

the network and some of the highest fouling rates too, making their cleanings profitable, 

although they occur at almost regular intervals in the optimal cleaning schedule alternatives. 

 

Figure 5.11. Optimal cleaning schedule compare with that of the actual operation for the 

case REF-X. 

The optimal cleaning schedules obtained perform better than the actual operation of 

the preheat train despite more cleanings. However, the integrated optimal scheduling and 

flow control alternative has a lower operating cost than that achieved only considering 

scheduling decisions. The integrated alternative (Sp+SCH) also performs better than 

sequentially optimizing the cleaning schedule and then the optimal flow distribution of the 

network. The sequential optimization approach (SCHSp) leads to an operation with a cost 

of $ 56.8 MM, while the simultaneous optimization of the HEN results in a total cost of $ 

56.2 MM with fewer cleanings. Figure 5.12 shows the optimal furnace duty for all optimized 

alternatives, and their optimal flow split. For the sequential approach the furnace duty 

decreases significantly with respect to that of the optimal scheduling with constant flow 

distribution (SCH) because the crude stream split fraction reacts dynamically to the 

cleanings, so that it dynamically diverts the flow towards the branch that recovers more heat 

over the operating time. Although the sequential and simultaneous approaches considered all 
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the interactions of the networks and the trade-off between energy recovery and fouling rate 

– high flow rates in one branch may increase the heat transfer there, at the same time they 

increase the fouling rate in the opposite branch – the simultaneous approach gives the best 

operating alternative as it captures the effect of all decision variables at the same level. 

a) 

 

b) 

 

Figure 5.12. Furnace duty (a) and split fraction to E02A/B branch (b) for optimal cleaning 

scheduling solutions of REF-X case. 

The interactions among heat recovery and fouling rate in parallel branches when the 

flow rates are controlled dynamically can be observed in Figure 5.13. It shows the fouling 

resistance of E03A/B and E05A/B, which are located in opposite branches of REF-X case, 

for all the optimization scenarios. The sequential scheduling and then control optimization 

approach demonstrates how the fouling resistance of the exchangers in one branch decreases, 

while that of exchangers in the opposite branch increases when the flow split is optimally 

controlled. In addition, only by controlling the flow rate of certain exchangers their deposit 

can be partially removed as it is the case of E05A/B in the sequential approach between 800 

and 1000 days of operation. The increase in the flow rate going to the branch of exchanger 

E05A/B during that time increases the shear stress, and hence the removal rate, partially 

recovering the exchanger performance. Similarly, the fouling resistance of E03A in the 

simultaneous optimization case remains close to zero during most of the operation because 

the flow rates are controlled in a way that the deposit generated can be quickly removed by 

increasing the shear stress. The overall effect of those interactions is observed in an increase 

of the energy recovered in the network over the operating time. 
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The optimal cleaning schedule and flow distribution obtained with the MPCC 

reformulation of the problem for the REF-X case study is validated following a similar 

procedure to that described in Chapter 4. The optimal solution obtained with the lumped 

model (A) and the MPCC reformulation is implemented and simulated in Hexxcell StudioTM 

which uses the detailed distributed model (B). Initially, the lumped model (A) used in the 

optimization procedure was tuned based on the predictions of the distributed model (B) which 

acts as a soft sensor and provide temperature and pressure drop measurements for the 

parameter estimation problem.  

a) 

 

b) 

 
c) 

 

d) 

 
Figure 5.13. Fouling resistance of key heat exchangers of REF-X for optimal cleaning 

scheduling scenarios. a) E03A, b) E03B, c) E05A, d) E05B. 

The two models are used to simulate the following scenarios: no fouling mitigation, 

actual operation of the preheat train, and optimal cleaning schedule and flow distribution 

obtained with the MPCC reformulation. Figure 5.14 shows the furnace duty predicted by the 

two models for each of these scenarios. Both models predict the same trends in the furnace 

duty, meaning that they capture in the same way the effect and interactions of all variables in 
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the network, including the decision variables of the optimization problem solved. However, 

there is a small mismatch between the models, and the lumped one underestimates the furnace 

duty in all cases, although the bias only becomes significant after long periods without 

cleanings. The average absolute error in the furnace duty between the two models is 0.38 

MW, considering all scenarios, but that same error for the optimal solution is lower, 0.17 

MW, because there are no long operating periods without cleanings. These differences in the 

furnace duty predictions have an effect on the total operating cost of the network. On average 

this error is $ 0.52 MM over a time horizon of 1500 days, which is negligible with respect to 

the total operating cost – it corresponds to a 0.87% of the average total operating cost. Also, 

there are other sources of uncertainty that introduce errors to the total cost estimated such as 

the varying flow rates, crude blends processed, and market factors, making the mismatch 

observed in the implementation of the optimal solution acceptable.  

a) 

 

b) 

 

c) 

 
Figure 5.14. Validation of the furnace duty of REF-X case using a distributed model. a) No 

mitigation, b) Actual operation, c) Optimal cleaning scheduling and flow distribution 

The optimal cleaning schedule and flow distribution solution of REF-X is also 

validated for the individual key performance variables of three exchangers of the networks. 

Exchangers E01A, E02A, and E03A are selected for this purpose as they have different 

locations in the network, hence they are exposed to different operating conditions, the effect 

of which should be predicted by the model used in the optimization. Figure 5.15 to Figure 

5.17 show the validation of the heat duty, the fouling resistance, and the tube side pressure 

drop, respectively, for the three exchangers considered. Good agreement between the models 

is observed in all the variables when the optimal solution obtained with the lumped model 

(A) is validated using the distributed model (B). Both models predict the same effect of the 

decision variables – cleaning actions and dynamic flow distribution – on the performance of 

the exchangers, so that decisions made based on the lumped model are confirmed by the 
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distributed model, and thereby deemed valid for the actual operation of the system. The 

prediction mismatch in these variables is minimal, and the overall error observed in the 

furnace duty arise from the cumulative effect of the individual errors as they propagate 

through the network. 

a) 

 

b) 

 

c) 

 

Figure 5.15. Validation of the heat duty of exchangers: a) E01A, b) E02A, c) E03A of REF-

X case using a distributed model at the optimal cleaning scheduling conditions. 

a) 

 

b) 

 

c) 

 

Figure 5.16. Validation of the average fouling resistance of exchangers: a) E01A, b) E02A, 

c) E03A of REF-X case using a distributed model at the optimal cleaning scheduling 

conditions. 

a) 

 

b) 

 

c) 

 
Figure 5.17. Validation of the tube side pressure drop of exchangers: a) E01A, b) E02A, c) 

E03A of REF-X case using a distributed model at the optimal cleaning scheduling 

conditions. 

Some variables of the heat exchangers differ in nature between the lumped model used 

for optimization and the distributed one used for validation. While the fouling resistance and 
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the tube side pressure drop are considered as distributions along the length of the heat 

exchanger in the distributed model, they are defined as a single value in the lumped model. 

Because of this difference in the modelling approach, it is not expected for the fouling 

resistance of the lumped model to match the average fouling resistance estimated with the 

distributed model. On the contrary, the tube side pressure drop is defined as an overall 

measurement of the hydraulic performance of the units, and it is predicted correctly by the 

lumped model. 

5.5. Concluding remarks 

The simultaneous optimal cleaning scheduling and flow distribution problem of HEN 

under fouling is solved for industrially relevant cases. The solution strategy applied 

reformulates the MINLP problem into a MPCC problem by relaxing the binary variables as 

continuous bounded variables and introducing complementarity constraints. A sequential 

solution approach that uses a regularization of the complementarity constraints and an 

interior point algorithm is implemented to cope with the difficulties of MPCC problems. 

This solution strategy is proven to be more efficient in solving the optimal cleaning 

scheduling problems for the case studies presented in Chapter 3, reducing the computational 

time by 99% compared to standard branch and bound algorithms for MINLP problems.  

The significant reduction in computational time allows to tackle larger and more 

complex problems, and three case studies of large networks (6 – 9 heat exchanges) are 

analysed using this strategy. The cases cover the most common network configurations found 

in industry – series and parallel arrangement – and their optimal cleaning schedule is obtained 

using the MPCC reformulation in a short computational time – less than 30 min of 

computation. This solution strategy has the potential to be used for real time applications, 

and the computational time require to find a solution scales up almost linearly with the 

problem size. For industrial size cases involving parallel branches and control degrees of 

freedom, it is demonstrated that the simultaneous optimization of the cleaning scheduling 

and dynamic flow distribution is better than any individual fouling mitigation alternative or 

a sequential optimization approach. 

Finally, the optimal cleaning schedule and dynamic flow distribution of a real preheat 

train (REF-X) obtained with the MPCC reformulation strategy is validated with a more 
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detailed, and previously tested model. Implementing the optimal solution in the validation 

model lead to the same conclusions, and both models predict the same effects of the decision 

variables. The prediction errors between the two models on the key performance variables of 

the network are negligible for the optimal cleaning scheduling and flow distribution solution. 

With an efficient solution approach to the optimal cleaning scheduling and flow 

distribution problem of HEN under fouling a constant monitoring and optimization of the 

system is possible in real time. Additional decision variables could be included in the 

optimization problem to mitigation fouling such as retrofit alternatives, and a portfolio of 

cleaning alternatives with different cost and efficiencies.   
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Chapter 6  

 

Optimal retrofit, cleaning scheduling, and 

control of preheat trains under fouling 

In this chapter the mathematical formulation used to optimize the operation and 

cleaning schedule of HEN under fouling – Chapter 3 – is expanded to include retrofit 

decisions. The retrofit decisions include adding new exchangers to an existing network, 

removing exchangers from an existing network, changing the piping and connections among 

new and existing units, and modifying the heat transfer area of all exchangers. The HEN is 

defined as a superstructure to include all possible modifications. Integer variables are 

introduced defining the existence or not of a subset of exchangers, while all other retrofit 

decisions – connections and area retrofit – are modelled using continuous variables. Because 

of the similarities of the cleaning scheduling problem and the network retrofit problem, the 

solution strategy presented in Chapter 4 is applied here with the nonexistence of exchangers 

modelled as a unit being continuously cleaned (idle). This modelling approach optimally 

integrates design, scheduling, and control decisions for HENs under fouling, which has not 

been done before. Two realistic cases are used to demonstrate the ability of the formulation 

to handle complex retrofit problems, and the advantages and benefits of integrating all 

decisions at the same level.  

6.1. Introduction 

HEN retrofits are common in energy recovery operations to satisfy a production target, 

reduce energy consumption, debottleneck the operation of the system, or even to reduce 

fouling. Retrofit alternatives aim to increase the heat transfer area and/or the heat transfer 

coefficient so that more energy is recovered in a given unit or in the network. The optimal 

definition of some retrofit alternatives has been widely studied, and those dealing with 
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network modifications are closely related to the HEN synthesis problem, but the long-term 

dynamic effects of fouling, and potential fouling mitigation have been ignored. 

This chapter addresses the problem of optimal retrofit of HEN under fouling. The 

retrofit alternatives considered are limited to adding or removing units, modifying the heat 

transfer area of the exchangers, and changing the connections among the units in a network. 

Heat transfer enhancement technologies are not considered here because of the lack of 

understanding of fouling phenomena under those conditions. Retrofit decisions are integrated 

with optimal operation and fouling mitigation decisions for HEN so that, in a single instance 

of the problem, all the relevant factors and interactions affecting the performance of the 

system are considered simultaneously. The following section presents the model developed 

for optimal retrofit, flow control, and cleaning scheduling of HEN under fouling, which is 

derived from the formulation presented in Chapter 3. Then, that formulation is applied to two 

relevant case studies to demonstrate the importance of considering retrofit decisions 

simultaneously with fouling dynamics and fouling mitigation actions. 

6.2. Including retrofit decisions in the optimization problem 

The retrofit decisions considered here are: adding new exchangers to an existing 

network, removing existing exchangers, change the connections among new and existing 

units, and modifying the heat transfer area. The first three correspond to network level retrofit 

options, while the last one is related to individual units. 

To model the retrofit decisions a superstructure is used to represent the HEN, and an 

example is presented in Figure 6.1. The exchangers that can be added to or removed from the 

network are represented with a hashed pattern, and additional mixers and splitters are 

introduced to define a set of possible new connections among the units. The superstructure 

example shows two instances of network retrofit. In the first one, unit E2 can be added to a 

section of the network in a series configuration with respect to E1 before or after it, or in a 

parallel configuration. In the second one, three existing units can be rearranged so that the 

sequence of E4 and E5 can be swapped or they can be arranged in parallel. These retrofit 

alternatives are valid for the cold and hot streams. Although this example only shows the 

option of adding a new exchanger at three locations and modifying the connections of two 
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exchangers, the superstructure can be easily modified to consider multiple locations for new 

units and other new connections in the network. 

 

Figure 6.1. Example of HEN superstructure including network retrofit alternatives. 

This superstructure is based on the optimal retrofit formulation proposed by Ciric and 

Floudas (1989); and Floudas, Ciric, and Grossmann (1986). It allows to generate connections 

between new and existing units, or repiping streams among existing units. Note that when a 

heat exchanger is not included in the network, the streams around it can still exist as bypasses 

around the unit are included in the network representation – not shown in Figure 6.1– 

similarly to the formulation and modelling approach of Chapter 3. Unlike the optimal HEN 

synthesis problem, where the superstructure defines all possible connections among the heat 

exchangers, in this retrofit problem not all connections are defined. Only new streams that 

are identified a priori to be relevant and give potential benefits to the operation are included 

– for example, using engineering knowledge or a pinch analysis. The more connections and 

streams splits in the superstructure, the higher the complexity and size of the problem. 

Binary variables, , ∈ {0,1}∀ ∈  ∧  = 1∀ ∈ − , are used to 

model the existence ( = 1) or not ( = 0) of a unit in the network, and they are defined 

over the set ⊂ . When a heat exchanger is not part of the network, its operation 

is modelled as being idle all time, which is the same as if the exchanger was being cleaned 

during the whole operating time. Therefore, the variables used to define the existence of the 

units are related to those used to define their cleanings , , ∀ ∈ , ∈ . This analogy 

between the operating mode of heat exchangers during cleanings and not being part of the 

network is useful to formulate the optimal retrofit problem based on the optimal cleaning 
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scheduling problem, and to consider fouling at the same time. Hence, the model developed 

in Chapter 3 employing a continuous time discretization is used here, and new constraints 

and variables are introduced to model correctly the retrofit decisions, and the cost associated 

with them. 

Two instances are considered regarding the integration of the scheduling problem and 

the retrofit problem. In the first one, Eq. (6.1) is a new retrofit constraint included in the 

model to indicate the implication that if an exchanger does not exist in the network it is idle 

or being cleaned during all the operating time, but if it does exist it can be cleaned any number 

of times. In the second one, Eq. (6.2) indicates that if the exchanger is added to the network 

it is never cleaned during the operating time, and if it does not exist it is idle all the time. If 

the cleaning scheduling problem is solved simultaneous with the retrofit problem, only Eq. 

(6.1) must be included in the formulation to allow cleanings of all existing and new 

exchangers. 

1 − , ≤ , , ∀ ∈ , ∈ 1,2, … ,  (6.1) 

, = 1 − , , ∀ ∈ , ∈ 1,2, … ,  (6.2) 

Additional constraints that have to be modified to ensure feasibility of the optimal 

retrofit problem using the optimal cleaning scheduling formulation are: the definition of 

sequential cleanings, Eq. (6.3); the lower and upper bounds of the  variable – the variable 

that indicates the state of the periods relative to whether one or more units are idle – Eq. (6.4) 

- (6.5); the maximum number of cleanings per period or simultaneous cleanings, Eq. (6.6); 

and the maximum number of cleanings per unit, Eq. (6.7). All these constraints are influenced 

by the binary variables that define the existence of the units. 

, ≤ 1 − , + 1 − , , ∀ ∈ , ∈ 1,2, … , − 1  (6.3) 

, − 1 − , ≤ , ∀ ∈ , ∈ 1,2, … ,  (6.4) 

≤ , − 1 − ,∈ , ∀ ∈ 1,2, … ,  (6.5) 

, − 1 − ,∈ ≤ , ∀ ∈ 1,2, … ,  (6.6) 

, ≤ , + 1 − , , ∀ ∈  (6.7) 
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In the superstructure representing the HEN, the retrofit alternatives are defined by the 

existence of the exchangers, and by the flow rates in and out of the many new splitters and 

mixers. Because fouling is a dynamic phenomenon, the flow distribution of all splitters in the 

network, even those used to define the superstructure, are degrees of freedom and they vary 

over time. Hence, the optimal retrofit formulation assumes dynamic optimal flow control on 

the bypasses and parallel branches of the network. However, for comparison purposes 

alternatives with constant flow rates in each arc of the network are considered, Eq. (6.8).  

, , , = , , , , ∀( , , ) ∈ , ∈  | ∈  (6.8) 

Besides network retrofit alternatives, the individual retrofit of each exchanger by 

modifying its heat transfer area is also included in the optimal retrofit problem formulation. 

A continuous variable 0.5 ≤ , ≤ 1.5, ∀ ∈  is introduced to define the fractional 

change in the heat transfer area of all exchangers, so that the new retrofitted area is given by 

Eq. (6.9). It is assumed that only the number of tubes in the exchanger is modified, as 

modifying the length of the exchanger requires changing the shell and modifying the number 

of tube passes involve integer variables making the problem more complex. Retrofitting the 

number of tubes modifies its heat transfer area and the tube side mass flux, hence the tube 

side velocity and sheer rate decrease when the number of tubes increases. Under those 

conditions – higher heat transfer area and lower velocity – the fouling rate and the heat 

transfer rate increase, but they have opposite effects on the performance of the unit. The 

proposed formulation considers these important interactions explicitly. 

= , , , ∀ ∈  (6.9) 

Any retrofit alternative has a capital cost associated, either from purchasing a new unit 

or a new tube bundle to modify the heat transfer area. The cost of a new exchanger is 

calculated using Eq. (6.10) which correlates the cost with the heat transfer area (Gerrard 

2000). This cost is then annualized and integrated over the operating time assuming that it is 

shorter than the payback period of the unit. Correction factors are used to account for the 

material, operating pressure, and price change to date. It is assumed that the piping cost, 

usually much lower than the cost of a new unit, is included in this capital cost calculation. 

The cost of repiping – new connections among existing exchangers – is not considered here 

as it is function of the actual layout of the units in the plant and it cannot be estimated without 
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having that precise information. The cost of area retrofit is defined as a function of the extra 

number of tubes in the new configuration, Eq. (6.11). It is assumed that only increasing the 

heat transfer area of an exchanger has a cost as it requires purchasing and installing new 

tubes, and in the case the area is reduced, it is assumed not to have a cost. The maximum 

function used to characterize the area retrofit cost is modelled using the continuous 

approximation of Eq. (6.12) which is numerically zero for < 1, and ( − 1) otherwise.  

, = exp 11.147 − 0.9186 ln( ) + 0.0979(ln( )) ,∀ ∈  
(6.10) 

, = max 0, , − 1 , , ∀ ∈  (6.11) 

max 0, , − 1 ≅ 12 , − 1
⎣⎢
⎢⎡1 + , − 1

, − 1 + 1 10 ⎦⎥
⎥⎤ , ∀ ∈  (6.12) 

The retrofit costs are considered together with all other operating cost of the HEN, so 

that the objective function of the optimal retrofit problem considering fouling, dynamic flow 

distribution, and fouling mitigation is Eq. (6.13). This objective function includes the fuel 

cost, carbon cost, cleaning cost, loss of production, annualized capital cost due to new units, 

and area retrofit cost. The cleaning cost is modified with respect to that of the optimal 

cleaning scheduling problem because it is necessary to ignore it when a unit is not added or 

is removed from the network. 

= min + + , ( , − 1 + , )∈∈ −
+ , ,∈ + ,∈  

(6.13) 

The simultaneous optimal retrofit, dynamic distribution, and cleaning scheduling of 

HEN under fouling is summarized in Eq. (6.14). This is a large scale MINLP problem that 

includes the dynamic elements arising from fouling, all the interactions of existing and new 

units in the network, fouling mitigation strategies, and dynamic control of the flow 

distribution in the network. Variations of this problem are possible, for example ignoring 

cleanings of some or all heat exchangers by adding Eq. (3.32) over all periods, assuming 

constant split fractions for some or all splitters in the network by adding Eq. (6.8), ignoring 

the area retrofit for some or all units by fixing  to 1, and combinations of them. 
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The solution strategy presented in Chapter 5 to solve the optimal cleaning scheduling 

problem is used to solve this large scale and complex MINLP problem. The optimal retrofit 

problem is built from the optimal cleaning scheduling problem, so they share the same 

characteristics. The solution strategy used before is effective here because the new constraints 

and variables in the retrofit problem are few and most of them are linear. The MINLP optimal 

retrofit formulation is reformulated as a MPCC problem in which the binary variables 

associated with the existence of the units and those with cleanings of the units are relaxed 

and used to define complementary constraints with respect to slack variables. 

, , , , , , ,   ( + ) −  .  (6.13) 
. .    −  3.2.1  ℎ  −  3.2.2  −  3.2.3   −  3.2.4  −  3.2.5       −  3.3.2   ℎ   − . (3.32), . (6.3) − (6.7)  − . (6.9) 

(6.14) 

6.3. Practical optimal retrofit of HEN under fouling 

The optimal retrofit problem for HEN under fouling is solved for two case studies. 

Both cases are taken from the literature, and they are studies of HEN retrofit that have 

considered fouling only after the retrofit decisions. They first proposed network retrofit 

alternatives, and then tested them in simulations to analyse the fouling effects and the overall 

cost of the operation. Hence, these cases are good references to test the optimization 

methodology proposed here, and to demonstrate that better alternatives exist. In addition, the 

integration of optimal cleaning scheduling, flow distribution, network retrofit, and area 

retrofit is evaluated for both cases. 

6.3.1. Case study NR-S: single retrofit alternative 

This case study is adapted from that of Coletti, Macchietto, and Polley (2011), and the 

superstructure of the network that includes the retrofit alternative is presented in Figure 6.2. 

All the specifications can be found in Appendix A. The original network – base case – had 

seven exchangers, HEX1 – HEX7, arranged in series, a desalter, a furnace, and the residue 
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stream connected HEX7 and HEX3 counter current. The first three exchangers in the network 

do not exhibit fouling as their operating temperatures are low and the velocities high enough 

to prevent any deposition from happening. The desalter has a constant temperature drop of 

4.5°C, and all units downstream the desalter exhibit significant levels of fouling. The retrofit 

alternatives considered by Coletti, Macchietto, and Polley (2011) – the network structure of 

each is presented in Appendix A – aim to find the best location for an additional exchanger, 

HEX7x, and they are: 

• C1: the base case of the network without HEX7x 

• C2: HEX7x is added at the end of the network and matched with the hottest part of 

the residue stream. 

• C3: HEX7x is added between HEX5 and HEX6 and matched with the hottest part 

of the residue stream. 

• C4: HEX7x is added between HEX5 and HEX6 and matched with the residue stream 

after it leaves HEX7. 

 

Figure 6.2. Network super structure of case study 1 (NR-S). 

The retrofit superstructure defined for this case study captures all above four 

alternatives and others. For instance, an arrangement of HEX7x in parallel with HEX6 and 

HEX7 is also feasible using this representation, and the optimization procedure will 

determine if that is a better retrofit alternative than the others or not.  

The optimal network retrofit problem is solved for this case study assuming that there 

are no cleanings and no area retrofit. These assumptions are used to compare and validate the 

optimal solution of the problem with the alternatives explored before. The time horizon is 

600 days and it is discretized with 20 periods of variable length. The problem has a total of 

181 binary variables, although there are many linear constraints among them reducing the 
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size of the search space. The optimal retrofit problem has only one more binary variable than 

the optimal cleaning scheduling problem for the same network, but a larger number of linear 

constraints. The retrofit problem is solved to optimality in 7.39 min of computational time 

using the MPCC reformulation and sequential solution.  

The optimal retrofit solution of this case study corresponds to alternative C4, the same 

reported by Coletti, Macchietto, and Polley (2011) as having the best performance when the 

dynamics effects of fouling are considered. Figure 6.3 summarizes the cost of each alternative 

considered, and the optimal solution. All alternatives that include HEX7x in the network have 

the same capital cost, but alternative C4 – optimal – has the lowest operating cost. The 

splitters and mixers defined in the superstructure allow to consider many more alternatives 

than those mentioned, and the optimal solution indicates that none of them – for example 

adding HEX7x in a parallel branch – could have performed better than alternative C4. Adding 

HEX7x at an intermediate position in the network and matching it with the residue stream 

coming out from HEX7 does not produce a high energy recovery at clean conditions as that 

of alternative C2, but it is more resilient to fouling. In the optimal retrofit alternative HEX7x 

is placed at a location such that the wall temperature is not as a high as that at the end of the 

network, and it can still recover a significant amount of energy. 

 

Figure 6.3. Operating cost and capital cost of each alternative explored for case study NR-S 

The optimal network retrofit problem is then solved simultaneously including optimal 

heat transfer area retrofit, optimal cleaning scheduling, and possible combinations among 

them – see Table 1.1 for abbreviations and descriptions. Figure 6.4 shows the total cost of 

each optimal solution, and the contributions of retrofit alternatives and fouling mitigation 

actions. All optimal alternatives reduce the total cost of the operation with respect to that of 
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the base case, even when the capital cost is included. Also, they reduce significantly the 

operating cost of the network. The energy cost can be reduced from $ 0.5 MM up to $ 1.0 

MM, with the maximum reduction is achieved by optimizing simultaneously retrofit and 

cleaning scheduling. The operating cost decreases when area retrofit and network retrofit 

decisions are considered together, although the capital cost is higher because of the additional 

heat transfer area. Finally, optimizing all decisions simultaneous generates the lowest total 

cost, although the operating cost is higher than those of other optimal alternatives. Whether 

the best alternative is to retrofit the network – adding new exchangers with high capital cost 

– or simply increase the HTA of certain units and perform cleanings optimally is related to 

the capital cost, the fouling rates, and the operating time of the preheat train. The optimization 

formulation proposed can handle all these features simultaneously, and for this case it is best 

to optimally schedule cleanings than to include a new unit in the network. 

 

Figure 6.4. Operating cost and capital cost of optimal retrofit alternative with and without 

fouling mitigation for case study NR-S. 

The optimal network structure changes based on the features included in the optimal 

retrofit problem. Considering only network retrofit optimization (HEN Retrofit), the optimal 

network structure is alternative C4, and when heat transfer area retrofit is included (HEN-

HTA Retrofit) the optimal structure is alternative C2. The network structure C2 is also the 

optimal solution for the combined network retrofit and cleaning scheduling problem (HEN 

Retrofit SCH). Finally, for the optimal integration problem – network retrofit, area retrofit, 

and cleaning scheduling (HEN-HTA Retrofit SCH) – the optimal structure is C1 which does 

not add HEX7x to the network.  
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Figure 6.5 shows the furnace duty of the optimal retrofit alternatives with and without 

cleanings. The optimal retrofit alternatives – network and/or heat transfer area – reduce the 

duty with respect to that of the base case because of the extra area available for heat transfer. 

When the optimal cleaning scheduling problem is considered simultaneously with the retrofit 

decisions, the overall duty decreases further. However, the integrated network retrofit, area 

retrofit, and cleaning scheduling optimal solution (HEN-HTA Retrofit SCH) that does not 

include HEX7x has a higher duty than that of the optimal alternative that ignore area retrofit.  

a) 

 

b) 

 

Figure 6.5. Furnace duty of optimal retrofit alternative with and without fouling mitigation 

for case study NR-S. 

 

Figure 6.6. Optimal cleaning schedule of case study NR-S considering network and area 

retrofit (X: exchanger removed, +: exchanger added, ▪ exchanger fixed). 

Figure 6.6 presents the optimal cleaning schedule for all optimization scenarios. It 

shows that when the new unit is included, it is cleaned often, and the starting cleaning time 
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of existing units is postponed when their HTA is optimally retrofitted. Also, when HEX7x is 

added to the network, the furnace duty decreases but the cleaning cost increases as this unit 

has high fouling rates and is cleaned four times during the operation. In this case the 

interactions among capital cost, energy recovery, and cleaning cost become important to 

decide on retrofit alternatives. On the other hand, increasing the HTA of existing units 

without adding HEX7x to the network has a much lower cleaning cost  

The retrofit decisions also influence the fouling rates and the heat duty of the units. 

Figure 6.7 and Figure 6.8 show the fouling resistance and the heat duty of key exchangers in 

the network for retrofit alternatives without cleanings. For the case of only optimal network 

retrofit, the duty of all existing exchangers is lower, and their fouling resistance is higher 

than those of the base case, but the extra unit increases the overall heat recovery. On the other 

hand, integrating optimal network and HTA retrofit increases the duty of some existing units, 

but their fouling resistances are similar to those of the base case. The network structure 

defining the interaction among the units influences fouling and the dynamic performance of 

the system. It defines whether there is a constant decay on the heat duty or if the decay is 

damped because of a temporary increase in the temperature difference. In the two optimal 

alternatives displayed in Figure 6.7 and Figure 6.8, the second exchanger following the 

residue streams, either HEX7 or HEX7x, exhibits a maximum in its heat duty because of the 

temporary larger temperature difference between the streams, but later fouling effects 

dominate and its performance decays. 

a) 

 

b) 

 

c) 

 

Figure 6.7. Fouling resistance of exchangers HEX6 (a), HEX7 (b), and HEX7x (c) for the 

optimal network and area retrofit alternatives of case study NR-S. 

Finally, Figure 6.9 shows the increase in the HTA of all units for the optimization 

scenarios that include this decision – optimal retrofit with and without cleaning scheduling. 

In both cases, the area of HEX3 is increased by the maximum allowed percentage, indicating 
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that there is a large amount of energy that can still be recovered from the residue stream. In 

the case without optimal cleanings, the HTAs of HEX7 and HEX7x – new unit – are 

increased in 28% and 29% respectively. These two exchangers are used to recover energy 

from the residue stream which has the highest flow rate and highest temperature among all 

hot streams. On the other hand, when optimal cleanings are introduced, HEX7x is not added 

to the network and instead the areas of HEX3 and HEX7 are increased to their maximum to 

recover most of the energy of the residue stream. Also, in this case the area of HEX5 is 

increased by 9% which is advantageous for the operation without a large capital cost. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 6.8. Heat duty of exchangers HEX3 (a), HEX6 (b), HEX7 (c), and HEX7x (d) for 

the optimal network and area retrofit alternatives of case study NR-S. 
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Figure 6.9. Optimal HTA retrofit of all exchangers with and without fouling mitigation for 

case NR-S. 

6.3.2. Case study NR-B: multiple retrofit alternatives and dynamic flow 

distribution 

This second case study is adapted from that of Yeap et al. (2005), and the superstructure 

of the network that includes the retrofit alternatives is presented in Figure 6.10. The 

superstructure shows all possible connections for the exchangers, and the streams that can be 

redistributed are colour coded for clarity, so that the crude oil stream (blue), the VR stream 

(yellow), and the OR stream (dashed red) can be differentiated. The same colour scheme is 

used throughout the section to show the optimal network derived from the superstructure for 

different instances. All the specifications can be found in Appendix A. In the original work 

two retrofit alternatives are considered, one based on pinch analysis (I), and another aiming 

to mitigate fouling while increasing heat recovery (II). Between these two alternatives and 

the base case, five different exchangers, E1a, E5a, E5b, E6a, E6b, can be added to the 

network in different locations with a capital cost that is function of their HTA. Also, one 

exchanger, E2, can be removed from the original network with no capital cost. The network 

structure of these alternatives is presented in Appendix A. 
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Figure 6.10. Network superstructure of case study 2 (NR-B). 

In the original reference, the following networks are considered, and their performance 

over two years of operation analysed: 

• Base case: original network structure where the crude flows in series from E1 to E6, 

the VR stream flows in counter current from E5 to E2. All other exchangers have a 

unique hot stream. 

• Alternative I: network retrofit alternative proposed based on pinch technology. E2 

is removed from the network, and the crude flow is split at three locations: after E1, 

E3, and E4. New exchangers are added in the new parallel branches. The VR and 

OR streams are the hot streams of the new exchangers. 

• Alternative II: network retrofit alternative proposed to mitigate fouling. E2 is 

removed from the network, and E1a and E6a are added after E1. The crude flows 

sequentially though all exchangers and there are no parallel branches. The VR 

stream connects E1a and E5 in a co-current arrangement, while OR does the same 

for E6a and E6. 

The superstructure for this case study was developed from these three alternatives, but, 

because of its generality, other network configurations arise. First, the three alternatives of 

Yeap et al. (2005) are simulated to validate the current implementation and to have a point 

of reference for future improvements. In addition, for alternative I the dynamic flow 

distribution is optimized (I + Opt. Sp). Then, the more general optimal retrofit problem for 

the full superstructure is solved for various retrofit choices – integration of HTA retrofit 

decisions and optimal cleaning scheduling – and the performance of the network structures 

obtained is compared against the base case and alternatives I and II. 
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6.3.2.1. Base case analysis for retrofit and dynamic flow distribution 

Figure 6.11 shows the furnace duty for the base case and alternatives I and II, and the 

flow optimization of alternative I. Retrofit alternatives I and II reduce the furnace duty, so 

the operating cost is smaller than that of the base case, although the capital cost was not 

considered by the authors in the original work when designing those network modifications. 

Including the capital cost in the total cost calculation, none of these alternatives is better than 

the base case. The retrofit capital cost is higher than the actual reduction in the operating cost. 

Alternatives I and II are $ 0.46 M and $ 0.26 M more expensive than the base case operation 

when all the costs are considered over a two years horizon, respectively. On the other hand, 

optimizing the dynamic flow distribution of alternative I reduces significantly the operating 

cost and, even considering the capital cost of new units, the total cost of the operation is 

reduced by $ 0.15 M with respect to the base case.  

 

Figure 6.11. Furnace duty for network retrofit alternatives of case NR-B without 

considering cleanings proposed by Yeap et al. (2005) 

The furnace duty of alternative I + Sp exhibits a plateau during a long operating time – 

see Figure 6.11. This is because the superstructure representation of the network enables 

dynamic flow control in parallel branches and bypasses. Figure 6.12 shows the bypasses that 

are active in alternative I and that optimize the flow distribution, while Figure 6.13 shows 

the time profiles of the split fractions for this alternative (HEN retrofit - dynamic) and 

compares them with the optimal constant flow distribution of the same network retrofit (HEN 

retrofit - constant). Three different periods of operation are observed: 1) until 100 days of 

operation, when all the flow of the OR and VR streams is diverted from exchangers E5a-b 

and E6a-b, 2) between 100 and 450 days of operation, when the bypass of the hot streams is 
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dynamically reduced, and the crude split to each branch changes dynamically, and 3) after 

450 days of operation, when there is no bypass of the hot streams OR and VR, all the flow 

goes to the exchangers, and the split fraction of the crude to each branch is constant. During 

period 1, the furnace duty is higher than in the base case, but in period 2 the duty is almost 

constant, and then in period 3 it starts increasing again. The additional control degrees of 

freedom introduced in this retrofit alternative have significant implications for the operation, 

and the retrofit optimization exploits these interactions over long operating periods. 

 

Figure 6.12. New bypasses for alternative I retrofit of case NR-B considering optimal 

dynamic flow distribution. 

a) 

 

b) 

 

c) 

 
                 d) 

 

                  e) 

 

Figure 6.13. Optimal and constant flow distribution of retrofit alternative I of case NR-B. a) 

crude branch 1, b) crude branch 2, c) crude branch 3, d) VR bypass, e) OR bypass. 
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The effects of the dynamic flow optimization of retrofit alternative I are observed in 

the heat duty and fouling resistance of each exchanger, Figure 6.14 and Figure 6.15, 

respectively. First, the fouling resistance is always lower when the flows are dynamically 

distributed than when they are constant. Lower fouling resistances are achieved because of 

the modifications of the wall temperature and of the shear rate that promote lower fouling 

rates and deposit removal. Second, during the first 100 days of operation almost no fouling 

is observed in exchangers E5a-b and E6a-b as they are idle for any practical purpose – no hot 

stream. Third, the duty of the exchangers at the end of the network is always higher when the 

flow distribution is optimized. Lower fouling resistances and higher temperature difference 

between the hot and cold streams facilitate heat recovery. Fourth, during the period where 

the flow split and bypasses change dynamically – between 100 and 450 days of operation – 

the heat duty of E5a-b and E6a-b starts increasing and reaches a maximum, then it stabilizes 

at a value higher than that in the network retrofit with constant flow rates. Finally, the optimal 

flow distribution obtained for retrofit alternative I is equivalent to having some exchangers 

idle at the beginning of the operation, and then becoming active with varying inlet streams, 

so there is still an open question of whether those exchangers are beneficial for the overall 

operation of the network considering their capital cost. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

g) 

 

h) 

 

Figure 6.14. Exchanger heat duty of retrofit alternative I of case NR-B optimizing the flow distribution. a) E5a, b) E6a, c) E5b, d) E6b, 

e) E5, f) E6, g) E3, h) E4. 
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a) 

 

b) 

 

c) 

 

d) 

 
e) 

 

f) 

 

g) 

 

h) 

 

Figure 6.15. Exchanger fouling resistance of retrofit alternative I of case NR-B optimizing the flow distribution. a) E5a, b) E6a, c) E5b, 

d) E6b, e) E5, f) E6, g) E3, h) E4. 
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6.3.2.2. Optimal retrofit and flow distribution without cleanings 

The previous analysis aimed to highlight the complex interactions among network 

retrofit, dynamic flow distribution and fouling, now the full optimal network and HTA 

retrofit problems are solved without cleanings. Figure 6.16 presents the optimal furnace duty 

of the retrofit schemes: network retrofit with constant flow distribution (HEN retrofit – 

constant), network retrofit with dynamic flow distribution (HEN retrofit – dynamic), and 

network and HTA retrofit with dynamic flow distribution (HEN-HTA retrofit). All schemes 

reduce significantly the operating cost of the network and perform better than the base case, 

and than the retrofit alternatives I and II. Even considering the capital cost of new units and 

modification of heat transfer area in the total cost of the operation, these optimal retrofit 

alternatives produce savings of $ 0.5 M to $ 1.5 M where the highest is that of HEN-HTA 

retrofit. 

 

Figure 6.16. Furnace duty for optimal network retrofit alternatives of case NR-B without 

considering cleanings. 

The optimal network retrofit structure obtained for the three retrofit schemes 

considered is presented in Figure 6.17. None of the optimal network configurations 

correspond to alternatives I or II proposed by Yeap et al. (2005), instead they are 

combinations of those alternatives and new configurations arising from the use of the 

superstructure to represent the problem. For instance, in the optimal network obtained for the 

scheme HEN retrofit – constant (Figure 6.17a), the VR stream is split in two parallel branches 

going to E2 and E5b after leaving E5, which introduces additional bypasses that were never 

considered in retrofit alternatives I and II. Additionally, the optimal solution of the scheme 

HEN retrofit – dynamic (Figure 6.17b) adds a bypass to the OR stream diverting the flow 
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from E6b, while the rest of the network remains the same as the optimal one for the scheme 

HEN retrofit – constant. 

a) 

 
b) 

 
c) 

 

Figure 6.17. Optimal network retrofit without considering cleanings for case NR-B. a) 

optimal retrofit with constant flows (HEN retrofit – constant), b) optimal retrofit with 

dynamic flow distribution (HEN retrofit – constant), c) optimal network and HTA retrofit 

with dynamic flow distribution (HEN-HTA retrofit). 

Including HTA retrofit decisions in the optimization problem modifies the optimal 

structure of the network, and E5b is removed from it (Figure 6.17c). The rest of the network 

is the same as the optimal one of the scheme HEN retrofit - dynamic. The area of all active 

exchangers, except E1, is increased by 50% which increases the heat recovery and reduces 

the furnace duty. The extra area of all exchangers, and the capital cost associated with it, 

make adding E5b to the network unnecessary and detrimental for the network performance 
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and cost. Dynamic flow distribution is also considered here, and the trends observed in the 

furnace duty are similar to those obtained with the scheme HEN retrofit – dynamic (Figure 

6.16), but it is always lower for this case. In the case of HEN-HTA retrofit scheme, the 

bypasses of the hot streams are used to make E2 and E6a-b idle at the beginning of the 

operation, reducing their overall fouling rate and increasing the heat duty of the exchangers 

at the end of the network. These exchangers only become active after 100 days of operation 

when the flow rate of the hot streams increases dynamically. 

The interactions between the network retrofit decisions and the dynamic flow control 

are important and should not be neglected. The split fraction of each of the splitters in the 

optimal retrofit structures, without HTA retrofit, are presented in Figure 6.18. These are the 

retrofit schemes HEN retrofit – constant, and HEN retrofit – dynamic. The crude flow rate 

through the parallel branches react dynamically to the changes on the hot stream. The VR 

stream is diverted completely to E5b during the first 200 days of operation causing E2 to be 

idle, but then the flow is distributed between the two exchangers. A similar behaviour is 

observed for the OR stream that completely bypasses E6b during the first 100 days of 

operation, then it changes dynamically to reduce fouling rates in the exchangers, and finally 

all the flow is diverted to E6b. The dynamic flow distribution of the optimal network retrofit 

has similar effects as those of the retrofit alternative I (I + Opt. Sp). The duty of exchangers 

located at the end of the network is always higher under dynamic flow distribution than under 

constant flow. Some exchangers are idle at the beginning of the operation, increasing the 

furnace duty and reducing the fouling rates, and then the flows are distributed such that heat 

recovery is maximized over long operating periods while the fouling resistance of each unit 

is always kept lower than that observed for constant flow rates. 

a) 

 

b) 

 

c) 

 

Figure 6.18. Flow distribution, constant or dynamic, of the optimal network retrofit of case 

study NR-B. a) crude branch, b) VR bypass, c) OR bypass. 
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6.3.2.3. Optimal retrofit, flow distribution and cleaning scheduling 

Optimal cleanings are included in the optimal retrofit schemes. This problem is more 

complex than those addressed before because it has more binary variables. The two years 

time horizon is discretized using 20 periods of variable length. The MINLP problem has a 

total of 245 binary variables, 30720 continuous variables, 25493 equality constraints, and 

62661 inequality constraints. Nevertheless, it is solved in 343 min of computational time 

using the MPCC reformulation approach. Including HTA retrofit decisions in this 

optimization problem is not a challenge as they are modelled as bounded continuous variables 

and the computational time does not change significantly.  

Figure 6.19 presents the optimal network structure obtained when solving the network 

retrofit and cleaning scheduling problem. This optimal structure does not change when 

optimal HTA retrofit decisions are included. The optimal retrofit structure only includes E6a-

b in the network, and all the units are arranged in series. There are no parallel branches or 

bypasses in this optimal structure, so there are no control degrees of freedom to modify the 

flow distribution of the network dynamically, although this possibility was explicitly 

considered in the problem superstructure. This network structure was not considered in 

retrofit alternatives I or II, although it is similar to alternative II, but the flow direction of the 

OR and VR streams is different and different units are added to the network. 

 

Figure 6.19. Optimal network retrofit for case NR-B considering simultaneous optimization 

of the cleaning schedule (with and without HTA retrofit). 

Figure 6.20 shows the furnace duty of the optimal retrofit scenarios including cleanings 

and flow distribution in the problem formulation. They are: ‘HEN retrofit’ that considers 

network retrofit, cleaning scheduling, and flow distribution; and ‘HEN-HTA retrofit’ that 

beyond those decisions also considers area retrofit. The optimal retrofit networks perform 

better than the base case despite the temporarily increase of the furnace duty when units are 

idle during cleanings. In the optimal network structure, the HTA of all active exchangers is 
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increased, except that of E1, increasing the overall energy recovery. Figure 6.21 compares 

the HTA retrofit for the optimal structure obtained with cleanings (suffix SCH, Figure 6.19), 

and without cleanings (which structure is shown in Figure 6.17c). Both optimal network 

structures have the same exchangers and they only differ in the bypasses of the VR and OR 

streams. When the cleaning schedule is optimized simultaneously with the network structure, 

the HTA does not increase as much as when cleanings are not considered – see for instance 

E2 and E6a in Figure 6.21. This indicates that periodic cleanings reduce the need of additional 

area as the exchangers do not operate at high fouling conditions during long periods.  

 

Figure 6.20. Furnace duty for optimal network retrofit alternatives of case NR-B including 

optimal cleaning scheduling. 

 

Figure 6.21. Optimal HTA retrofit for each exchanger with and without fouling mitigation 

for case NR-B. 

There is an important trade off among the cleaning cost, the capital cost of extra area, 

and the future savings in energy cost that arise from the interaction of retrofit and cleaning 
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decisions, and that is implicitly considered in the formulation of the optimization problem. 

The interaction of cleanings and retrofit options is observed in the optimal cleaning schedule, 

Figure 6.22, obtained simultaneously with the optimal network structure. This figure shows 

the optimal cleaning schedule for the optimal networks with and without HTA retrofit, and 

the exchangers that are added or removed from the network. Exchangers added to the 

network, E6a-b, are cleaned twice during the operation. Although the network structures of 

‘HEN retrofit’ and ‘HEN-HTA retrofit’ are the same, increasing the HTA of key exchangers 

affects the optimal cleaning schedule of the network. Cleanings of exchangers with extra 

HTA usually starts later during the operation, or the number of cleanings of those exchangers 

increases. For instance, E3 is cleaned two more times and E2 is cleaned one more time when 

their HTA is increased. Comparing the optimal HTA retrofit with and without cleanings 

(Figure 6.21), the area of E2 is increased by 18% instead of by 50%, and it is cleaned once 

during the operation. In this case, it indicates that the cost of a single cleaning and the energy 

savings associated with it compensates for the reduction of the HTA. 

 

Figure 6.22. Optimal cleaning schedule of case study NR-B considering network retrofit 

(HEN retrofit) and network and area retrofit (HEN-HTA retrofit). (X: exchanger removed, 

+: exchanger added, ▪ exchanger fixed). 

The total cost of operating the network NR-B is calculated and compared for each 

retrofit alternative evaluated so far. The total operating cost, and capital cost of each 

alternative are presented in Figure 6.23. The total cost of all optimal retrofit alternatives is 

lower than that of the retrofit alternatives I or II, and a significant reduction is observed when 
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the retrofit decisions are optimized and integrated with fouling mitigation decisions. While 

the retrofit alternatives I and II only reduce the operating cost, either by increasing heat 

recovery or reducing fouling rates, they ignore the capital cost and the interaction between 

design retrofits of the network and its operation. On the other hand, the optimal retrofit 

approach presented provides a holistic view of the problem considering all interactions of the 

variables. Compared to the base case, the optimal network and HTA retrofit with cleanings 

has potential savings of $ 4.2 M over the two years operation, while the case without 

cleanings has savings of $ 1.5 M – the reduction in operating cost alone for this case is $ 2.3 

M. Also, dynamic control of the flow distribution, when possible, reduces the operating cost 

of the network even further, although when considering simultaneously with the optimal 

retrofit problem it does not alter the structure of the network and it only defines new bypass 

streams for certain units. 

 

Figure 6.23. Total cost of all retrofit alternatives, manual and optimal, of case NR-B. 

6.4. Concluding remarks 

A novel mathematical formulation has been introduced for the optimal and 

simultaneous retrofit and fouling mitigation of HEN. This formulation is an extension of the 

optimal cleaning scheduling problem achieved by associating the binary variables of the 

cleanings with those used in the definition of the existence of new units in the network. New 

connections among the units of the network are modelled using a superstructure that defines 
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multiple alternatives with additional mixers and splitters. The superstructure representation 

also allows the dynamic optimization of the flow distribution in the network, and its 

integration with optimal retrofit and cleaning scheduling decisions. For the first time, optimal 

retrofit, scheduling, and control decisions are integrated at the same level, exploiting their 

interactions to mitigate fouling and to maximize the energy recovery in the network. 

Despite the complexity and large scale of the MINLP problem associated with the 

optimal retrofit, cleaning schedule, and control of HEN, it is solved efficiently because the 

problem formulation is inherited from the optimal cleaning scheduling problem. It was 

demonstrated in Chapter5 that the optimal cleaning scheduling problem could be solved in 

reasonable time using a MPCC reformulation. 

Two cases studies taken from the literature that address the problem of network retrofit 

under fouling are revisited here. It is demonstrated that the optimization of the network 

retrofit and its integration with optimal fouling mitigation actions improves the overall 

performance compared to those of other alternatives including retrofit options based on pinch 

technology, expert knowledge, or heuristics aiming to mitigate fouling. The first case study, 

NR-S, analyses the placing of a single unit in a network, and proves that the optimal solution 

is not to include it in the network, because it incurs higher cleaning cost during operation 

compared to the capital cost of increasing the overall heat transfer area. The second case 

study, NR-B, involved five units for retrofit and the possibility to split some streams in 

parallel branches and bypasses. This case proves that if the dynamic flow distribution is 

considered at the level of the retrofit decisions, the effects of fouling over long periods can 

be mitigated, improving the performance of the network.  

Other retrofit options not considered here, like the use of heat transfer enhancement 

technology, can be included in the optimization problem if an accurate mathematical 

representation of their effects on the flow patterns and heat transfer rates are available. 

The optimal retrofit and fouling mitigation problem is solved for nominal operating 

conditions, although it is well known that the operation of preheat trains is highly variable 

and dynamic. Future work should consider the uncertainty on the operation of preheat trains, 

their effect on optimal retrofit decision to guarantee a profitable operation over long periods, 

while minimising the capital investment associated with new units or extra area. 
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Chapter 7  

 

Online optimization of preheat trains: 

integration of flow control and cleaning 

scheduling 

The operation of refinery preheat trains is subject to large variability and uncertainty 

arising from their operating conditions, the crude blend processed and its properties. This 

variability has a significant impact on fouling and on the performance of preheat trains, but 

it has been usually ignored when deciding on fouling mitigation alternatives. For the first 

time an online optimization-based fouling mitigation approach is developed and validated 

here. It uses a multi-loop advanced control strategy to optimally define the cleaning actions 

and the dynamic flow distribution in the network, based on the predictions of an accurate 

model that is updated at regular intervals accordingly to the data available. The proposed 

online fouling mitigation approach is tested on a real case study and its performance 

compared with the actual operation of the preheat train. It is demonstrated that the online 

approach can cope with the large variability of the process and that it reduces significantly 

the operating cost. Finally, the methodology is applied to a series of scenarios with large 

disturbances, extreme cases of model-plant mismatch, and tested with different settings of 

the feedback loops to show its applicability, advantages, and the effect of the main variables 

and parameters. 

7.1. Introduction 

The mathematical formulation of the optimal cleaning scheduling and dynamic flow 

distribution of HEN under fouling presented in Chapter 3 was validated and used to solve 

problems relevant to industrial applications in Chapter 5. However, one of the main 
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assumptions so far is that the inputs of the system – flow rates, streams temperature, and 

properties of the crude oil – are constant over time, which is not accurate in refineries. In 

refining operations, the flow rate of crude, and hence those of all other streams in the process, 

changes frequently depending on the production targets and the market (Mozdianfard and 

Behranvand 2013; Nategh, Malayeri, and Mahdiyar 2017). Moreover, refineries can store 

crude from different geographical locations and then blend them accordingly to meet their 

requirements. Crude from different sources has different physical properties, sulphur content, 

yields, and fouling propensity – usually associated with the content of asphaltenes (Ho 

2016b; Bennett 2012). Ignoring all these sources of variability when deciding on fouling 

mitigation operations can have severe consequences. For instance, if the cleaning frequency 

is defined based on high flow rates – low cleaning frequency as fouling may not be too severe 

– then when the flow rates decrease and the cleaning frequency is not modified, the fouling 

rate increases and the operation may become unfeasible, reaching pressure or thermal limits. 

Hence, the variability and uncertainty of the operation must be considered when deciding on 

operation alternatives or fouling mitigation actions. 

Predictive models for HEN under fouling are usually defined for a small range of 

operating conditions and their validity is limited to the data used for their estimation (Costa 

et al. 2013). In the context of varying operating conditions, and processing crudes with 

unknown fouling characteristics, a single model may not be accurate enough for all ranges 

of operation. Operating or maintenance decision based on a predictive model determined for 

a specific data set may rapidly become invalid as the operating point of the system changes. 

Because of this variability, it is not possible to know with certainty the potential benefits of 

fouling mitigating actions, or the future state of the system. The complexity of the crude oil 

fouling phenomenon makes it challenging for a single model to capture accurately all 

interactions in all possible operating conditions, so there is need of models that can be 

adapted online based on the behaviour of the system, and on the measurements available. 

Heuristic approaches that have been used to define the cleaning schedule of heat 

exchanger networks can, in principle, be used online to response to changing operating 

conditions. Although these heuristics are available, they ignored process variability and have 

only been used to define cleaning actions under nominal conditions once and offline for long 

horizons (Ishiyama et al. 2010; Ishiyama, Paterson, and Wilson 2009). Alternatively, 
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optimization based approaches have been used online, in a receding horizon scheme, to 

define the operation of evaporation systems – heat exchanger networks. In those cases, the 

optimization of the system and the cleaning time have been decoupled and solved 

sequentially, first defining the operating conditions and then the cleaning cycle of each unit 

individually, while using plant data to update the models – a state space representation of the 

operation and an empirical model for fouling (Pitarch Pérez, Gomez Palacin, and Prada 

Moraga 2017; Pitarch et al. 2017). Optimization approaches like this one consider process 

variability explicitly in a feedback loop, but oversimplified the representation of the problem 

and ignore the network effects and interactions when defining the cleaning actions. 

Considering process variability within an integrated optimal control and scheduling 

application to mitigate fouling should, in principle, bring significant benefits to the operation. 

In this chapter, a multi-loop feedback control approach is presented to optimally control the 

flow rates and define the cleaning schedule of HEN under fouling. The repeated sampling 

allows to update the predictive models based on the information available, and the feedback 

approach corrects the optimal decisions accordingly to the variability and disturbances. 

7.2. Multi-loop MHE/NMPC for fouling mitigation 

The online optimization approach of the cleaning schedule and dynamic flow 

distribution of HEN under fouling is based on advanced control strategies. It defines two 

feedback control loops, one for the fast dynamics of the process associated with flow 

distribution, and another for the slow dynamics associated with fouling and cleaning. A single 

feedback loop cannot cope properly with the two time scales without sacrificing the accuracy 

and validity of the decisions. Figure 7.1 shows a block diagram of the control loops, their 

components and interactions. This implementation follows dual control principles in which 

each feedback loop deals with a specific time scale of the process, although here the outer 

loop correspond to an integrated scheduling and control problem. Each of the loops has two 

components: a nonlinear model predictive controller (NMPC) to optimize the operation of 

the network, and a moving horizon estimator (MHE) to update the model parameters based 

on the latest data. The NMPC controllers of each layer are economic oriented aiming to 

minimize the operating cost of the process, and it is expected for a time varying operation to 
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perform better than steady state solutions because the high variability of the process (Ellis, 

Liu, and Christofides 2017). 

In each of the stages of the block diagram presented in Figure 7.1 an optimization 

problem is solved using an accurate model of the system based on the mathematical 

formulation developed in Chapter 3. Variations of this formulation where certain variables 

are fixed, or the objective function is modified, are extensively used in the proposed online 

framework. There are also disturbances that affect the whole system, and their effect is 

considered explicitly in the control scheme proposed. Using two feedback loops that interact 

with each other allows to capture all the time scales of the process, and to optimally react to 

the different levels of variability and uncertainty that exists in the operation. 

 

Figure 7.1. Representation of the online, integrated optimal cleaning scheduling and control 

of HEN subject to fouling and disturbances. 

At the core of each feedback loop there is a NMPC controller and an MHE estimator. 

Figure 7.2 shows how they operate on a moving horizon, and how they constantly update the 

model parameters, and the actions taken on the process. At each sampling time, ∗, first, the 

MHE problem is solved over a past estimation horizon (PEH) to determine the model 

parameters that best describe the plant measurements observed and to estimate the current 

conditions of the system; and then the NMPC problem is solved over a future prediction 

horizon (FPH) to minimize the operating cost and determine the future actions – flow 
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distribution and/or cleanings – to take. The solution of the NMPC problem includes all future 

realization of the manipulated variables, but only the first one is implemented and all other 

are discarded because the predictions may change given the disturbances and uncertainties. 

At the next sampling time ( = ∗ + ) the procedure is repeated, a new MHE and a new 

NMPC are solved based on the current states of the system. This rolling horizon approach 

improves the estimation obtained with the MHE, as new and more recent information is 

included in the problem every time. It also improves the predictions and actions determined 

with the NMPC controller because it is updated accordingly to the current state of the system 

(Zavala and Biegler 2009; Allgöwer et al. 1999; Meadows and Rawlings 1997; Robertson, 

Lee, and Rawlings 1996; Bemporad 2009). 

  

Figure 7.2. Schematic representation of a moving horizon for NMPC and MHE. Past 

measurements and predictions at = ∗ (a), and at = ∗ +  (b). 

Each feedback loop of the online methodology follows the same principles, using an 

MHE for parameter estimation, and a NMPC for optimization, but their assumptions, inputs, 

and outputs are different. The specific optimization problems, their assumptions, and the flow 

of information of each of the control loops of the online fouling mitigation methodology are 

described next. 

7.2.1. Flow distribution feedback loop 

The flow distribution feedback loop is that within the red box in Figure 7.1. It deals 

with the fast dynamics of the process and the sampling time of this loop is of the order of 

days or shorter. The main objective of this loop is to reject the disturbances of the system by 
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optimally modifying the flow distribution in the network. The elements of this feedback loop 

are identified with the subscript . 

The  problem solved in this feedback control is defined in Eq. (7.1). The 

objective function is the same as that used in Chapter 4 for parameter estimation and model 

validation, and the weights in the errors are the same as those used before. It minimizes the 

quadratic error between the main measurements of the network – tube side outlet 

temperature, shell side outlet temperature, and tube side pressure drop for each heat 

exchanger– subject to the model of the HEN and fouling considering all operating 

constraints. The past estimation horizon, , is represented using a discrete time approach 

because it is assumed that all past measurements are recorded at regular intervals. This 

optimization problem is an NLP, and discontinuities observed arising from previous 

cleanings or disturbances are considered explicitly in the model as changes in the operating 

mode. These transitions can be easily modelled using the formulation presented in Chapter 3 

and fixing the realization of the binary variables associated with the state of each heat 

exchanger in the network. Finally, the solution of the  defines for each exchanger in 

the network the parameters of the fouling model – deposition and removal constants – , the 

surface roughness, and an estimation of the fouling resistance at the current time.  

min, , , , − ,  + , − ,  + Δ , − Δ ,  
. .  −  3.2.1  ℎ  −  3.2.2  −  3.2.3   −  3.2.4  −  3.2.5       −  3.3.1 

(7.1) 

The model parameters thus estimated are used in the  formulation to optimize 

the operation of the network over the . The optimization problem solved here is 

summarized in Eq. (7.2), and is a large scale NLP. The objective function is an economic 

objective function, so that the NMPC is defined as an economic-oriented controller instead 

of using the usual set point tracking definition. A set point tracking formulation is not suitable 

for this application because the aim here is to maximize the temperature at the end of the 

network – equivalent to maximize energy recovery – instead of controlling it at a specific 

value. The objective function only includes the elements associated with energy cost, carbon 
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cost, and production profit, and it ignores the cleanings cost because at this level – fast 

dynamics and frequent updates – the time scale is too short for cleanings to have a significant 

effect. They are therefore assumed to be known in the . The definition of the cleanings 

is done by fixing the binary variables of the original formulation so that they become 

parameters in this problem. The solution of the  problem defines the optimal flow 

distribution of the network, which includes the optimal flow split of parallel branches, 

bypasses, and the optimal inlet flow rate of hot streams that can be controlled. 

min + −  
. .  −  3.2.1  ℎ  −  3.2.2  −  3.2.3   −  3.2.4  −  3.2.5       −  3.3.1 

(7.2) 

The two optimization problems considered in the fast feedback loop are NLPs, the one 

associated with the  defines the model parameters used in the  to optimize the 

dynamic flow distribution in the network. There are no decisions associated with the 

cleanings of units in this feedback loop as they are optimally defined by the outer loop and 

become set parameters for the inner loop. The main factors affection the scheduling and 

cleaning decisions are associated with the slow dynamics of fouling, and the cumulative 

effect of the operating variables over long periods, features that are not capture in the . 

7.2.2. Cleaning scheduling feedback loop 

The cleaning scheduling feedback loop is that within the blue box in Figure 1.1. It deals 

with the slow dynamics of the process, the interactions between control and scheduling 

decisions, and it uses a longer sampling time than that of the flow control feedback loop. The 

main objective of this loop is to define the optimal cleaning schedule of the network over 

long operating periods, while considering the variability of the system and the interactions 

between scheduling and control. The elements of this feedback loop are identified with the 

subscript . 

The  problem solved in this feedback loop, Eq. (7.3), is similar to the previous 

one, and it uses the same weights in the objective function as those defined in Chapter 4. 
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Both formulations use the same objective function and set of constraints, but the main 

difference is that the  is much larger than the . The data set use for estimation in 

the scheduling layer is much larger and has much more variability over long operating 

periods than that of the flow control layer. This difference is necessary because the 

parameters estimated at each layer are used in models that serve different purposes. While 

the flow control layer models optimize the current operation of the network, and deals with 

fast disturbances, the scheduling layer model defines the future cleaning actions over longer 

operating periods and must consider the overall variability observed in the system, not just 

the current disturbances. The  is an NLP that defines the fouling parameters, and 

estimates the current fouling resistance for the predictive model used in the optimal cleaning 

scheduling problem. 

min, , , , − ,  + , − ,  + Δ , − Δ ,  
. .  −  3.2.1  ℎ  −  3.2.2  −  3.2.3   −  3.2.4  −  3.2.5       −  3.3.1 

(7.3) 

min, + + , ,∈∈ −  
. .  −  3.2.1  ℎ  −  3.2.2  −  3.2.3   −  3.2.4  −  3.2.5       −  3.3.2 

(7.4) 

The  problem solved is summarized in Eq. (7.4). It is a large scale MINLP that 

minimizes the total operating cost by defining the optimal cleaning schedule and the optimal 

flow control over the . The objective function includes the cleaning cost, and all the 

operating costs because this problem considers explicitly the cleaning decisions. Contrary to 

the NMPC problem of the flow control layer, this one is much more challenging to solve 

because of the large number of binary variables and feasible cleaning schedules with similar 

performance. Nevertheless, it can be solved efficiently and in real time using the solution 

strategy of Chapter 5. 



208 

The solution of the  problem gives the optimal cleaning schedule over the 

, but only that section of the schedule defined between the current time and the next 

sampling time is passed on, as fixed values, to the flow control layer, and implemented in the 

actual plant. This makes the methodology reactive to the uncertainty and future variability of 

the operation. Another important output the  solution is the dynamic profiles of the 

flow rate distribution, which is determined simultaneously with the optimal cleaning 

schedule, although this part of the solution is discarded and not implemented in the plant. 

That flow distribution obtained at the scheduling layer is based on average predictions of the 

operating conditions over long periods, but those conditions can rapidly deviate from their 

predictions, and the flow control layer can respond faster and in an optimal way to those 

changes. In summary, the scheduling layer optimizes simultaneously the cleaning schedule 

and flow distribution considering their interactions, but the actual optimization of the flow 

distribution based on the variability of the system is done at the flow control layer. 

7.2.3. Overall methodology for online fouling mitigation 

The flow control layer and the scheduling layer have strong interactions. The inputs to 

the flow control layer  are: the model parameters and initial conditions estimated in 

the , the process disturbances, and the cleaning actions and starting cleaning times 

defined by the scheduling layer. The inputs to the  are similar: the model parameters 

and initial conditions estimated in the , and a forecast of the future inputs and 

disturbances of the process. In both layers, the MHE uses plant measurements which reflect 

the past states and past actions including control and scheduling decisions. 

For each of the feedback control loops the following parameters must be specified: 

• Future prediction horizon (FPH): future time for which a prediction model is solved 

to determine the optimal operating conditions. Since all the feedback loops have 

economic objective functions, the control horizon is equal to the FPH. In standard 

MPC formulations, the control horizon – the time where the manipulated variables 

vary – is shorter than the prediction horizon to ensure stability, and to reduce the 

variability in the inputs (Qin and Badgwell 2003). 
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• Past estimation horizon (PEH): the period from which plant measurements are taken 

for solving the parameter estimation problem, . The PEH varies for each 

feedback loop capturing different dynamics. 

• Disturbance forecast model: the most common disturbances in preheat trains are 

observed in the temperature and flow rates of the inlet streams, and in the 

composition of the crude which affects its fouling propensity. The formers are 

measured, the latter typically not. All have significant effects on the operation, and 

on the solution of related optimization problems. Hence, an accurate forecast of 

these disturbances improves the quality of the solution of the optimization problems. 

For the flow control layer, a constant forecast of the disturbances is used so that they 

are fixed at their current value over the , while for the scheduling layer a 

moving average forecast is used to estimate the disturbances based on the 

measurements of the previous month. Other forecast models could be used, for 

example those based on time series, but this is beyond the scope of this thesis. 

• Time discretization: it refers to the number of periods used in the continuous time 

representation of the  of the scheduling layer. The number of periods defines 

the scale of the problem as it is associated with the number of binary variables used 

to model the cleanings of exchangers over time. Also, the number of periods should 

be representative for the length of the , so that if a long prediction horizon is 

used, more periods are required to model the cleaning decisions correctly. This 

parameter only applies to the  problem of the scheduling layer. The flow 

control layer, and all the  problems use a discrete time approach with a time 

step equal to the sampling time of the inner loop feedback loop. 

These parameters affect the overall performance of the online fouling mitigation 

methodology, the computational complexity of the associated optimization problems, and the 

ability of the framework to cope with process variability and large disturbances.  

7.2.4. End of operation considerations 

The online methodology presented assumes a continuous operation on a rolling basis, 

so that constant feedback helps the system to react to variability and disturbances. However, 

there are instances when the end time ( ) of the operation is known. For example, a 
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planned turnaround of the refinery or a shutdown may be known in advanced so that any 

mitigation action such as cleanings close to this time will be counterproductive. To consider 

this sort of scenarios a shrinking horizon approach is implemented for each of the feedback 

loops (Gupta and Maravelias 2016). In this approach, each  is defined as { , − ∗} so that it is progressively shrank as the rolling horizon approaches the 

end time of the operation. Figure 7.3 compares two cleaning schedules for an illustrative 

example with two exchangers. In Figure 7.3a the schedule is defined with an open-end 

horizon approach, while in Figure 7.3b the shrinking horizon method is used to account for 

the end time of the operation. It also illustrates how the final cleaning schedule is constructed 

from the optimal solution of a series of optimization problems in a rolling horizon scheme: 

it shows which part of the schedule are implemented, and which part are discarded.  

a) 

 
b) 

 

Figure 7.3. Representation of scheduling construction in rolling horizon scheme. a) 

assuming an open-end operation, b) shrinking horizon to account for the end of operation. 
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7.3. Online optimization of an industrial preheat train 

The REF-X case study is used to demonstrate the benefits of the online fouling 

mitigation methodology proposed. The complete description of the case study can be found 

in Appendix A, and the network representation is presented again in Figure 7.4 for ease of 

reference. The network has five exchangers, of which four are double shell, and the crude oil 

flow is split in two parallel branches that are unbalanced. The split fraction in each branch is 

constrained to be between 30% and 70%.  

 

Figure 7.4. Network representation of REF-X case study used in the application of the 

online fouling mitigation methodology. 

This case study is taken from an actual preheat train and measurements are available, 

as well as the actual cleaning actions implemented in the refinery. A data set of 3.4 years of 

operation is used in this application. It includes flow rates and inlet streams temperature 

measurements, which are used to characterize process variability and to define the 

disturbances. Figure 7.5 presents the actual inputs to the network. A large variability is 

observed in the flow rates, especially that of the crude stream. Also, the input variables are 

highly correlated. The flow rates of all hot streams are products of the CDU, hence they are 

correlated to the inlet flow rate of crude oil. For the same reason hot streams temperature are 

correlated among themselves. 
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a) 

 

b) 

 

Figure 7.5. Actual measurements of the inlet stream flow rates (a), and temperature (b) for 

the case study of REF-X. 

The data set available has measurements of the outlet streams temperature which were 

used for model validation in Chapter 4, although they are not used in the online fouling 

mitigation approach. Because, it is expected that the online optimization approach will define 

alternative operating modes – a different cleaning schedule and flow distribution – than that 

of the actual operation, so the outputs of the system are not comparable. For this same reason 

an alternative representation of the actual system is needed. The same model developed in 

Chapter 3, and used as predictive model within the NMPC problems, is used here to simulate 

the actual operation of the system (plant). The parameters of this model are first estimated 

offline based on the results presented in Chapter 4, and later they may be modified to simulate 

a degree of mismatch between the predictive models of the feedback loops and the actual 

operation of the plant. Using the same model to represent the actual plant operation, and to 

make prediction in the NMPC problems enables exploring two scenarios. The first one is 

where the plant model and the predictive model are exactly the same, so there is no need to 

solve an estimation problem (MHE) and the function of the feedback loops is to react to 

disturbances. The second is where there is a mismatch between the plant and the model – as 

it is expected in reality – so that the estimation problem aims to characterize the plant 

performance, and the feedback loops to react to disturbances. 
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7.3.1. Online optimization assuming perfect model 

The first approach to evaluate the performance of the proposed online optimization 

approach is to assume perfect knowledge of the system. The model used to simulate the real 

operation of the preheat train, is also used as the predictive model in the NMPC problems of 

the feedback loops. Furthermore, it is assumed the type of crude oil never changes, hence the 

model fouling parameters are constant and known so there is no need to solve the MHE 

problems. The model represents perfectly the system dynamics and there is no mismatch.  

By simplifying the problem in this way , this section aims to specifically evaluate the 

effects of the input variability observed, and to compare the following alternatives: i) the 

actual operation of the preheat train with the cleaning schedule performed during the 

operation of the network (Actual), ii) the optimal online flow distribution control with the 

actual cleaning schedule which is assumed fixed (Opt. C), iii) the optimal online cleaning 

schedule, with a fixed flow distribution, split fraction set at 50% (Opt. S), and iv) the 

simultaneous online optimization of the flow distribution and cleaning scheduling (Opt. S + 

C). Although there is no mismatch between the predictive models and the actual preheat train, 

there are disturbances in all the inputs to the network. 

As daily data are available, the sampling time is 1 day. Although the operating 

conditions of the preheat train may change more often, their daily average value is a 

representative measurement considering the long-time scales involved. In this case, the 

update frequency of the flow control layer is selected to be the same as the measurements 

sampling time because it aims to reject the effect of disturbances. That of the scheduling layer 

is set as 180 days, although this is a rather long time between consecutive solutions, it is long 

enough to capture the slow dynamic of fouling and to avoid unstable operating modes that 

may arise if the cleaning decisions change frequently based on the disturbances. The future 

prediction horizon of the control layer is set at 10 days, while that of the scheduling layer is 

set at 500 days. The  is always longer than the sampling time in each layer, giving more 

importance to the current events and changes than to the future ones that are uncertain. 

Finally, the  is discretized using 10 points for the control layer, and 20 periods of variable 

length for the scheduling layer. 

The actual operation of the refinery under varying conditions is compared against all 

online optimization scenarios. In addition, a heuristic approach, which is described in detail 
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in Appendix C, is also used to determine and update a cleaning schedule under varying 

operating conditions. This heuristic algorithm defines the cleanings on a rolling horizon using 

a quadratic model to predict the heat duty decay of each exchanger, and an economic 

threshold criterion to determine potential beneficial cleanings. It can be coupled with a steady 

state optimization of the flow distribution to determine the flow split at every time instance. 

Table 7.1 shows the operating cost and extra energy at the furnace for each of the alternatives 

considered. The heuristic approach on its own, using the actual flow distribution of the 

refinery, leads to a cleaning schedule worse than that used in the actual operation. Erroneous 

and ineffective cleaning decisions are suggested by the heuristic algorithm, as it ignores the 

effect of varying operating conditions, such as flow rates and inlet temperature, on the 

performance prediction of the units. However, when a steady state optimization of the flow 

distribution is performed at every sampling time simultaneously with the heuristic algorithm 

for cleaning scheduling, the operating cost is reduced by $ 1.50 M compared to that of the 

actual operation of the refinery. This highlights the importance of considering the interaction 

between control and scheduling decisions to mitigate fouling.  

Table 7.1. Total operating cost for online fouling mitigation and the actual refinery 

operation. 

 Total energy 

[MWh] 

Energy 

cost [$ M] 

Cleaning 

cost [$ M] 

Total cost  

[$ M] 

Actual operation (Actual) 1.59x106 39.888 0.705 40.585 

Heuristic – Quadratic model 1.61x106 40.331 0.729 41.061 

Heuristic – Quadratic model + flow control 1.53x106 38.360 0.729 39.090 

Online optimal flow control (Opt. C) 1.55x106 38.884 0.705 39.553 

Online optimal cleaning scheduling (Opt. S) 1.44x106 36.001 2.487 38.497 

Online integrated optimal flow control and 

cleaning scheduling (Opt. C+S) 
1.43x106 35.960 1.638 37.543 

All online optimization alternatives provide a better operation than the actual operation 

of the refinery. They all reduce the operating cost by decreasing the extra energy 

requirements of the furnace. These optimization alternatives consider the varying operating 

conditions explicitly using a moving horizon for predicting the performance of the system, 

and a feedback loop to update the operating conditions based on the disturbances. The 

maximum reduction in operating cost, $ 3.04 M, is achieved when the control and scheduling 
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decisions are integrated online using two feedback loops, although using individual feedback 

loops is also advantageous for the operation. The optimal integration of flow control and 

cleaning scheduling performs better than the integration based on heuristics to define the 

cleanings. Using only the scheduling feedback loop for online optimization leads to higher 

cleaning cost than those of all other alternatives – too many cleanings – which may introduce 

many unacceptable disruptions in the operation, but there are fewer cleanings when the two 

feedback loops are used to integrate control and scheduling decisions. 

Figure 7.6 compares the actual cleaning schedule of the preheat train with those 

obtained online using heuristics and the online optimization alternatives. The number on the 

right-hand side of this figure represent the total cleanings per exchanger. While the heuristic 

approach only defines cleanings for E01A/B and E04, the units with the highest fouling rate, 

the online optimization approaches define cleanings for all exchangers. The cleaning 

sequence and starting time of the online optimal schedules are significantly different from 

those of the actual operation, or the heuristic algorithm. These optimal schedules respond to 

the variability of the inputs of the system, exploit the interactions in the network, and 

minimize the total operating cost. The total number of cleanings decreases when control and 

scheduling decisions are considered simultaneously, relative to those when only scheduling 

decisions are optimized. Fewer cleanings are ideal from a practical perspective as they reduce 

disruptions and the risk arising from cleaning interventions. 

 

Figure 7.6. Comparison of cleaning schedules for all online scenarios considered of the 

case study REF-X. 

The importance of the interactions between flow distribution and cleaning scheduling 

decisions through the two feedback loops is observed in Figure 7.7. It shows the split fraction 

between the parallel branches in the network for the actual operation, for the online 
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optimization of the flow distribution with fixed schedule (Opt. C), for the integration of 

scheduling decisions using heuristics (Heuristic + Opt C), and for the multi-loop strategy 

(Opt. S+C). The actual operation could be significantly improved by just modifying the split 

fraction to react dynamically to disturbances as the flow control feedback loop defines the 

split fraction considering the trade-off between fouling rate and energy recovery in the two 

branches. For instance, when E05A/B is cleaned in the actual operation – at 100 and 750 days 

of operation – the flow optimization indicates that most of the flow is diverted towards that 

branch, and the split fraction is a function of the disturbances. When the two feedback loops 

are used to integrate online control and scheduling decisions, the reduction in operating cost 

is even larger. There are interactions between the flow distribution and the allocation of 

cleanings, and it is more evident when a large unit – E02A/B or E05A/B – on one of the 

branches is cleaned. The heuristic algorithm used to define the cleanings do not capture these 

important interactions as it ignores the effects of flow rates and temperature – the main 

disturbances – on the decay rate of the exchanger performances. Integrating optimal steady 

state control with the heuristic algorithm saturates the split fraction at its upper bound for 

most of the time, which shows that the definition of the cleanings in this way ignores the 

dynamic effect of the flow distribution. 

 

Figure 7.7. Flow split fraction towards E02A/B for all online scenarios of REF-X case. 

Figure 7.8 shows that the fouling resistance of E02A is always lower when the flow 

distribution is optimized online (Opt. C) than during the actual operation. Hence the heat 

duty of the exchanger is always higher, and it can recover more energy. This only shows the 

effect of flow distribution in one exchanger in one of the branches. On the other branch, the 

opposite effects are observed, which are: higher fouling resistance and lower heat duty 
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because of the lower flow rate. The feedback optimization of the control layer considers these 

trade offs and disturbances to give the best possible flow distribution in the system. 

a) 

 

b) 

 

Figure 7.8. Effects of optimal flow distribution for online fouling mitigation, case of E02A. 

a) Fouling resistance, b) heat duty 

It has been demonstrated that the best alternative is to integrate flow distribution and 

cleaning scheduling using the multi-loop feedback strategy proposed – Opt. S+C. The 

analysis presented next is relative to that alternative. 

Despite assuming a perfect model for the NMPC loops, the optimal predictions at every 

sampling time change because the effect of disturbances. The effect of disturbances on the 

NMPC predictions of the control layer is observed in Figure 7.9. It shows the CIT observed 

(black line) and predicted (red line) at the control layer for three consecutive time instances, 

at three different times. The dark area of the figure represents the FPH of the control layer. 

A good agreement is observed between the predicted behaviour of the system over the  

and the actual response of the plant. The predictions of the control layer also capture the 

effect of the cleanings, as observed in the evolution of the first and last FPH on Figure 7.9 – 

dark area from top to bottom. The cleanings defined at the scheduling later – outer feedback 

loop – are shared with the control layer and introduce discontinuities in the operation, but the 

control layer considers these discontinuities in its own predictions of the system performance. 

The NMPC of the control layer is solved at the same frequency at which the disturbances 

occur, so its predictions and optimal actions are constantly adapting to reflect those effects. 
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Figure 7.9. CIT observed (continuous line) and predicted (dash line) at the control layer for 

the scenario Opt. S+C of REF-X at three consecutive time instances – time evolution from 

top to bottom. 

The predicted performance of the system can also be tracked at the scheduling layer. 

The evolution of the CIT and its prediction at different times are shown in Figure 7.10, while 

the executed and predicted cleaning schedules are presented in Figure 7.11. The dark areas 

correspond to the  and include the predicted variables (red), while the black lines or 

boxes are the plant responses or the execution of the cleaning actions. The time evolution is 

observed from top to bottom in these figures. The scheduling feedback control loop captures 

the effects of cleanings, cleaning times, and flow distribution on the performance of the 

network. Also, the accuracy of the predicted CIT trend is good in the first half of the moving 

window, but deteriorates in the second half – that closer to the end of the  – because of 

the cumulative effect of all the disturbances on the fouling rate, deposit thickness, and general 

performance of the units. After long prediction times, the values used to forecast the 

behaviour of the disturbances, a moving average in this case, becomes less representative of 

the actual operation. Similar discrepancies between the execution and prediction of the 

cleaning schedule are observed for the same reasons. Hence, a constant revision and update 

of the fouling mitigation is paramount for a good operation. 
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Figure 7.10. CIT observed (continuous line) and predicted (dash 

line) at the scheduling layer for the scenario Opt. S+C of REF-X at 

three consecutive time instances – current time of the prediction on 

the upper right corner. 

 

 

 

Figure 7.11. Cleaning schedule executed (black) and predicted 

(red) at the scheduling layer for the scenario Opt. S+C of 

REF-X at three consecutive time instances – current time of 

the prediction on the upper right corner. 
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The dynamic flow distribution and its interaction with the cleanings is also considered 

at the scheduling layer of the online optimization. Figure 7.12 shows the split fraction 

predicted by the solution of the NMPC of the scheduling layer at 361 days and compares it 

with the actual execution of this manipulated variable. The optimal flow distribution 

predicted responds to the cleanings predicted for the , although it ignores the variability 

introduce by the disturbances at a smaller time scale. The control layer deals with the short 

term effect of the disturbances, and optimally defines the split fraction at every time instance 

while considering the inputs from the outer feedback loop. In addition, there is a good 

agreement between the flow distribution predicted at the scheduling layer, where the effect 

of disturbances is averaged, and that executed by the flow control layer to reject disturbances 

and minimize operating cost at a faster frequency.  

 
Figure 7.12. Optimal split fraction implemented (continuous line) and predicted (dash line) 

at the scheduling layer for the scenario Opt. S+C of REF-X. Prediction at 361 days. 

The final scenario considered for the online optimization of the REF-X case study 

under the perfect model assumption is when the end time of the operation is known, assumed 

to be 1240 days. The optimal cleaning scheduling and control problem – Opt. S+C – is solved 

online using the proposed method under a shrinking horizon mode for the prediction of the 

NMPC on both feedback loops. Figure 7.13 shows the cleaning schedule executed based on 

the moving horizon optimization assuming a continuous open-ended operation, and one with 

a finite horizon. Differences are only observed at the end of the operation when the shrinking 

of the  and of the  has an effect on the optimal solution and on the feedback 

actions. When the end of the operation is explicitly considered, some of the cleanings are 

executed earlier, and there are additional cleanings. The operation executed with a shirking 

horizon has a total operating cost of $ 37.46 M, while that for a continuous operation is $ 

37.54 M.  
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Figure 7.13. Comparison of the optimal cleaning schedule determined online assuming the 

end time is known and using a shrinking horizon approach for the NMPC. 

The differences observed in the operating cost are explained because of their different 

predictions towards the end of the operation, and the different actions feedback to the plant. 

The last three predictions before the end of the operation of the CIT and of the cleaning 

schedule at the scheduling layer are presented in Figure 7.14 and Figure 7.15, respectively. 

These figures compare the  of the scheduling layer and the predictions obtained within 

this horizon towards the final time of the operation assuming a continuous open-ended 

operation (a), and an end time using shrinking horizon (b). The  in (a) goes beyond the 

end of the operation, and the NMPC solution predicts the system performance during that 

period and mitigation actions that are not necessary and are never implemented. On the other 

hand, the  in (b) is variable and decreases as the end of the operation approaches so that 

it never exceeds the final time. By doing so, it ensures that the prediction of the system 

performance and all mitigation actions always falls within the actual operating time. In this 

case, there are no cleanings predicted beyond the end of the operation, and it guarantees that 

all the cleanings performed before the operating finishes are beneficial from an economic 

perspective.  
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a) 

 

b) 

 

Figure 7.14. CIT observed (continuous line) and predicted (dash line) at the scheduling 

layer towards the end of the operation. a) open-ended online optimization, b) shrinking 

horizon optimization. 
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a) 

 

b) 

 

Figure 7.15. Comparison of the cleaning schedule executed (black) and predicted (red) at the scheduling layer towards the end of the 

operation. a) open-end online optimization, b) shrinking horizon optimization. 

 

 



224 

7.3.2. Online optimization under plant mismatch 

Introducing model plant mismatch in the online optimization of preheat trains under 

fouling represents a more realistic scenario. In this case, the parameters of the model used to 

simulate the plant operation are unknown to the predictive models in the NMPCs, and the 

MHE problem of each layer must be solved to estimate them based on past observations.  

Model plant mismatch is introduced by modifying the fouling deposition constant of 

each exchanger in the plant model. This aims to mimic the effect of processing different 

crudes or crude blends in the preheat train, as they can have different fouling propensity, 

which is captured in the fouling model parameters. The deposition constants change over 

time, but their actual value is unknown to all predictive models used in the online 

optimization approach. The variability of the actual deposition constants in each exchanger 

is model as a pseudo random process around their average values. Because all exchangers 

process the same crude at a given time their deposition constants are not independent, and 

their correlation is captured when their variability is defined as a random process. Figure 

7.16a presents an example of how the deposition constant in two exchangers vary with time 

randomly around their mean, and Figure 7.16b presents the variability of the deposition 

constant for each exchanger in the network. The average deposition constant, and its 

variability are different for each exchanger in the network. For instance, the coefficient of 

variance ranges from 12% to 31%, and the minimum and maximum values deviate by up to 

79% with respect to their average. 

a) 

 

b) 

 

Figure 7.16. Model plant mismatch defined varying the deposition constant of each 

exchanger of the plant. a) example of time variability for two exchangers, b) box plot 

representing the variability in the deposition constant for each exchanger in the network. 
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The integrated and online flow distribution and cleaning scheduling problem is solved 

for the REF-X case with a model-plant mismatch as defined above. The specifications 

defining the NMPC of each layer are the same used in Section 7.3.1. To account for the 

mismatch, the MHE problems are solved at the same frequency as the NMPC of the 

respective layer. For the control layer a  of 20 days is used, while the  of the 

scheduling layer is 180 days. The  is chosen twice as long as its  to capture the 

short term dynamics and variability of the plant, and to account for the effect of cleanings, 

which in this case study last between 9 and 16 days depending on the exchanger. The  

of the scheduling layer is much longer than  because it aims to capture the long term 

variability of the plant and the slow fouling dynamics. In this case, the  is chosen to be 

equal to the interval at which the  is solved (180 days), so that all the new information 

collected between sampling times is included in the estimation problem. 

Figure 7.17 shows the cleaning schedule executed when the Opt. S+C operation is 

optimized online using the proposed approach and compares it with the actual cleaning 

schedule executed by the refinery. For a fair comparison the actual schedule of the preheat 

train is simulated for the model plant mismatch scenario where the deposition constant of the 

plant varies dynamically. The optimal cleaning schedule has many more cleanings than the 

actual one, all exchangers are cleaned more often, and the benefit of these actions is a cost 

reduction of $ 2.54 M. Exchangers E01A/B and E04 are cleaned more often because they 

have the highest fouling rates and largest heat duty, and the solution of the MHE problems 

estimates correctly this behaviour. The largest contribution to the economic savings observed 

is from the integration of flow distribution and cleaning scheduling decisions. Figure 7.18 

compares the optimal furnace duty and flow distribution for the actual and the online Opt. 

S+C operations. Despite the variability caused by the changing inputs and the varying 

deposition constants, the furnace duty of the optimized alternative is lower than in the actual 

operating during most of the time. The split fraction reacts to the cleanings to recover the 

maximum amount of energy in the network depending on the disturbances and on the state 

of the exchanges. All the benefits of integrated scheduling and control decisions are obtained 

regardless of the existence of model mismatch, and the need of estimating the model 

parameters online. 
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Figure 7.17. Cleaning schedule executed in the actual operation and with the online 

optimization approach considering model plant mismatch. 

a) 

 

b) 

 

Figure 7.18. Furnace duty (a) and split fractions towards E02A/B (b) for the actual 

operation and the online optimization considering model plant mismatch. 

The efficient implementation of the online optimization approach proposed depends on 

the solution of the  and  optimization problems in each control loop. The size 

and the average solution time of each problem are summarized in Table 7.2. In each layer, 

the limiting step is the solution of the  problem as it requires a higher computational 

time than the  problem, although the solution time is much shorter than the actual 

sampling time of the respective control loop. The sampling time of 1 day for the flow control 

loop is greater than the total computational time for solving the two optimization problems, 

and the same is true for the scheduling layer, with a much longer sampling time. The 

difference in computational load required to solve the  and  problems comes 

from their difference in size – the  of each layer is almost twice as large as its 

corresponding  –, the large data set used in the parameter estimation problem that makes 
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the evaluation of the objective function complex, and the high correlation of the model 

parameters estimated at this stage. On the other hand, the  problems are solved 

relatively easily. That of the control layer is an NLP, and that of the scheduling layer an 

MINLP which, despite having binary decision variables, is solved efficiently and fast using 

the complementarity constraints reformulation. Considering this good computational 

performance, it would be possible to reduce the sampling time to the order of hours or 

minutes for the flow control feedback loop, and to the order of days or hours for the 

scheduling feedback loop. This will improve the ability to handle fast dynamics and 

disturbances, and to execute better control actions reacting to the operational changes. 

Table 7.2. Model size and solution time summary of the optimization problems involved in 

the proposed online approach considering model-plant mismatch. 

 Control layer Scheduling layer 

     

Variables 5158 2552 42278 20050 

Binary variables 0 0 0 200 

Equality constraints 4713 2343 38793 18920 

Inequality constraints 10692 5412 49332 37679 

Average CPU time [min] 0.91 0.08 169.2 23.95 

Standard deviation of CPU time [min] 0.38 0.03 37.11 4.75 

Instances solved 1230 1240 6 6 

The online optimization of the preheat train under model-plant mismatch relies on an 

accurate estimation of the model parameters and of the current state of the system at every 

sampling time. The estimation of model parameters has to be precise in order to result in 

appropriate fouling mitigation actions. Figure 7.19 shows the CIT of the network, observed 

(continuous line), predicted in the  (dash line – light grey area), and estimated in the 

 (dotted line – light blue area) for three consecutive time instances of the control 

feedback loop and two time windows starting at 80 and 200 days of operation. The estimation 

of the network performance and the model parameters of the control layer are obtained 

solving the corresponding  problem at every sampling time, and a good agreement is 

observed between the observed and predicted values. The absolute error between the 

predicted values of the CIT at the control layer, and the observed ones is, on average, less 

than 1.0 K. In addition, the fitted model is used at every sampling time to predict the system 
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performance and the optimal actions to execute in the plant. The predictions follow the trend 

observed in the actual operation including the effect of cleanings.  

 

Figure 7.19. CIT observed (continuous line), predicted (dashed line), and estimated (dotted 

line) at the control layer for the scenario Opt. S+C of REF-X at three consecutive time 

instances under model plant mismatch. Time evolution is from top to bottom. 

In the scheduling layer the  problem is solved to estimate the model fouling 

parameters and the current state of the preheat train. The main difference is that the  

and the  are much longer than the  and the , respectively. The observed 

plant measurements used in  cover a longer operating time, possibly with many 

cleanings, to ensure that the parameters estimated reflect the slow dynamics of fouling and 

the effects of variable operating conditions on the network performance. Figure 7.20 shows 

the CIT observed during the whole operation (continuous line), and the CIT estimated (dotted 

line) and predicted (dashed line) at three consecutive solutions of the scheduling feedback 

loop. The current time when the scheduling layer is solved is shown in the upper right corner 

of each figure. A higher variability is observed in this feedback loop compared to the flow 

control loop, but the  copes with it and provides accurate estimations of the system 

performance despite the large data set, variability, and cleanings. The parameters estimated 

solving the  problem are used in the , and its predictions are accurate with 

respect to the later observations. However, the quality and accuracy of those prediction 

decreases over the  – the cumulative effect of the disturbances becomes significant, and 

the parameters estimated at the  become less representative of the plant operation. 
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Frequent updates of the  and  problems ensure an excellent overall 

performance of the online integrated scheduling and control approach. 

 

Figure 7.20. CIT observed (continuous line), predicted (dashed line), and estimated (dotted 

line) at the scheduling layer for the scenario Opt. S+C of REF-X at three consecutive time 

instances under model plant mismatch – time evolution from top to bottom. 

The way model-plant mismatch is considered in this scenario, a simulation of the actual 

plant with varying deposition constants at every sampling time, allows to compare the 

estimated parameters at each feedback loop with the ‘real’ ones. Figure 7.21 and Figure 7.22 

show the actual deposition constants used in the plant and those estimated by solving the 

 problem at the control and scheduling layer, respectively. At the control layer, the 

estimated parameters exhibit a seemingly chaotic behaviour, although their general trend 

follows that of the actual plant. In addition, the box plot of Figure 7.21b compares the mean 

values and variability ranges of the actual deposition constant and the predicted one for each 

heat exchanger in the network. There is not significant difference between the average values 

of the deposition constants estimated and those used in the actual plant, but the variability of 

the estimated parameters is larger. At the scheduling layer, similar features are observed for 

the estimation of the deposition constant of the exchangers, although the  is solved 

only six times during the operation. The fewer solutions of the  problem relative to 

those of the  problem reduce the variability observed on the estimations – step changes 
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in Figure 7.22b. However, the box plot shows that there is no significant difference between 

the average of the constants estimated and those of the actual plant. 

a) 

 

b) 

 

Figure 7.21. Comparison of the actual deposition constant and that estimated at the control 

layer for REF-X case. a) time series example for E04, b) box plot comparing every 

exchanger in the network. 

a) 

 

b) 

 

Figure 7.22. Comparison of the actual deposition constant and that estimated at the 

scheduling layer for REF-X case. a) time series example for E04, b) box plot comparing 

every exchanger in the network. 

It is not expected that the parameters estimated by the  of each control loop match 

exactly those of the real plant. First, the MHE solution is a single set of parameters that 

represent the past observations of the plant, while in the actual operation they are changing 

dynamically. For example, at the scheduling layer a single set of parameters aims to estimate 

the plant behaviour correctly over the past 180 days of operation when many changes 

occurred in the plant, including different deposition rates. Second, the fouling parameters of 



231 

the Ebert-Panchal model are highly correlated, so that different combinations of deposition 

(α) and removal (γ) constants may predict the same or similar behaviour observed in the 

plant. Third, the  solution determines simultaneously all the fouling parameters of every 

exchanger in the network and it considers all the interactions, hence a single parameter for 

one exchanger is not representative of the overall performance of the network, and 

correlations among the parameters are important. 

7.3.3. Effect of multi-loop MHE/NMPC parameters 

The MHE/NMPC loop settings (update frequency, estimation horizon, and prediction 

horizon) have a significant effect on the closed-loop performance. To evaluate these effects 

the update frequency and the future prediction horizon of the scheduling layer are varied 

under the model-plant mismatch conditions defined in Section 7.3.2, while those of the flow 

control loop are set constant at the values used in that same section. Because the control layer 

is solved as frequent as measurements are collected and there is no limitation to solve it faster, 

it is not worth exploring other update frequencies. In addition, longer  and  are 

not expected to have a significant effect on the overall closed-loop performance as the 

disturbances and process variability are fast and not captured in the  predictions. 

Also, it has been demonstrated in Section 7.3.1 that most of the economic savings generated 

come from the execution of the scheduling layer. 

Two update intervals of the scheduling layer are explored here, 30 and 90 days, while 

the  is varied from 90 days to 720 days, with five points evaluated in this range. Besides 

this interaction between the  and the update frequency, there are more interactions 

involving the  and other settings of the multi-loop control strategy. The number of 

periods of variable length used to discretize the prediction horizon, and the length of the 

 are correlated with the . The longer the  the more periods needed to 

discretize it appropriately, and the longer  needed to capture correctly the plant 

dynamics. To simplify this, the number of periods is defined as an explicit function of the  according to Eq. (7.5), and the past estimation horizon as a function of the update 

interval, Eq. (7.6). Eq. (7.5) assumes a linear relation so that the number of periods increases 

by a factor of 1/30 of the , while the  is always 30 days longer than the update 

interval of the scheduling layer, Τ∗, to ensure that all new information is included in the 
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parameter estimation problem at the next sampling instance. Assuming these relations are 

appropriate, only the effect of the update intervals and the  are evaluated independently. 

= 30 + 6 (7.5) = Τ∗ + 30 (7.6) 

The closed loop performance, in terms of operating cost, for each of the combination 

of parameters explored is shown in Figure 7.23. More frequent scheduling layer updates lead 

to lower energy cost, and higher cleaning cost. The cleaning decision predicted in the  

are affected by the realisation of the disturbances in the past and the current state of the 

system. If these conditions are evaluated often and they are changing, new cleanings may 

become profitable closer to the current time, hence they are executed. On the other hand, 

increasing the  reduces the energy cost, and increases the cleaning cost. As the 

prediction horizon is longer there are more periods to allocate cleanings, so that more 

effective and profitable cleanings may fall between updates of the scheduling layer. There is 

a clear effect on the energy and cleaning cost by varying these parameters of the multi-loop 

optimization, although the changes in the total operating cost are rather small. For all the 

combinations of parameters considered the total operating cost only varies within a range of 

$ 0.24 M, which is small for an operation of 3.4 years. Therefore, other performance 

indicators such as the total number of cleanings – directly related to the cleaning cost – that 

indicates the number of disruptions and risk of the operation should be used to decide the 

best settings of the multi-loop strategy. 

a) 

 

b) 

 

c) 

 

Figure 7.23. Effect of the  and Τ∗ of the scheduling layer on the closed-loop 

performance for case REF-X. a) energy cost, b) cleaning cost, c) total operating cost. 

The multi-loop settings used in Section 7.3.2 – update frequency of 180 days, and  

of 500 days – are not covered in the sensitivity analysis presented here. The update frequency 

used in that case was rather long and allowed many operational changes to happen between 
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consecutive solutions of the scheduling layer, which may cause problems in the operation of 

an actual preheat train. Hence, faster updates of the scheduling layer should be considered. 

In addition, all the combinations of parameters evaluated here result in a lower operating cost 

– Figure 7.23 – than in the previous section case, $ 38.89 M, indicating that faster updates of 

the scheduling layer improve the closed-loop performance of the system. 

7.3.4. Effect of inlet flow rate disturbances in the system 

The effect of large disturbances in the closed-loop operation of the system is evaluated 

here. All the previous cases simulated the plant operation using the actual time-varying inputs 

of the refinery, although there are no extreme operational changes. It is common in refinery 

operations to have sudden changes to cope with market changes or internal requirements of 

the whole refinery. The online optimization approach proposed can deal with these large 

disturbances. 

Sustained step changes of +/- 30% with respect to the average are introduced in the 

input flow rates of the network. This disturbance is modelled in the same way for all the 

streams as all the flow rates are correlated with the crude flow rate. Figure 7.24 shows the 

step disturbances introduced to the system. The red area highlighted shows the positive step, 

while the blue one the negative step. This colour convention to differentiate the disturbances 

is used though all the analysis of this section. 

 

Figure 7.24. Step disturbances in the inlet flow rates of case REF-X over one year of 

operation. 

The online optimization of the flow distribution and cleaning scheduling (Opt. S+C) is 

done for one year of operation considering the above large disturbances in the inlet flow rates, 
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and assuming an opened-ended horizon. Model plant mismatch is considered in the same 

way as in Section 7.3.2, the settings of the control layer are also taken from there, and the 

scheduling layer is solved on demand with a  of 90 days and a  of 60 days. At the 

beginning of the operation the scheduling layer is solved every 15 days, but it is also solved 

every time a large disturbance occurs so that the overall multi-loop strategy can react to 

drastic operational changes. Later, after 250 days of operation the update frequency is 

changed to 30 days. This variable update frequency aims to demonstrate the versatility and 

robustness of the online optimization approach. 

Figure 7.25a shows the cleaning schedule executed by the multi-loop optimization 

approach and compares it against the actual one. The optimal cleaning schedule reduces the 

total operating cost by $ 0.51 M, although there are cleanings defined towards the end of the 

horizon from which the savings are not realized. In the optimal online solution, the number 

of cleanings is higher during the period of high input flow rates because the furnace duty and 

the energy cost are higher – Figure 7.25b – hence frequent cleanings become profitable, 

although high flow rates reduce the fouling rate of certain units in the network. The opposite 

effect is observed during the period of low input flow rates when the number of cleanings is 

reduced compared to all other operating periods and the furnace duty decreases. 

a) 

 

b) 

 

Figure 7.25. Cleaning schedule executed (a) and furnace duty (b) for REF-X case when step 

disturbances in the input flow rates are introduced. 

The effect of the step disturbances in the input flow rates is clearly observed in the 

furnace duty, Figure 7.25b. The online (Opt. S+C) optimization approach keeps it lower than 

for the actual operation during the period of highest energy requirements – red area. Also, 
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after the period of low energy requirements – blue area – optimal cleanings are executed 

because the input flow rates increase, so the potential energy savings of cleanings increase. 

The effect of disturbances and how they affect the manipulated variables can be 

visualized on the individual performance of the units. Figure 7.26 shows an example for 

exchanger E01B. The change of frequency in the cleanings during periods of high and low 

input flow rates is observed as well as the changes in the fouling rate. High flow rates increase 

the shear stress, hence the removal rate of the deposit increases, while at lower input flow 

rates the fouling rate increases because the shear stress decreases, and the crude is exposed 

to higher wall temperatures for longer times. This figure also compares the actual operation 

against the online optimal operation, and it shows that in the actual operation E01B has high 

levels of fouling during most of the time so that the step changes in the flow rates have almost 

no effect on its performance – it has reach the asymptotical fouling level which completely 

compromise the energy recovery of the unit. On the other hand, the online optimization 

approach reacts efficiently to the large disturbances, exploits their effects, and increases the 

energy recovery of the units when possible. 

a) 

 

b) 

 

Figure 7.26. Fouling resistance (a) and heat duty (b) of exchanger E01B of REF-X case 

when step disturbances in the input flow rates are introduced. 

The presence of large disturbances in the system represents a challenge for estimating 

accurate and representative parameters for the models used in the online approach, and for 

forecasting the behaviour of the disturbances over the . Figure 7.27 shows the evolution 

of the predicted (red) fouling resistance of E02B at the scheduling layer , the observed 

value (black), and the estimated (blue) one solving the  problem. From top to bottom 
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it shows four consecutive evaluations of the scheduling layer – the execution time is shown 

on the top right corner – where the first two are before the step change from nominal to low 

flow rates, and the last two after the disturbance. The prediction quality is compromised for 

the first two instances as higher flow rates than the actual ones are used in the solution of the 

 problem, but after that, and using an on demand update frequency, the prediction 

improves and becomes more accurate using a better forecast for the input disturbances.  

 

 
Figure 7.27. Evolution of the predicted fouling resistance of E02A for REF-X case at four 

consecutive solutions of the scheduling layer of the online optimization approach. 

7.3.5. Effect of crude blend disturbances in the system 

This section presents the case of large model plant mismatch, which is modelled as 

sustained step disturbances in the ‘real’ deposition constants used to simulate the actual plant. 

While Section 7.3.4 analysed the effect of input flow rate disturbances and how the optimal 

solution of the  adapts to them, this one focuses on how the  copes with large 

discrepancies between the actual plant and the predictive models. 

The ‘real’ deposition constant of each exchanger in the REF-X case study is subject to 

large changes. The mismatch approached used in Section 7.3.2 is inherited here, but three 

sustained step changes are introduced. Figure 7.28 shows the time series for the deposition 

constant of two exchangers, and three consecutive step changes. The same relative step 
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change is applied to the deposition constant of all units in the network because it is assumed 

that they are all correlated. The intensity of the grey areas represents the deviation from the 

average values of the deposition constant during those periods, which are: -80%, +150%, 

+60%, and +200, in that order. This visual representation of the disturbances is used 

throughout the analysis presented in this section. The last step change has the largest 

deviation from the average operation, and it also introduces a larger variability than that of 

all other operating periods. This last period represents a more challenging scenario for testing 

the multi-loop online optimization approach, its ability to adapt the predictive models and to 

optimize the preheat train operation. 

 

Figure 7.28. Example of the step change in the ‘real’ deposition constant of case REF-X. 

The online optimization approach is applied to the REF-X case under this large 

mismatch in the deposition constants for the first 900 days of operation, and varying input 

conditions. The configuration of the control layer is the same used in Section 7.3.2, while the 

scheduling layer uses an update frequency of 30 days, a  of 90 days, and a  of 60 

days. The closed-loop optimal solution (Opt-Closed loop) obtained with these settings is 

compared against the actual operation of the refinery (Actual) and against the open loop 

optimization (Opt-Open loop) of the preheat train. The open loop optimization is the solution 

of the problem formulated in Chapter 5 assuming constant input flow rates, stream 

temperatures and deposition constants, estimated from previous data. The constant operating 

conditions used are defined as the average values of the variables during the operating time, 

and the deposition constants are those used in Chapter 5. The open loop optimization ignores 

the effect of the disturbances and operational changes, so that it is not known a priori that the 
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crude processed in the future will have a higher or lower fouling propensity than that 

processed before, based on which the fouling parameters of the model were estimated. 

Figure 7.29 compares the cleaning schedule obtained with these different approaches. 

It is observed that the online approach reacts as expected to the changes in deposition rates. 

There are almost no cleanings during the period of lowest deposition rate (-80%), when great 

part of the deposit can be removed by modifying the flow rates through the exchangers, while 

there are many more in the periods with the highest rates (+150% and +200%). These changes 

are completely ignored in an open loop optimization and ineffective cleanings are allocated 

during low deposition rate periods. The Actual cost of the 900 days operation is $ 30.96 M, 

savings of $ 0.55 M are achieved with the Opt-Open loop alternative, while savings of $ 2.43 

M with the Opt-Closed loop approach. The latter leads to the lowest operating cost as it 

considers the actual variability of the process, although it has the highest cleaning cost – $ 

1.90 M vs $ 0.76 M for the open loop optimization. The timing and allocation of those 

cleanings is optimized considering all disturbances and correcting for the mismatch between 

the predictive models and the actual plant. 

 

Figure 7.29. Cleaning schedule of REF-X operating under large mismatch in the deposition 

constants. Comparison of closed-loop optimization, open-loop optimization, and actual 

operation. 

The effect of the large changes in deposition constant – crude blends processed – and 

fouling mitigation actions are observed in the furnace duty, Figure 7.30. For instance, during 

the period of low deposition rate even the furnace duty of the actual operation decreases – 

there are almost no cleanings during this period – because the removal rate is higher than the 

deposition rate. Also, the furnace duty achieved with the online optimization approach is 
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lower than that of the other approaches during most of the operation being the only one able 

to react to the dynamic changes.  

 

Figure 7.30. Furnace duty of REF-X operating under large mismatch in the deposition 

constants. Comparison of closed-loop optimization, open-loop optimization, and actual 

operation. 

An example of the interactions between the varying operating conditions, changing 

deposition rates, and individual exchanger performance is presented in Figure 7.31. It shows 

the fouling resistance and the heat duty of E03A for alternatives analysed previously. It is 

observed that the fouling resistance changes dramatically between the periods defined by the 

step changes in the deposition constant. During the low deposition period, the fouling rate is 

supressed for the actual operation, while for both optimal approaches the removal rate is 

higher than the deposition rate, and the deposit is almost completely removed by the end of 

this period. An improved heat duty of the exchanger is also observed in that period, and it is 

more noticeable for the open loop optimization case where this exchanger is cleaned at 200 

days of operation. That cleaning is ineffective, although optimal under the open loop 

assumptions, because the actual deposit of the exchanger was almost inexistent at that time. 

In the following periods – all with a positive deviation from the average deposition rates – 

the fouling resistance of the exchanger increases much faster, but the optimal approaches can 

mitigate this effect by cleaning this unit or varying the flow distribution of the network to 

increase the shear stress of certain exchangers. These actions achieve a higher heat duty, 

lower fouling resistance, or reduce the fouling rate. Finally, in all cases the transition from a 

high deposition rate period to a low deposition rate period – transitions before the -80% step, 
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and after the 200% step – promotes the removal of the deposit, so this combined with a flow 

distribution optimization significantly improve the performance of the network. 

a) 

 

b) 

 

Figure 7.31. Fouling resistance (a) and heat duty (b) of exchanger E03A of REF-X 

operating under large mismatch in the deposition constants. 

The significant improvements on the preheat train operation achieved by the closed 

loop optimization approach are due to an efficient and accurate estimation of the model 

parameters at very sampling time, and for every feedback loop. As an example, Figure 7.32 

shows the time series evolution of the ‘real’ deposition constant and the one estimated at the 

control and scheduling layers of the online approach for E04. The estimated values at both 

layers show a good agreement with the actual ones used to simulate the plant, despite the 

large step changes and high variability. The estimated parameters for the prediction models 

at the  of each layer follow the same trend as the actual ones. However, a delay of one 

sampling time is observed in the results of both control and scheduling layer after the large 

step changes in the deposition constants occur. This delay is clearly observed at the transition 

from the first step change to the second. It is caused by the nature of the  where only 

the past measurements within the  are used to estimate the model parameters. Therefore, 

immediately after a large change in the system the models still reflect the old information 

until the next sampling time, when those changes are incorporated in the estimation problem. 

Figure 7.33 shows how the predictive models adapt in the presence of large mismatch. The 

predictions before the largest step changes – -80% step change (a) and +200% step change 

(b) – are erroneous, but they are immediately corrected at the next sampling time, when new 

information containing the effect of the changes is available.  
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a) 

 

b) 

 

Figure 7.32. Comparison of the ‘real’ deposition constant and the estimated one at the 

control layer (a) and at the scheduling layer (b) for E04 of REF-X case operating under 

large mismatch 

a) 

 

 

b) 

 

 
Figure 7.33. Moving horizon prediction and estimation of the fouling resistance before the  

-80% step change (a), and the +200% step change (b) of the deposition constant for E03B 

of REF-X case. 

The rapid reaction of the control layer to adapt to the changes and disturbances of the 

system as seen in Figure 7.32a allows to exploit all the benefits of integrating scheduling and 

control decisions. In the case where the control model parameters are not updated by solving 

the  problem at every instance, but are defined accordingly to those of the scheduling 

layer, the performance of the system worsen. For this specific example, the total operating 

cost increases by $ 50.000 and the number of cleanings by 2. Although that configuration of 

the multi-loop optimization approach can be seen beneficial to reduce computational time 

and to avoid large changes in the control actions, it is only worth pursing when large 

disturbances are not expected – only oscillations around an average operating point as those 
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considered in Section 7.3.2. Given the nature of the problem, high variability is expected in 

the operation of the preheat trains because of the constant changes of the crude blends and 

their properties, which justifies a constant update of the control layer parameters. 

7.4. Concluding remarks 

A novel approach for online fouling mitigation and optimization of preheat trains 

operation was presented. The online optimization approach uses two feedback control loops, 

each containing an , to estimate the current state of the system and the parameters of 

predictive models, and an economic oriented , to determine the optimal control actions 

in the operation. The inner feedback loop optimizes the flow distribution of the network on 

a short time scale, while the outer feedback loop optimizes simultaneous the cleaning 

schedule and flow distribution on a longer time scale. These two loops interact strongly to 

reject disturbances, and optimize the operation over all time scales. For the first time, a 

comprehensive online optimization approach considers the dynamics of the system, the 

variability of the operating conditions, disturbances, and model-plant mismatch.  

The application of the online optimization approach proposed was extensively tested 

using a case study based on a real preheat train and its actual variable operating conditions. 

The main advantages and findings are: 

1. The outer loop integrates cleaning scheduling and control decisions over long 

horizons, while at a lower level only control decisions reject disturbances and 

minimize operating cost on short horizons. It was demonstrated that this approach 

leads to better performance of the network than that achieved by the actual operation 

policy of the refinery or by heuristic algorithms that can be applied online. 

2. The predictive models are updated online based on the most recent observations of 

the plant, so that regardless of mismatch or variable conditions, the  solutions 

at each layer are found to be accurate, and the parameters to be representative of the 

current operation of the preheat train.  

3. The decisions based on the predictive models updated online –  solutions –

achieve an improvement of the performance (cost reduction). 

4. The  and the update frequency of the scheduling layer have a significant effect 

on the closed-loop performance, and the total operating cost can be reduced 
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modifying those parameters. For the case study analysed it was shown that longer 

 (> 300 days) and shorter solution intervals provide better results. 

5. The online optimization approach copes efficiently with large and extreme 

disturbances – large changes in inlet flow rates, and the processing of different 

crudes – because of the frequent updating of model parameters and predictions in 

the feedback loops. It was shown that the closed-loop optimization reduces much 

more the operating cost than an open-loop optimization considering average 

operating conditions. 

All optimization problems involved are solved efficiently and in a much faster time 

than the sampling time of the feedback loop. Hence, frequent sampling can be selected to 

achieve a fast response to disturbances and operational changes. However, updating the 

control decisions too frequently may cause instabilities in the system when the actions 

involve binary decisions. It can also be unpractical to modify a planned cleaning schedule 

too often. Evaluating the stability of the closed-loop performance is key to ensure that the 

control and fouling mitigation actions planned are feasible as well as beneficial from an 

economic point of view. The issues about closed-loop stability are addressed in Chapter 8. 

Finally, the online approach presented is general and not restricted to HEN under 

fouling. The principle of defining multiple feedback loops, each appropriate for a 

representative time scale – which create a good balance between planning ahead decisions 

and reactive immediate decisions – and linking them correctly can be applied to other system 

where the integration of control and scheduling decisions is advantageous or necessary. 

Examples of this are batch plants for specialized products, energy systems, and dynamic 

systems involving switches or on/off decision. 
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Chapter 8  

 

Online optimization of preheat trains: closed 

loop schedules stability 

It has been shown in other fields that the repeated online optimization of schedules can 

be unstable. From a practical perspective, a stable cleaning schedule of preheat trains under 

fouling is desired – one that does not change (erratically, too much, or unnecessarily) over 

time – but still accounts for the process variability and optimizes the operation. The goal of 

this chapter is to evaluate the trade-off between closed loop economic performance, and 

schedule stability for the online optimization of preheat trains. A general approach to improve 

schedule stability is proposed. First, it defines quantitative measurements of instability – task 

timing instability, task allocation instability, and overall schedule instability – which are 

developed as practical metrics of the performance. Then, options to improve closed-loop 

scheduling stability based on  and re-scheduling concepts are developed and tested. A 

realistic refinery preheat train, including the actual input variability and mismatch in the 

predictive models, is used to demonstrate the key aspects of closed-loop scheduling stability 

and the options proposed for improving it. 

8.1. Introduction 

Closed-loop stability of any control system or online application that directly 

manipulates the actions on a system is paramount for a reliable and practical operation. This 

issue becomes important in the operation of preheat trains under fouling when the cleaning 

schedule is optimized in a feedback loop using a moving horizon as proposed in Chapter 7. 

The changes in the optimal cleaning schedule predicted at every evaluation aim to minimize 

the operating cost based on the current state of the system, the disturbances of the process, 

and other operational changes that have occurred or may take place within the prediction 
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horizon. However, the cleanings allocation and their starting time may change between 

consecutive evaluations of the optimal schedule in the feedback loop, which may introduce 

instabilities and make planning of long term activities in the refinery a difficult task. 

Improving scheduling stability is desired from a practical perspective – the cleanings are not 

automated and required manual intervention – but it may compromise the ability of the 

feedback loop to adapt the optimal actions according to the changes of the system. The aim 

of this chapter is to quantify and mitigate the effect of scheduling instability in the online 

optimization of preheat trains under fouling without compromising the closed loop 

performance and the potential economic benefits. 

For the purpose of this chapter, schedule stability is understood as a property of an 

online schedule application where the executed actions do not exhibit unexpected changes 

with respect to those predicted between consecutive evaluations. 

The problem of schedule stability is not unique to the online optimal cleaning 

scheduling of HEN under fouling. It has been a topic of interest for operations research, 

where a schedule is revised at certain time intervals, when new unexpected orders arrived, 

after large changes of demand or prices, after long delays of a certain task, if a unit breaks 

down, or when new key information is available (Graves 1981). In operations research, this 

is referred to as re-scheduling or reactive scheduling, while the concept of schedule instability 

is referred to as schedule nervousness, and a stable or robust schedule refers to one insensitive 

to variability and uncertainty  (Li and Ierapetritou 2008). Although in practical applications 

the schedule is revised multiple times during its execution and it may be partially modified 

(Cott and Macchietto 1989), it is rarely defined completely online and automated in a 

feedback loop to constantly account for the effect of disturbances and operational changes. 

On the other hand, in process control applications it is common, if not universal, to use 

feedback loops that constantly update and modify the control actions reacting to disturbances 

and operational changes, and it happens automatically in real time. However, there is a big 

difference in time scales and ease of implementing new actions in the process between 

scheduling and control. While control actions are executed by fast elements – opening of 

valves, power of engines – that enable a rapid response of the process, scheduling actions 

require long term planning, use of resources, and human intervention for their execution. In 
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principle they can both be automated in a feedback loop as it was proposed in Chapter 7 for 

preheat trains, but schedule stability must be guaranteed for its application. 

In online scheduling, instability may occur even when there are no uncertainties or 

changes in the process. For instance, in Risbeck, Maravelias, and Rawlings (2019) a 

production schedule of two products in a single unit was analysed and defined using an 

receding horizon optimization approach. It was shown that the production schedule predicted 

at every instance, although optimal, was never executed and the unit remained idle. In 

nominal cases with no uncertainties or disturbances the length of the prediction horizon has 

a direct effect on schedule stability (Risbeck, Maravelias, and Rawlings 2019). At every 

evaluation, new information is available for the scheduling problem that was not considered 

in the previous solution, and this may change the trade-offs among different decisions. 

This chapter builds on the online optimization approach presented in Chapter 7, and it 

takes it further to analyse the closed loop stability of the scheduling feedback loop, to ensure 

it is suitable for practical applications. The flow control feedback loop does not exhibit 

stability issues as it is assumed to be automated and it responds much faster to operational 

changes. The following section presents novel definitions of schedule instability that are 

general for any scheduling application and aim to quantify the variability between 

consecutive evaluations of a schedule. Then, a combination of strategies developed from 

 and re-scheduling concepts are presented to reduce the closed-loop instability of the 

online cleaning scheduling of HEN. Finally, those strategies are tested in a realistic case 

study, and the trade-off between stability and economic performance is discussed. 

8.2. Measuring closed loop scheduling instability 

Closed-loop schedule instability must be quantified to determine efficient strategies to 

reduce it, but no single metric is adequate. In production scheduling, it has been quantified 

as the difference in the overall quantity of a given product produced between two consecutive 

evaluations of the schedule at a given time (Sridharan, Berry, and Udayabhanu 1988). Other 

attempts have quantified the changes in starting time of the same task between two 

consecutive solutions (Pujawan 2004), or the changes in task allocations among the units 

available (Pujawan 2004; van Donselaar, van den Nieuwenhof, and Visschers 2000). The 

problem of interest here is a type of maintenance scheduling for which there is no production 
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of a given product, hence it is impossible to measure instability as the change of production 

between two instances. On the other hand, the differences in the starting time of tasks – 

starting time of the cleanings – and in the task allocations – number of cleanings per 

exchanger – can be used to quantify schedule instability. Figure 8.1 shows two consecutive 

evaluations of a cleaning schedule and a representation of the main sources of instability 

including changes in task allocations (which units are cleaned) and the starting time of the 

tasks (when cleanings start). The schedule instability is only defined for those actions within 

the overlapping time in the future prediction horizon of two consecutive schedule evaluations 

( −  defined between  and ), where an evaluation of the schedule corresponds 

to solving the  and the  problems of the scheduling feedback loop. Four metrics 

of schedule instability are defined based on these considerations: 1) task time instability, 2) 

task allocation instability, 3) overall instability, and 4) overall weighted instability. The first 

two metrics are developed as modifications from some previously reported in the literature, 

while the others are new contributions of this work. 

 

Figure 8.1. Representation of sources of scheduling instability and the elements used to 

quantify it. 
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Each of these definitions of schedule instability is explained next. It is assumed that a 

continuous time representation is employed at each schedule evaluation (Chapter 3, Section 

3.3.2), so that the predicted schedule is defined for a set of units, tasks, and periods of variable 

length. Although a discrete time representation is common for scheduling problems, using a 

continuous does not limit the generality of the following developments. Throughout this 

thesis a continuous time representation has been used to optimize preheat trains under 

fouling, so the formulation and definitions used so far are directly compatible with the 

following concepts. 

All the metrics of schedule instability are defined between consecutive schedule 

evaluations. In this way, instability metrics are generated every time a schedule is evaluated, 

and their time evolution can be tracked in the same way as the solutions of the scheduling 

problem are tracked on an online application based on a rolling horizon.  

The following definitions, sets and indexes are used to define the instability metrics for 

the online scheduling problem: 

• =  {1,2, … , }. Set of units. 

• = {1,2, … , }. Set of tasks that can be allocated to the units. 

• = {1,2, … , }. Set representing time in the  as defined in Chapter 3. 

• = {1,2, … , }. Set of schedule evaluations performed over time. 

• , , , , ∈ {0,1}∀ ∈ , ∈ , ∈ , ∈ . Binary variable indicating 

the allocation of a task  to a unit  starting at a time  in a schedule evaluation . 

• ∀ ∈ . Time of the operation at which schedule  is evaluated. 

• Τ ,∗ = − ∀ ∈ \{1}. Time elapsed between two consecutive schedule 

evaluations. 

• , , = + | , , , , = 1 ∧ 0 ≤ ≤ − Τ ,∗ ∀ ∈ ∀ ∈ , ∈, ∈ \{1}. Set of the starting times of all tasks  allocated to unit  in a 

schedule evaluation  and within the operating time − . 

• , , = + | , , , , = 1 ∧ Τ ,∗ ≤ ≤ ∀ ∈ ∀ ∈ , ∈, ∈ \{1}. Set of the starting times of all tasks  allocated to unit  in a 

schedule evaluation − 1 and within the operating time − . 
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• , ,∗ = , , , , , ∀ ∈ , ∈ , ∈ \{1}. Set assigned 

to , ,  or , ,  based on which has the minimum number of elements. 

• , ,∗ =  , , , , , − , ,∗ ∀ ∈ , ∈ , ∈ \{1}. Set defined as 

the complement of , ,∗ . 

Note that for the problem of cleaning scheduling of HEN considering only mechanical 

cleanings, the set  is equivalent to the set , which was defined in Chapter 3, and 

the set  has a single element {1} corresponding to one type of mechanical cleaning. 

The variable  defined here, is equivalent to the variable  of the problem formulation 

presented in Chapter 3. It is still possible to assign multiple mechanical cleanings – multiple 

instance of the same type of task – to one unit at different times, and this is one of the sources 

of schedule instability in the problem. 

8.2.1. Task timing instability 

Task timing instability at the schedule evaluation , , , is defined as the difference 

in the starting time of the common predicted executions of task  in unit  during schedule 

evaluations  and − 1 over the − . Its mathematical representation is presented 

in Eq. (8.1). Note that this difference only exists for those predicted executions of a task  

that are defined in both schedule evaluations  and − 1. If multiple executions of task  are 

predicted over the −  in both schedule evaluations,  and − 1, the difference in 

their starting times is only relevant for the minimum number of instances of task  predicted. 

In addition, if in the schedule evaluation , or − 1, there are no predicted executions of 

task  in unit , there is no contribution of this pair of task and unit to the overall task timing 

instability metric. 

, = 1 min ( − ̂) , ∀ ̂ ∈ , ,∗
∈ , ,∗

⁄
∈∈ , ∀ ∈ \{1} (8.1) 

This instability metric is divided by the future prediction horizon of the scheduling 

problem at update , , to transform it in a dimensionless quantity. The task timing 

instability takes a value of zero when there is no difference in the predicted starting time of 

all the common tasks allocated to the units in two consecutive schedule evaluations, or when 

there are no task of the same type allocated to the same unit in two consecutive schedules – 
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all the tasks allocated to a unit disappeared or are shifted to another one. The task timing 

instability increases when the difference in the starting times of a task allocated to a unit in 

two successive schedules is large – the maximum difference possible is the . 

In the case of interest – cleaning scheduling of HEN under fouling – there is a single 

type of task to allocate to the units, that is, a “cleaning” task. This simplifies the definition of 

the task timing instability as it is not necessary to keep track of type of tasks allocated to the 

units and their starting times. 

8.2.2. Task allocation instability 

Task allocation instability at schedule evaluation , , , is defined as the change on 

the total number of executions of tasks  allocated to unit  during the − , with 

respect to the total number of executions of the same task in the same unit in the previous 

schedule evaluation, − 1, over the same time horizon. It is expressed mathematically in 

Eq. (8.2). This expression assumes that all the tasks have the same relative importance for 

the stability, and only considers their total number of executions. In the cleaning scheduling 

problem, this refers to the change in the total number of cleanings of each exchanger within 

the − , regardless of their starting time. 

, = 1∑ ∑ ,∈∈ , , , , − , , , ,∗ ,∈ | ,∗∈∈ ,
∀ ∈ \{1} 

(8.2) 

This definition of instability is standardized by dividing it by the summation of the 

maximum number of executions of task  that are allowed to be executed in unit , , . 

This is a parameter of the scheduling problem, and it is specified by the user. For example, 

in the cleaning scheduling problem of HEN under fouling, it corresponds to the maximum 

number of cleanings per exchanger that can be executed in the future prediction horizon – it 

is the parameter  in the problem formulation presented in Chapter 3.  

The task allocation instability becomes zero when there are no changes in the number 

of executions of the tasks – cleanings, in the problem of interest of this thesis – scheduled in 

each unit regardless of their starting time, or when there are no tasks of a given type scheduled 

in the future prediction horizon. This instability metric increases when one or more instances 
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of task are added to or deleted from one or multiple units in the current schedule evaluation 

with respect to the previous one.  

8.2.3. Overall schedule instability 

The overall schedule instability at schedule evaluation , considers all the changes 

between two schedule evaluations such as changes in the starting time of the tasks, changes 

in task allocation, addition of new tasks, and disappearance of previous tasks. To compute 

the overall schedule instability, the −  (overlapping time between consecutive 

evaluations  and − 1) is discretized using a step time that is lower than or equal to the 

duration of the tasks. In this case the sampling time of the process, 1 day, is used. This time 

discretization defines a matrix representing the schedule with  rows, one per each unit, 

and  columns, each representing a snapshot of the planned execution of the tasks at each 

time step in − . The only entries of the matrix are either 0, representing no task 

allocated, and 1, representing a task allocation. This definition assumes there is a single task 

type to be performed in the schedule (specific to the cleaning scheduling problem of HEN), 

but it can be extended to a more general formulation with multiple task, with different integer 

values associated to each task type.  

 

Figure 8.2. Matrix representation of a schedule with a unique task for a simple example. a) 

Schedule update − 1 at time , b) Schedule update  at time  
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Figure 8.2 illustrates how to generate a schedule matrix for a simple example with two 

schedule evaluations at times  and . At every schedule evaluation, , a schedule matrix 

is constructed. All matrices generated have the same dimensions because the − , the 

sampling time, and the number of units in the system never change between updates. 

Therefore, it is possible to calculate the difference between two successive schedules based 

on the difference of each individual element of the schedule matrices. Each element of the 

schedule matrix is referred to as , ,  where  is an index for the units (rows),  an index for 

the time instances in the −  (columns), and  an index for the schedule evaluations. 

A metric of overall schedule instability at schedule evaluation , , , is defined in Eq. 

(8.3), where the quadratic difference between two consecutive schedule matrices,  and −1, is calculated element by element, and all the differences are added up. This difference is 

only computed for the overlapping period of consecutive schedule predictions ( − ). 

Also, this instability metric is standardized by dividing it by the dimension of the schedule 

matrix ( ). All schedule changes are assumed to have the same effect on the overall 

schedule instability metric. They affect it by the same magnitude, and it is not possible to 

differentiate whether the changes in the schedule are due to changes in the starting time of 

the task, time delays, or changes in task allocation. Because this metric is standardized, it is 

bounded between zero and one, and it increases with the number of differences between 

consecutive schedule evaluations.  

, = 1 , , − , , , ∀ ∈ \{1} (8.3) 

In the example presented in Figure 8.2, there are five changes in the schedule matrices 

between schedule evaluations  and − 1 (see columns 2, 4, 6 and 7 of the matrices in the 

figure). Then, applying the metric defined in Eq. (8.3), the overall schedule instability of that 

example is 0.125. 

8.2.4. Time weighted overall schedule instability 

The above overall schedule instability definition ignores when the difference in 

schedule evaluation occurs – timing effects. For example, the values of the overall schedule 

instability for two different schedule evaluations can be the same even if the differences and 

changes in the schedule are observed at the beginning of the , which has large 
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implications on the operation because those are the actions to be executed in the current time 

step; or at the end of the , when they are not very important and the uncertainty is high. 

In a closed loop or online scheduling implementation, schedule changes closer to the current 

execution time have a larger impact on the closed loop stability and performance. 

Considering the limitations of the overall instability definition, one that accounts for 

the timing effects on the schedule changes is more informative. A time weighted overall 

schedule instability metric at schedule evaluation , , , is defined in Eq. (8.4), where the 

weights represent the relative importance of each difference in the schedules with respect to 

time. This expression uses the same definitions of the overall schedule instability, Eq. (8.3), 

which are based on a matrix representation of the schedule over the − . In this 

instability metric, the weights are selected to decrease linearly from one to zero, Eq. (8.5), 

between the current time of evaluation ( = 1 for = 0) and the end of the −  

( = 0 for = ). The differences occurring closer to the current time are given a higher 

relative importance than those that occur later in the prediction horizon.  

, = 1∑ , , − , , , ∀ ∈ \{1} (8.4) 

= 1 − − 1− 1 , ∀ ∈ {1,2, … , } (8.5) 

The concept of using weights to characterize the relative importance of current changes 

with respect to later changes had been proposed by other authors (Sridharan, Berry, and 

Udayabhanu 1988; Kadipasaoglu and Sridharan 1997) to calculate schedule instability based 

on the production quantity of different products, but the task allocation and timing was 

ignored. Also, they used an exponential decay function to define the weights as a function of 

time. That definition can also be used here, instead of the linear function proposed, without 

adding complexity to the problem. The only difference is that the exponential decay function 

requires the analysts to set a parameter that indicates the rate of decay of the function, which 

can be translated as a preference to ignore or not schedule modifications occurring after a 

critical future time. 

The time weighted overall schedule instability metric explicitly accounts for the effects 

of time to indicate that large variability close to the current time is undesirable, and that 
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occurring later can be tolerable. However, it does not distinguish whether the source of 

variability is due to changes in the task allocation or starting time of the task.  

Applying the metric defined in Eq. (8.4) to the example presented in Figure 8.2, the 

time weighted overall schedule instability is 0.136 which is higher than the overall schedule 

instability, 0.125. This happens because most of the differences between consecutive 

schedule evaluations occurs close to the current time, , which is reflected in a larger number 

of differences between the schedule matrices in columns with low indexes (see columns 2 

and 4 of the matrices in the Figure 8.2). This example shows how the time weighted metric 

gives more importance to changes in the schedule that occur closer to the current time, and 

that may require an immediate action. 

8.3. Alternatives to reduce closed loop scheduling instability 

There are various alternatives to improve the closed-loop stability of online scheduling, 

but their actual benefits are not clear, nor is their effect on the overall economics of the 

process. Alternatives taken from  theory, and practical implementations of scheduling 

solutions are evaluated here in the context of cleaning/maintenance schedules. They are: 1) 

introducing a terminal cost with respect to a steady state in the objective function, 2) freezing 

a subset of the scheduling decisions in the  for consecutive evaluations, and 3) 

penalizing the changes in the scheduling decisions between consecutive evaluations. These 

alternatives are described next in the context of online cleaning scheduling of preheat trains 

under fouling. 

8.3.1. Terminal cost penalty  

In  the closed-loop stability properties have been widely studied from practical 

and theoretical perspectives. One alternative to ensure closed loop stability with a finite 

prediction horizon is to include a ‘terminal cost’ in the objective function of the optimization 

problem solved at every sampling time (Maciejowski 2002). Eq. (8.6) represents a general 

objective function – where  are continuous variables,  integer variables, and  manipulated 

variables – solved in an  implementation at each sampling time. The function  is the 

‘running cost’ that, in tracking problems, is defined as the quadratic difference of the states 

with respect to a reference point. On the other hand, the function  is the ‘terminal cost’ and 
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it is only a function of the variables at the end of the prediction horizon, . The parameter 

 represents a penalty on the terminal cost and indicates its relative importance with respect 

to the running cost – higher values ensure stability as every prediction will reach the final 

state defined. For the terminal cost to ensure stability it must be defined as the norm of the 

difference with respect to the desired operating point. Under these conditions the objective 

function  will decrease monotonically with every solution of the optimization problem – 

assuming global optimality (Maciejowski 2002). 

min = ( ), ( ) + ( ( ), ( ), ( )) , ∀ ∈ \{1} (8.6) 

There are differences with the goals of the general  formulation, and the one of 

the closed loop scheduling that hinder the applicability of adding a ‘terminal cost’ to improve 

stability. First, the assumptions to guarantee stability in  state that the objective function 

must decrease with the number instances evaluated, but in the case of closed-loop scheduling 

the objective is economic which violates this assumption. Second, the maintenance/cleaning 

scheduling problem does not have a stable reference point to use in a tracking function. The 

clean state (ideal) is not achievable without infinite cleanings, and the asymptotic operating 

point where all units have minimum performance is undesirable or infeasible. Third, the 

scheduling problem includes discrete variables over a long time scale instead of continuous 

variables over short time scales. Finally, stability for  is defined accordingly to whether 

the system remains in the same operating point (outputs of the plant) regardless small 

disturbances (Maciejowski 2002), while for closed-loop scheduling stability is defined based 

on the intensity of the changes of the scheduling variables (inputs to the plant) between 

consecutive solutions. 

For closed-loop maintenance/cleaning scheduling the reference point of the terminal 

cost is therefore defined as the limited operation point when the performance of the system 

is minimal – each exchanger has reached its asymptotic or maximum fouling level or an 

operational constraint has been reached. This limited operation point is determined 

performing a simulation of the system assuming average operating conditions and no 

mitigation actions. Alternatively, this operating point can be defined based on engineering 

judgement of the operation – worst, but realistic possible state expected or observed in the 

past. Although this reference point represents the worst state of the system, it is usually a 
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stable point that can be reached from any state. This reference point only applies to the 

maintenance/cleaning scheduling problems, and other scheduling problems may have cyclic 

solutions that can be used as references for stability (Risbeck, Maravelias, and Rawlings 

2019). 

The terminal cost used here in the online optimization of flow distribution and cleaning 

schedule is defined in Eq. (8.7). It is the quadratic difference between the temperature 

predicted at the end of the  of each stream in the network, , , and that of the 

limited operating mode without cleanings, . The set  refers to the set of arcs in the 

network defined in Chapter 3, whose elements are all the streams connecting all the nodes. 

Pressure drop predictions are ignored in this terminal cost because the thermal effects 

generally represent the highest contribution to the total operating cost of the system. In 

addition, in the cleaning scheduling problem of HEN, the overall integral of the running cost, 

, is the total operating cost of the preheat train which is the objective function of the online 

scheduling problem defined in Eq. (7.4). 

= , −∈  (8.7) 

This alternative has a single parameter, , that can be modified to represent the desired 

trade-off between closed-loop stability and operating cost. 

8.3.2. Freezing decision in prediction horizon 

Fixing or freezing some of the scheduling decisions within the prediction horizon 

retaining those of a previous evaluation explicitly reduces scheduling instability (Blackburn, 

Kropp, and Millen 1986; Jacobs et al. 2005). Every time a scheduling problem is solved, a 

fraction of the decisions from the previous schedule evaluation is frozen, and the rest are 

considered free. The fixed actions are defined as equality constraints in the next scheduling 

problem. The different time intervals for online scheduling, and the nature of the decisions 

at each evaluation are shown in Figure 8.3 for three successive schedule updates. It shows 

that the actions executed between sampling times are mixed between those frozen from the 

previous solution, and those obtained at the current evaluation. The length of the frozen 

interval and the scheduling decisions included, such as task allocated and starting time of the 

tasks, gives a trade-off between stability and closed-loop performance. For instance, fixing 



257 

all scheduling variables within the frozen periods leads to a more stable solution at the 

expense of not being able to react to disturbances or any other changes in the operation of 

the system. 

 

Figure 8.3. Representation of freezing scheduling parameter for improving closed-loop 

schedule instability. 

In the online cleaning scheduling and flow distribution problem of HEN, there are two 

kind of decisions that can be kept constant between consecutive schedule updates: the 

assignment of cleanings to periods and units, and the starting time of the cleaning actions. 

Equality constraints are introduced in the optimization problem formulation to freeze the 

selected cleaning actions of the current schedule to the values calculated in the previous one. 

Eq. (8.8) shows this constraint for the binary decisions, where the ∗ symbol denotes the 

previous optimal solution of the scheduling problem. These equality constraints assign the 

cleanings to the units and periods, but because the periods have variable length – due to the 

continuous time representation – the starting time of the cleanings is not fixed. To allow more 

flexibility, inequality constraints are introduced to restrict the variability of the cleanings 

starting time with respect to those of the previous optimal schedule. This is shown in Eq. 

(8.9) which can be transformed into an equality constraint if necessary.  

, ( ), = , ∗ ( ),∗ , ∀ ∈ , ∈ {1, … , }, ∈ \{1} (8.8) −ΔΤ ≤ , ( ), − , ∗ ( ),∗ ≤ ΔΤ  , ∀ ∈ , ∈ {1, … , }, ∈ \{1} (8.9) 

The number of periods where decisions should be frozen and the bounds in the starting 

times of the cleanings are tunable parameters of this approach to balance closed-loop stability 

and economic performance.  
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Frozen interval

tk-2 Schedule update instances
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8.3.3. Penalizing variability 

Penalizing the change of scheduling decisions between two consecutive scheduling 

evaluations is another alternative to improve closed-loop schedule stability. Instead of using 

constraints to reduce the variability between consecutive schedule evaluations, as it is done 

in the freezing horizon approach, variability is minimised by introducing a penalty in the 

objective function of the scheduling problem. The variability between two schedule 

evaluations is only penalized within the period overlapping the future prediction horizons 

( − ). The definition of this period can be observed in Figure 8.1 where the main 

concepts of schedule stability are described. 

The penalty expression accounting for scheduling variability is included in the 

optimization formulation of the scheduling problem solved online. This penalty is divided in 

two independent terms: one for the changes in the allocation of tasks, Eq. (8.10), which can 

be related to the task allocation instability metric; and another for the changes in the starting 

time of the tasks, Eq. (8.11), which can be related to the task timing instability metric. These 

penalties are only defined within the time horizon − . Each of these expressions 

has a penalty parameter  that characterizes its importance relative to other and to the 

economic objective function of the scheduling problem. The final overall objective function 

for each instance of the scheduling problem is Eq. (8.12), and it shows the compromise 

between stability and process economics. Also, the integral of the running cost, , 

corresponds to the total operating cost of the preheat train which is the objective function of 

the online scheduling problem defined in Eq. (7.4). 

, = , , , , − , , , ∗ ,∗
∈ | ,∗∈∈ , ∀ ∈ \{1} (8.10) 

, = , , , , − ( + Τ∗ ) , , , ∗ ,∗
∈ | ,∗∈∈ , ∀ ∈ \{1} (8.11) 

min = , + , + ( ( ), ( ), ( )) , ∀ ∈ \{1} (8.12) 

A similar approach to minimize closed-loop schedule instability was proposed by Ave 

et al. (2019) for multipurpose plants. It considers a multi objective function formulated from 

the penalization of variability, and the maximization of profit. That work highlights the 

importance of choosing the penalty values for a good trade-off in the scheduling of 

multipurpose plants, but ignores maintenance or cleaning scheduling stability. The penalty 
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parameter of each expression must be determined before the closed-loop implementation and 

should capture a correct balance between the three objectives – two stability penalties and 

one economic objective – and their different orders of magnitude. 

8.4. Cleaning scheduling stability in preheat trains operation 

The closed-loop scheduling stability is analysed for the online optimization of preheat 

trains under fouling using the approach presented in Chapter 7. Two realistic case studies are 

considered: 4HE-B and REF-X. Figure 8.4 presents their network structure, and all the 

specifications and operating conditions can be found in Appendix A. The first case study, 

4HE-B, is used to evaluate all alternatives proposed in Section 8.3 to improve closed-loop 

stability, and their effect on the instability metrics of Section 8.2 and on the economic 

performance of the operation. The second case study, REF-X, is based on an actual refinery 

preheat train, which exhibits large variability in the inputs and model mismatch, and requires 

a reactive approach for optimal cleaning scheduling. 

a) 

 

b) 

 
Figure 8.4. Network structure of the cases for closed-loop instability. a) 4HE-B, b) REF-X 

The alternatives proposed to mitigate closed-loop schedule instability are directly 

incorporated in the formulation of the  problem solved online at every sampling time 

of the scheduling feedback loop. The only modifications required are in the objective 

function of the scheduling problem and adding few constraints to the problem. The  

reformulation proposed to solve the problem is still valid and can efficiently cope with the 

new elements introduced to improve scheduling stability.  

8.4.1. Case 4HE-B. Comparing alternatives to improve stability 

Here, it is assumed a nominal operation – constant inlet streams flow rates and 

temperatures – and that there is no model-plant mismatch, so that the predictive models used 
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in the feedback loops represent perfectly the plant. These assumptions lead to a simpler 

problem than a real application of the online approach, but allow to make an isolated analysis 

of the stability of the cleaning schedule executed online. This case also aims to demonstrate 

that there can be schedule instability even under constant operating conditions and perfect 

prediction models. In practical terms, this implies that the starting time of predicted cleanings 

may change, or new cleanings be introduced in successive schedule evaluations. 

The online Opt. S+C – see Table 1.1 for definitions – optimization problem is solved 

with the following settings for the control layer: a  of 10 days and update intervals of 

one day, and for the scheduling layer: a  of 120 days, update intervals of 15 days, and 

15 periods of variable length. The  problems are not solved in the feedback loops 

because there is no plant model mismatch. These settings of the closed loop scheme lead to 

25 solutions of the optimal cleaning scheduling problem – over one year of operation – which 

are used to calculate the schedule instability between consecutive solutions. 

 

Figure 8.5. Closed-loop scheduling instability time evolution - 4HE-B, base case. 

Figure 8.5 shows the schedule instability metrics measured at every cleaning schedule 

update. For all solution instances there is some variability of the optimal cleaning schedule 

with respect to the previous one and the instability metrics change along the operation 

horizon. The peaks of the task timing instability occur when a cleaning is postponed, and the 

task allocation instability changes when cleanings are included or removed from the 

predicted schedule. Finally, the overall instability and the time weighted overall instability 

are good single indicators of the instability of the system as their behaviour is aligned with 

that of the other metrics. 
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The variation of the scheduling instability metrics observed in Figure 8.5 can be 

explained by the evolution of the cleaning schedule. Figure 8.6 presents the cleaning schedule 

executed (black) and predicted (red) at every sampling time. For instance, the maximum 

value of task timing instability is observed between 90 and 120 days of the operation because 

the starting time of the cleanings predicted for HEX2A and HEX2B change significantly, 

and even their precedence order is reversed. As another example, between the schedule 

evaluations at 65 days and 76 days there is one additional cleaning introduced, causing the 

increase in the task allocation instability metric. The final example is about the overall 

instability and the time weighted overall instability metrics that quantify all the changes in 

the cleaning schedule. Consider the consecutive schedule solutions at 211 and 226 days, 

when two new cleanings are predicted and the starting time of the HEX2A cleaning is shifted 

closer to the current time. The weighted overall instability metric is higher than the overall 

instability because all the changes occur closer to the execution time. 

a) 

 

b) 

 

Figure 8.6. Evolution of the cleaning schedule predicted (red) and executed (black) for the 

base case of 4HE-B at various sampling times (upper right corner). a) from 65 to 136 days, 

and b) from 181 to 256 days. 
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There are two factors explaining schedule changes when there are no disturbances or 

model mismatch: (i) the additional information about the process that becomes available at 

every sampling interval, and (ii) the accuracy of integration of the differential equations at 

the scheduling layer. Both can be visualized in the fouling resistance of the heat exchangers, 

and Figure 8.7 shows two examples. For the factor causing instability (i), Figure 8.7a shows 

that a cleaning of HEX2B is introduced from one schedule evaluation to the next because in 

the latest time window considered, the fouling resistance reaches a level such that a cleaning 

becomes profitable. For the second factor causing instability (ii), Figure 8.7b shows the 

difference in the integration accuracy of the DAE system between the scheduling layer and 

the flow control layer. 

a) 

 

 

b) 

 

 

Figure 8.7. Observed (black) and predicted (red) fouling resistance for the base case of the 

network 4HE-B. a) HEX2B at 91 and 106 days, and b) HEX2C at 65 and 76 days, to show 

sources of instability. 

The three alternatives proposed in Section 8.3 to improve closed-loop scheduling 

stability are implemented for the case 4HE-B and their parameters are varied as follows: 

• The terminal cost penalty, , is varied between 1 10  and 1 10  in a logarithm 

scale. 

• In the freezing horizon alternative, the number of periods in which decisions are 

kept constant, , is varied between 2 and 10; and the maximum allowed variation 

in the cleaning starting time, ΔΤ , is varied between 1 day and 100 days.  

• The penalty parameter of the cleanings allocation variability, , is evaluated 

between 1 10  and 1 10 , while the penalty parameter of the cleaning starting 
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time variability, , is varied between 1 10  and 1 10 . The different ranges are 

due to the differences in the order of magnitude of the metrics. 

Figure 8.8 shows the results for closed loop performance of the case 4HE-B using the 

terminal cost alternative to reduce instability for various penalty parameters. Increasing the 

terminal cost penalty improves the schedule stability but increases the operating cost. At the 

upper limit of the terminal cost penalty, = 1 10 , the closed-loop solution corresponds 

to one with no cleanings scheduled over the entire horizon. This is the most stable solution, 

but at the same time the least desirable and most costly.  

a) 

 

b) 

 

Figure 8.8. Effect of the terminal cost penalty ( ) in the closed loop performance - case 

4HE-B. a) Process economics, total cost (left) and cleaning cost (right), b) Average 

schedule instability and its standard deviation. 

On the other side of the spectrum of the terminal cost, low penalties reduce the 

operating cost as they allow more variability and a higher reactivity in the scheduling actions. 

For terminal cost penalties lower than 1 10 , the total operating cost as well as the average 

of most instability metrics do not change significantly, but the task timing instability changes. 

When large variability of the scheduling decisions is allowed (low penalties), the effect of 

changes in the starting time of the cleanings dominates over that of the assignment of 

cleanings to units. Figure 8.8b only displays the average schedule instability, and the bars 

represents the standard deviation of each metric. These statistics may be used as a single 

indicator of the overall closed-loop schedule stability. 

For the alternative of freezing some scheduling decisions beyond the scheduling 

sampling time, Figure 8.9 presents the effect of various instances on the closed loop 

performance. It shows the total cost and the average of the overall weighted schedule 
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instability – for clarity only the average value is shown without indicating the variability 

around it – as a function of the number of periods frozen and the maximum change allowed 

in the starting time of cleanings. Only the overall weighted instability is used here as it is the 

most comprehensive and illustrative one among the schedule instability metrics proposed. 

The total operating cost increases with the number of periods frozen, while the schedule 

instability decreases, although no clear trend is observed – the nonlinearities and the 

combinatorial nature of the problem lead to local optimal solutions and make it difficult to 

identify clear trends and patterns. The higher the number of periods frozen, the fewer degrees 

of freedom in the scheduling problem, limiting the opportunity to react optimally. When the 

range of changes of the cleaning starting time is also restricted, it is observed that for lower 

values of this bound, the closed loop schedule is more stable than for higher values, and its 

total operating cost is higher. For a cleaning starting time variability bound greater than 10 

days there is no significant changes in the schedule stability, but the operating cost can vary. 

In those scenarios, the allocation of cleanings and the total number of cleanings have a higher 

impact in the process economics than their starting time. 

a) 

 

b) 

 

Figure 8.9. Effect of the number of frozen periods ( ) and the maximum allowed variation 

in the cleaning starting time (ΔΤ ) on the closed loop performance of case 4HE-B. a) Total 

operating cost, b) Average schedule overall weighted instability. 

For the alternative that penalizes the variability between consecutive schedule 

evaluations, Figure 8.10 presents the effect of its parameters on the closed-loop performance 

and schedule stability. Once more, only the average overall weighted instability is presented 
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for clarity. Although no clear trend is observed, the total operating cost increases when the 

penalties on the variability are higher, while the schedule instability decreases. For values of 

 lower than 1 10  the schedule instability does not change, but the operating cost can 

still vary indicating that the effect of the starting time of the cleanings is not as significant as 

that of the allocation of the cleaning actions. Finally, the two penalties of this alternative are 

correlated, and there are different combinations leading to similar closed loop performances 

of the overall system. 

a) 

 

b) 

 

Figure 8.10. Penalty on task variability ( ) and the penalty on cleaning starting time ( ) 

on the closed loop performance of case 4HE-B. a) Total operating cost, b) Average overall 

weighted instability. 

All the alternatives presented to improve closed loop schedule stability do so by either 

penalizing the changes in the scheduling decisions or fixing some of those decisions in the 

future prediction horizon. In all scenarios considered, improving schedule stability 

compromises the total operating cost, hence there is a trade-off between how fast the system 

can react to changes and the long-term predictability of the scheduling decisions. A data 

envelope analysis (DEA) (Farrell 1957; Charnes, Cooper, and Rhodes 1978) is used to 

evaluate this trade-off for all the scenarios considered in all the alternatives simultaneously. 

A point in the DEA analysis represents a solution of the closed loop scheduling problem 

using any alternative to improve stability and the specifications of its parameters, hence there 

are 71 points in total – 1 base case, 10 for the terminal cost alternative, 30 for the freezing 

decisions alterative, and 30 for the penalizing schedule variability alternative. The total 
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operating cost and the average overall weighted instability of the schedule are considered as 

‘inputs’ to the standard representation of the DEA analysis, while there are no ‘outputs’, and 

an efficiency is calculated for each point solving a linear programming problem. 

The results of the DEA analysis are presented in Figure 8.11, where the points are 

classified based on the alternative used to improve stability, and the efficiency frontier 

corresponds to the approximation constructed from the DEA. The points that lay on the 

frontier have a 100% efficiency – they represent the best combination of the inputs, and no 

other data point available can be as good or better – and all other points underperformed with 

respect to those. All the points corresponding to the terminal cost alternative lay inside the 

frontier, so they are not as efficient as those defined by the other alternatives or even as the 

base case, which does not consider stability in the online schedule optimization. This 

underperformance of the terminal cost alternative is because the reference point used to 

ensure closed-loop stability corresponds to the worst conditions to operate the preheat train, 

although it is stable. The other two alternatives improve the closed loop schedule stability 

but compromise the operational cost. For these data points two clusters are observed: one for 

the freezing decisions alternative that, on average, reduces the schedule instability without a 

large cost penalty, and another for the penalizing variability alternative that, on average, 

achieves a larger improvement in stability with a larger operating cost. Some of the data 

points of the two clusters overlap representing intermediate solutions. 

 

Figure 8.11. DEA analysis for all the closed loop solutions of the scheduling and control 

problem - case 4HE-B. 
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A more rigorous DEA could have been performed including all instability 

measurements as ‘inputs’, but the outcome would have not change significantly. The overall 

weighted instability metric quantifies correctly the closed-loop instability, and captures the 

trends, effects, and interactions of all other instability measurements.  

The DEA results suggest that penalizing the variability between consecutive schedules 

is a better approach to reduce schedule instability, while achieving a good economic 

performance than the other two alternatives considered. The terminal cost alternative was 

proven to be least efficient, and fixing scheduling decisions in future instances of the 

scheduling problem can be too restrictive in the presence of disturbances, so that not all the 

economic benefits of implementing an online fouling mitigation strategy are achieved. 

8.4.2. Case REF-X. Closed loop schedule stability in an industrial preheat train 

The REF-X case study is analysed here. Time-varying input streams flow rates and 

temperatures are considered for the online optimization, as well as model-plant mismatch, 

which is implemented by modifying the deposition constants of the fouling model used to 

simulate the ‘real’ plant. The complete specifications of the problem are the same as those 

used in Section 7.3.2. The online optimisation solved here is Opt. S+C. 

The flow control optimization layer uses a  of 10 days, an update frequency of 1 

day, and a  of 20 days. For the scheduling layer, a  of 120 days is used, and the 

update frequency and  are varied as it was done in Section 7.3.3 in order to evaluate the 

effect of these parameters on closed-loop schedule stability. One aim is to tests the claim 

from  theory that larger prediction horizon improves closed-loop stability. Although this 

claim is specific for set point tracking control loops with continuous variables, the similarities 

between  and online scheduling encourage exploring this question. 

Figure 8.12 presents the average closed-loop instability and it standard deviation 

measured with each metric developed in Section 8.2, as a function of the , for two 

update intervals of the scheduling layer. The closed-loop performance, in terms of operating 

cost, for the same range of parameters was presented in Figure 7.23. The results show that 

there are no significant differences in the overall or overall time weighted instability values, 

as there are no large differences in the closed-loop performance. The total operating cost only 

varies by $ 0.24 M among all scenarios, although the energy cost decreases, and the cleaning 
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cost increases as the  increases. On the other hand, the timing instability – Figure 8.12a 

– increases with respect to the , while it is largely unaffected by the solution frequency 

of the scheduling layer. It has a wider standard deviation at longer , where more 

cleanings are typically included in the schedule. Drastic changes in the cleaning starting time 

are due to disturbances, model-plant mismatch, and different operating conditions. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.12. Closed-loop schedule instability measured as: (a) task timing instability, (b) 

task allocation instability, (c) overall instability, and (d) overall weighted instability for 

case REF-X varying the  and update frequency of scheduling layer. 

The scenario that uses a  of 90 days and the same update interval for the 

scheduling layer has a closed-loop instability of zero (0) because all the cleanings predicted 

at each optimal solution of the scheduling problem are executed. Under these settings, there 

are no actions predicted beyond the time when the next schedule is evaluated. Hence, there 

is no previous schedule predicted to calculate the closed-loop instability. 
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For this case study and for the ranges of the parameters considered, no significant 

improvement was observed in the closed-loop stability, unlike reported for an  

application with continuous manipulated variables (Maciejowski 2002). The binary decisions 

associated with the cleanings cause the closed-loop scheduling problem to behave differently 

from  controllers, so that theory does not seem to apply, at least in this case. Therefore, 

other alternatives to improve closed-loop stability are necessary.  

Next, a  of 180 days and a sampling frequency of 90 days are used to evaluate 

the closed-loop stability of the REF-X case. This on-line scenario exhibits a good level of 

schedule instability, as seen previously, that can potentially be improved using the 

alternatives proposed in this chapter. The alternative to penalize changes between 

consecutive schedules, as described in Section 8.3.3, is tested. The two penalty parameters – 

penalty on task allocation, , and penalty on task timing,  – are varied, defining different 

settings for the on-line optimization. Results are compared against the base case – which does 

not use any instability mitigation – in terms of schedule stability and total operating cost. 

a) 

 

b) 

 

c) 

 

Figure 8.13. Closed loop performance of REF-X when varying the penalty parameters of 

schedule variability. a) energy cost, b) cleaning cost, c) total cost. 

The closed-loop performance of REF-X when the schedule variability is penalized is 

presented in Figure 8.13. The closed loop overall time weighted instability is presented in 

Figure 8.14a, and a Pareto plot between the operating cost and schedule instability is 

presented in Figure 8.14b. Only the scenarios that use a task allocation penalty, , of 1 10  

have a larger operating cost than the base case, with an increase of $ 1.0 M at most. This cost 

increase is due to large energy cost and fewer cleanings during the overall online operation. 

However, those scenarios exhibit the lowest schedule instability. Fewer cleanings are 

predicted at every schedule update because adding new cleanings to or removing some 
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cleanings from a previous schedule is heavily penalized. The predicted cleaning schedules 

therefore have minimal changes between updates. This also inhibits the ability of the 

scheduling feedback loop to react to disturbances and operational changes to mitigate fouling 

and minimize the cost of the operation. 

a) 

 

b) 
 

       (#) indicates the value of  

 

Figure 8.14. Closed loop average overall weighted instability (a) and Pareto plot (b) for the 

performance of REF-X when varying the penalty parameters of schedule variability. 

For task allocation penalty parameters < 1 10 , the closed-loop performance is 

not very different from the base case, and it can be even improved, reducing the total 

operating cost by $ 0.37 M maximum. In addition, all those scenarios have a lower schedule 

instability than the base case, meaning that they improve the closed-loop performance and 

closed-loop stability at the same time. This is better observed in Figure 8.14b that shows a 

Pareto plot between operating cost and instability. All scenarios with < 1 10  are more 

efficient than the base case, but they have larger closed-loop instability than those with =1 10 . This observed simultaneous improvement in the two metrics of closed-loop 

performance contradicts the expectations of multi objective optimization problems, but in 

this case reflects the effect of uncertainty, disturbances, and variability in the operation. The 

input flow rates and streams temperature change constantly and that is unknown to the 

predictive model of the scheduling layer, as only a constant forecast – time moving average 

– is used at each evaluation.  

The effect of the penalty parameter on the task timing instability is not as significant 

as that of the penalty parameter on the task allocation instability. The operating cost increases 



271 

only slightly when the task timing penalty increase from 1 10  to 1 10 , but this 

difference is no more than $ 0.37 M for < 1 10 , while for = 1 10  the operating 

cost ranges from $ 38.4 M to $ 39.2 M, depending on the task timing penalty, . For the 

overall closed-loop performance, the starting time of the cleanings is not as important as the 

allocation of cleanings to heat exchangers. Under variable and uncertain operating conditions 

modifying the cleaning starting time of an already predicted cleaning task for a given unit 

does not have a big potential to reduce the energy cost. In terms of closed-loop scheduling 

instability a reduction is observed between = 1 10  and = 1 10 , and then the 

changes in instability are minimal when .increases further. The lowest penalty, , allows 

the largest variability in the cleaning starting times between consecutive schedule 

evaluations. For larger values of  the changes in the predicted cleaning time are minimal, 

and most of the schedule instability comes from changes in the allocation of cleanings to the 

heat exchanger as new cleanings are predicted. 

 

Figure 8.15. Cleaning schedule executed for online optimization of REF-X. Base case with 

no schedule instability mitigation and schedule instability mitigation with two penalty 

parameters. 

To better illustrate the sources of schedule instability and how the proposed methods 

reduce it, the executed cleaning schedule, and its updates in a moving horizon are analysed. 

The base case – no instability penalty – is compared with two on-line optimisation scenarios 

that penalize schedule instability and that were analysed before. Both use a penalty  of 1 10 , but two different values of : (Pen A) = 1 10  (lowest instability and highest 

operating cost), and (Pen B) = 1 10  (better stability and operating cost than base case). 
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Figure 8.15 shows the executed cleaning schedule for these scenarios. The total number of 

cleanings changes significantly, and the scenario with = 1 10  is conservative with 

very few cleanings and long operating times between cleanings of the same exchangers, 

while the other two scenarios have similar cleaning schedules.  

Figure 8.16 - Figure 8.18 shows the predicted cleaning schedule and CIT at three 

updates of the scheduling feedback loop, at 270days, 360 days and 450 days of operation, for 

the same three scenarios (base case, Pen A, Pen B). First, it is observed that the models 

estimated at each update show good agreement between observed and estimated values 

within the , and predict the right trends and effects of cleanings in the . Second, 

for the base case the main source of schedule instability results from adding new cleanings 

to a predicted schedule that must be immediately executed. This is not practical from a 

planning perspective, as the response to cleaning decisions is not immediate, and resources 

are needed for their execution. Third, the Pen A case (with = 1 10 ) exhibits low 

variability in the schedule evaluations, and new cleanings are added to the schedule only if 

they are strictly necessary and profitable for the operation. Finally, the Pen B case with ( =1 10 ) exhibits a larger schedule variability than the previous one, but lower than the base 

case. The starting time of the cleanings changes within a range of 30 days, and if new 

cleanings are added to a schedule in the , they are allocated far ahead from the current 

time so that there is enough time for personnel to practically plan their execution. 
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a) 

 

 

b) 
 

 

 

Figure 8.16. Online optimization of REF-X - Base case (no instability reduction). Cleaning schedule as executed (black) and predicted 

(red) (a), and CIT as observed (black), estimated (blue) and predicted (red).  
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Figure 8.17. Online optimization of REF-X – Pen A case (penalizing schedule variability) with = 1 10  and = 1 10 . 

Cleaning schedule as executed (black) and predicted (red) (a), and CIT as observed (black), estimated (blue) and predicted (red).  
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a) 
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Figure 8.18. Online optimization of REF-X – Pen B case (penalizing schedule variability) with = 1 10  and = 1 10 . 

Cleaning schedule as executed (black) and predicted (red) (a), and CIT as observed (black), estimated (blue) and predicted (red).  
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8.5. Concluding remarks 

This chapter revisits the online optimization approach presented in Chapter 7, and 

analyses the stability of the closed-loop cleaning scheduling defined that way. Cleaning 

scheduling decisions optimized on a moving horizon may change between consecutive 

evaluations and the premise is that too many reactive changes in the schedule may hinder its 

practical application, as long term planning and resources – capital, equipment, and work 

force – are necessary to execute them.  

First, a set of new and general expressions are developed to quantify schedule stability. 

They are not restricted to the online cleaning scheduling of HEN, and are applicable to other 

cases such as multi product plants, although minor modifications may be required. Second, 

alternatives to mitigate schedule instability are developed from a  and re-scheduling 

perspective. Three alternatives are evaluated – adding a terminal cost in the objective 

function, freezing some scheduling decisions early in the prediction horizon, penalizing 

schedule variability between evaluations. Although general for online scheduling 

applications, they are tailored to the online optimal cleaning scheduling of HEN. Finally, 

those alternatives are tested in practical problems related to fouling in preheat trains, and the 

stability measurements are used to quantify their impact. 

Using a small but representative HEN, it is demonstrated that closed-loop cleaning 

schedules exhibit instabilities even under constant operating conditions and no model-plant 

mismatch. The same case is used to evaluate the performance of the instability mitigation 

alternatives developed, and it is found that the terminal cost alternative is ineffective as the 

reference point used correspond to a stable but undesired state, while the other two 

alternatives proved to be effective reducing schedule instability. Improving the closed-loop 

schedule stability increases the overall operating cost in the cases analysed. 

A realistic case study with input variability and plant mismatch is used to demonstrate 

the expected effect of real closed-loop schedule instability and how the alternatives proposed 

here can improve it. Penalizing the variability of scheduling decisions between consecutive 

evaluations improves the closed-loop stability, but compromises the ability of the online 

optimization approach to react to disturbances and operational changes so that all the 

economic potential is not achieved. Nevertheless, it was observed in some scenarios that the 
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schedule instability and the operating cost can be simultaneously reduced. This is an effect 

of the process variability, model mismatch, and uncertainty. 

Quantifying closed-loop schedule instability is still a challenging problem. All factors 

driving the changes observed in the optimal prediction of the scheduling actions are difficult 

to capture in a single indicator. A better identification of sources of (in)stability, as well as 

their relative importance is needed to find ways to mitigate it. It is also necessary to have 

clear and defined ranges that indicate the level of instability or variability in consecutive 

evaluations of the schedule that are acceptable for a given application, so that the online 

optimization approach can be tuned based on those ranges and it will be able to achieve the 

maximum economic potential. 
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Chapter 9  

 

Conclusions 

This thesis addressed the problem of fouling in crude preheat trains from a process 

systems engineering approach. The main goal was to develop a sufficiently accurate 

formulation that could work within an optimization framework to define fouling mitigation 

strategies – flow distribution, cleaning schedule, network retrofit – under real, variable and 

uncertain operating conditions. In this chapter, the main conclusions of the research work are 

drawn, the key contributions highlighted, and future work directions suggested.  

This work has highlighted the need of model-based optimization strategies for fouling 

mitigation in crude preheat trains, and it has demonstrated their potential benefits to minimize 

operating cost, energy consumption and carbon emissions while ensuring a feasible and 

profitable operation. The literature review of Chapter 2 revealed that most current approaches 

used to optimize preheat trains operation and fouling mitigation strategies do not capture 

adequately the dimension and reality of the problem, nor guarantee an optimal robust 

solution. The key missing features to be overcome are: the use of simplified and 

unrepresentative models for fouling and heat transfer to support decision making; ignoring 

the natural dynamic behaviour of the process, variability and uncertainty in the operation of 

preheat trains; decoupling the effect of fouling mitigation strategies and assuming they are 

independent; and using heuristics to define fouling mitigation actions. This thesis overcomes 

these issues and facilitates online optimal decision making for fouling mitigation in preheat 

trains. Each chapter of this thesis addresses specific goals to fulfil this general objective. 

A novel and general mathematical formulation for optimizing networks of shell and 

tube heat exchangers under fouling, which was developed in Chapter 3, presents a good trade-

off between model accuracy, representation of the system, and mathematical complexity. 

This MINLP formulation was successfully used for the simultaneous optimization of the 

cleaning scheduling and flow distribution of various heat exchanger networks. The networks 
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used here were small but representative of configurations normally found in refinery preheat 

trains. This formulation includes important features usually find in refining operations such 

as ageing of the deposit, reduction of the flow diameter, pressure drop limits, furnace duty 

limits, and cleaning sequence constraints. The MINLP formulation copes with those 

scenarios, and their solution showed how optimal fouling mitigation actions depends on the 

conditions and constraints of the system. It was determined that the large number of binary 

variables hinders the solution of large scale MINLP problems. 

A model validation strategy is developed and applied in Chapter 4 to ensure that the 

heat exchanger and fouling models used within the optimization formulation are sufficiently 

accurate and representative for real industrial operations. First, the models developed are 

validated and tuned against a more detailed and previously validated distributed model for 

heat exchangers. Then, the model parameters are estimated through an indirect validation 

approach that uses real plant measurements and the distributed model as a soft sensor. 

Comparison of results for 37 different heat exchangers and for an industrial network, 

demonstrate that the model developed captures correctly the process dynamics and 

performance with acceptable prediction errors (average prediction errors lower than 1.5 K in 

streams temperature, and lower than 0.2 bar in pressure drop). 

Chapter 5 introduced a novel solution strategy for the mathematical formulation 

developed in Chapter 3 so that the optimal cleaning scheduling and flow distribution problem 

can be solved for problems of industrial scale. The MINLP problem is reformulated as a 

MPCC by relaxing the binary variables, introducing complementarity constraints, and 

reformulating some of the disjunctions as nonlinear expressions. A sequential solution 

approach is proposed for this reformulation. This solution strategy reduces the computational 

effort by 99% for cleaning scheduling of small networks that can be solved with standard 

branch and bound algorithms. The optimal cleaning schedule for industrial scale problems 

can be found in less than 30 min of computational time, which is a significant reduction 

compared to other solution strategies. In addition, the optimal solution obtained with the 

MPCC reformulation is validated using the benchmark distributed model of Chapter 4, with 

errors in the economic benefits obtained lower than 1% for an industrial preheat train. 

The fouling mitigation problem is extended in Chapter 6 where retrofit decisions are 

introduced in the problem formulation. The optimal fouling mitigation problem now 
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includes: cleaning scheduling, dynamic flow distribution, heat transfer area retrofit of 

selected exchangers, and network configuration retrofit. The formulation of the cleaning 

scheduling problem is inherited and expanded so that decisions involving adding or removing 

exchangers from the network are modelled as cleanings. New constraints and variables are 

introduced to ensure a correct modelling of these decisions. For the first time an optimization 

approach to the network retrofit problem for systems under fouling is proposed and 

efficiently applied. Two case studies demonstrated that the optimal retrofit network under 

fouling is different from, and performs better than other network configurations obtained 

from pinch technology or heuristic analysis. For both cases the minimum operating cost, 

including capital cost of retrofit options, is always achieved when all decisions – fouling 

mitigation, operation, and retrofit – are considered at the same time. 

Chapter 7 focuses on the online optimization of preheat trains under variable and 

uncertain conditions. It presents a multiloop approach based on control principles to estimate 

the model parameters and to optimize fouling mitigation decisions online at two different 

time scales. Two control loops are defined based on an MHE / NMPC scheme, one for the 

fast dynamics and flow distribution optimization, the other for the slow dynamics and 

cleaning scheduling optimization. For each loop, the predictive models, estimation strategies 

and optimization algorithms are based on the developments in earlier chapters. These two 

loops are designed so that the interactions of flow distribution and cleaning scheduling are 

still considered, and their synergies exploited to minimize the operating cost of the preheat 

train. An industrial case study is extensively used to demonstrate the economic benefits of 

this approach over heuristic and open-loop optimization approaches that either ignore key 

interactions, the effect of important variables, or the input stream variability to the system. 

In addition, this online approach copes efficiently with model-plant mismatch, variability in 

the input streams, and large disturbances. 

In Chapter 8 the practical problem of closed-loop schedule stability – avoiding too 

many schedule changes – is studied. Novel and general measurements are developed to 

quantify the stability in online scheduling which are not restricted to the cleaning scheduling 

of HEN. It is demonstrated that schedule changes may occur under constant conditions 

because, in a moving horizon optimization approach, at each schedule update new 

information – a new time window in the prediction horizon – becomes available, which 
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modifies the feasible region of the optimization problem. Three strategies – adding a terminal 

cost, freezing some scheduling decisions in the prediction horizon, penalizing scheduling 

variability – are developed for improving schedule stability, based on MPC and re-scheduling 

principles. They aim to improve schedule stability while retaining a good performance of the 

system. These strategies can be used to generate a series of alternative that show difference 

balances between stability and economic performance, so that the operator can choose which 

to implement. It is shown that the three alternatives evaluated improve the closed-loop 

schedule stability, but at the same time reduce the closed-loop performance – higher 

operating cost. The alternative that penalizes schedule variability is investigated further to 

quantify and mitigate the closed-loop schedule instability in an industrial preheat train, and 

in some cases simultaneously improving both schedule stability and cost performance. 

The mathematical formulation, solution strategy and optimization framework 

developed offer significant new possibilities to improve the retrofit and operation of crude 

preheat trains under fouling. It overcomes major difficulties found to date for practical, 

accurate and realistic solutions. Also, this framework is not limited to crude oil fouling 

problems and can be extended to other systems involving heat exchanger networks with 

decaying performance. 

9.1. Contributions and achievements 

They key contributions of this thesis to the modelling and mathematical formulation of 

the optimization problem of heat exchanger networks under fouling are: 

• The development of a lumped model for shell and tube heat exchangers and fouling 

that considers explicitly the radial heat transfer distribution and averaged the axial 

effects. The model captures the main factors affecting the deposition rate and deposit 

ageing, it predicts the dynamic thermal and hydraulic performance of the units, and 

overcomes the usual thin layer assumption of the deposit layer. This model is more 

accurate than other previous lumped models that ignore the radial effects, the 

composition of the deposit, and the temperature distributions. 

• An alternative formulation for the disjunctions defining the state – idle or operating 

– of the heat exchangers in the network that is coupled with a continuous time 

discretization using periods of variable length. The continuous time representation 
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reduces the number of binary variables – complicating variables – needed for 

representing the problem, while ensuring an accurate integration of the DAE system 

using a further discretization with orthogonal collocation on finite elements for each 

period. Also, this time representation allows defining the cleaning times with a 

better precision than that achieved with a fixed grid time discretization used in 

previous works. It also allows to optimize pre-set cleaning schedules or only certain 

variables of the problem such as the cleanings starting time of a cleaning schedule. 

• A model tuning and validation procedure that uses a more detailed distributed model 

for the heat exchangers together with plant data as a soft sensor. This ensures that 

the lumped model used for optimization purposes represents correctly the 

performance and dynamics of the system. The fouling parameters of the lumped 

model thus estimated closely predict the performance of the benchmark distributed 

model or that observed during the actual operation of a network. 

The above models can be used with confidence to optimize the operation of preheat 

trains under fouling, and to determine optimal fouling mitigation actions. The key 

contributions of this thesis to the optimization of preheat trains under fouling and the solution 

of the MINLP problem associated are: 

• An efficient formulation of the cleaning scheduling problem using a continuous time 

discretization that allows to simultaneously optimize the dynamic flow distribution 

of the network. The formulation allows to exploit the synergies between these two 

fouling mitigation strategies, so that their simultaneous optimization surpass their 

individual or sequential optimization. 

• A reformulation of the MINLP problem as a MPCC problem where the binary 

variables are relaxed reducing the complexity of the problem. Instead of solving a 

combinatorial integer optimization problem, a sequence of NLP problems is solved, 

converging to the same optimal solution. This reformulation reduces significantly 

the computational effort, allowing to solve industrial size problems and enabling 

their online application. 

• The optimal network retrofit of HEN under fouling – adding or removing 

exchangers, changing the connectivity of existing exchangers, and modifying the 

heat transfer area – using a superstructure representation, which is obtained 
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extending the formulation of the optimal cleaning scheduling problem. This 

formulation allows the integration of retrofit, scheduling and control decisions at the 

same level exploiting the synergies among them. 

These developments on the solution of the optimal fouling mitigation problem – 

cleaning scheduling and control – allows to make optimal decisions online in a closed loop, 

reacting to input variability and disturbances in the operation of preheat trains. The key 

contributions of this thesis to the online optimization of preheat trains under fouling are: 

• A multi-loop MHE / NMPC scheme that deals with the fast and slow dynamics and 

disturbances of preheat trains under fouling. The same first principle models at its 

core are used for parameter estimation, prediction, and optimization based on the 

current and past states of the network. This multi-loop strategy allows to estimate 

the current fouling state of each exchanger in the entire network, then to 

simultaneously optimize the flow distribution and the cleaning scheduling on a 

receding horizon using an economic objective function. 

• A way to deal with uncertainty and variability that are common in the operation of 

preheat trains – large disturbances in the inlet conditions, uncertainty in the crude 

properties and on the fouling propensity. The multi-loop online optimization 

approach updates the predictive models at regular intervals – solving a parameter 

estimation problem on a moving horizon – so that changes in the crude oil properties 

are accurately captured, and the optimal fouling mitigation actions are defined using 

those models – solving an optimization problem over a future horizon. 

• Ways to quantify closed-loop schedule instability, and options to mitigate it, by 

modifying the formulation of the scheduling problem solved online. Closed-loop 

schedule instability may be a barrier for practical application. Here it is mitigated 

without a large penalty on the closed-loop economic performance of the system. 

Although these concepts are applied to preheat trains under fouling, they can be 

extrapolated to other online scheduling or re-scheduling applications. 

This research effort led so far to the publication of 3 articles in peer-reviewed journals, 

6 papers in edited conference proceedings, and various presentations at international 

conferences. 
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9.2. Future work 

Future directions of research and work identified from the development of this thesis 

are summarized below. 

• The model representing the heat exchangers assumes that the axial effects are not 

representative, and they are only described in terms of an average. It is still an open 

question to what extent heat transfer and fouling effects should be considered in the 

axial distribution to predict the overall performance of the units. 

• The Ebert-Panchal model for crude oil fouling is extensively used in the 

optimization problems of this thesis, but there are many modifications of this semi-

empirical model that are claimed to provide better representations of fouling rates 

(Wilson, Ishiyama, and Polley 2017). Other fouling models could be integrated in 

the optimization formulation for a more accurate representation of the problem, and 

this may include deposition models based on more fundamental principles that 

account for the effect of crude composition. Molecular dynamic models or 

surrogates developed based them or experimental data are also potential candidates. 

• The thermal and hydraulic predictions achieved with the model developed has been 

validated against another benchmark simulation model, and historical plant data. 

The plant data used to validate this formulation only included temperature 

measurements so that a hydraulic validation of the model against actual data is still 

missing. 

• The optimal cleaning scheduling problem only considers mechanical cleanings and 

it assumes that they completely remove the deposit. An extension of this formulation 

may include chemical cleanings with a fixed cleaning time and known cleaning 

efficiency, in terms of percentage of the deposit removed.  

• The MPCC reformulation of the MINLP cleaning scheduling problem provides an 

efficient practical solution, but multiple solutions with the same or similar objective 

function value may exist. Further investigations on dealing with the degeneracy of 

the problem will improve the efficiency of any solution strategies. 
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• The optimal network retrofit formulation could be expanded to deal with the HEN 

synthesis problem, so that the dynamic effects of fouling are considered early in the 

design stage. 

• The online multi-loop fouling mitigation approach developed relies on forecasts of 

the disturbances. In this thesis those forecasts are based on simple constant models. 

Improving the quality of the disturbance forecast over the future prediction horizon 

will have a significant effect on the overall closed-loop performance of the system. 

Alternatives based on time series analysis or data-analytics are worth exploring. 

• The performance of the multiloop optimization approach depends on the tuning 

parameters of the MHE and NMPC of the control and scheduling layer. Systematic 

approaches or algorithms for tuning could be explored to improve the overall closed-

loop performance of the system. 

• The MHE – online estimation – problems in the online optimization approach may 

present a limitation when the sampling time is reduced to the order of hours. In those 

cases, and for very large past estimation horizons, more efficient solutions of the 

estimation problem are needed. 

• The uncertainty and variability in the operation of preheat trains under fouling has 

been addressed in a feedback scheme using two control loops. Large disturbances 

and high variability may lead to large schedule instability, which hinders a practical 

implementation. Alternative approaches such as robust or stochastic optimization 

together with a correct quantification of the uncertainty are attractive to avoid 

instability issues, although they may compromise the economic benefits. 

• Some ways to quantify closed-loop schedule instability are developed in this thesis. 

To extend their application to more general scheduling problem such as 

multiproduct multiunit batch plant it is necessary to revise them. 

• Practical guidelines about schedule stability are necessary to set the bounds on 

acceptable levels of variability on the scheduling decisions. Then, this could be 

imposed as a constraint in the optimal cleaning scheduling problem solved online, 

or as a design specification of the multi-loop approach. 

• The final aim of the online optimization strategy developed in this thesis is to apply 

it to a real system so that operating and maintenance decisions can be automated, or 
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at least automated informed and quantitative guidelines may be given to the 

operators and engineers. Although this remains to be done, a first step towards this 

goal could be an off-line application to support engineering decisions – cleaning 

scheduling and network retrofit – on the long term operation of refinery preheat 

trains considering constraints such as budgets and availability of resources. The 

optimization strategy should be refined – improving models, feedback loop settings, 

constraints specifications – during this stage to satisfy the requirements and 

constraints of the site and those of the operators Then, after empirical verification 

of the benefits of the proposed optimization strategy when its actions are executed 

manually, the feedback loop can be closed to automate the process.  

• The developments of this thesis can be applied to other systems that in general are 

defined as network with units exhibiting decaying performance. The heat exchanger 

and fouling models can be adapted to exchangers other than shell and tube, and other 

deposition phenomenon, while the network representation, mathematical 

formulation, and solution strategy developed in this thesis can be directly applied. 

For example, in solar power generation plants where air-cooled exchangers are used 

to condensate steam and they are subject to particulate fouling – deposition of dust 

or sand – which deteriorates their performance and frequent cleanings are required 

to satisfy the cooling demand. Another industrial application that can benefit from 

the online cleaning scheduling and control developments of this thesis are 

evaporation processes. Arrangements of evaporators are commonly used in the food 

industry for concentration of products, in the production of fabrics and dyes. Fouling 

in each of these applications is caused by different factors, such as decomposition 

of the material or the presence of impurities that deposit over the surfaces. An 

optimal cleaning schedule and operation of the evaporators have the potential to 

significantly reduce the energy consumption of the process.  
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Appendix A. 

 

Case studies and networks specifications 

This appendix presents the details of all case studies developed in this thesis. It includes 

the network structures, heat exchanger specifications, physical properties calculations, and 

streams conditions. 

A.1.  Physical properties equations 

The streams considered in all case studies of this thesis are different blends of crude, 

or products of crude oil distillation – CDU product streams. Hence the physical properties 

are calculated based on the stream temperature, API, and boiling point measurements, but to 

simplify the nature of the equations they are approximated to correlations of temperature. Eq. 

(A.1) – (A.4) are the correlations used to calculate the physical properties of each stream. 

The density, specific heat capacity, and thermal conductivity are linear functions of 

temperature, while the viscosity is an exponential function of the inverse of temperature. The 

parameters of these correlations are estimated for each stream type (e.g. crude oil, kerosene) 

of each case study as the specifications of the crude may change from one network to the 

other. 

= +  (A.1) 

= +  (A.2) 

= +  (A.3) = exp ⁄  (A.4) 

Using these physical properties correlations allows to have a standard framework for 

different scenarios and case studies when the information collected from different sources. 

Depending on the case study and the network, the parameters of the physical properties 

correlations may be estimated from API relationships, data reported in the literature (Riazi 
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2005), or other correlations reported in specific papers (e.g. quadratic correlations for the 

specific heat capacity). 

A.2. Case studies 

In this thesis a total of 13 case studies are considered, and they are networks ranging 

from a single heat exchanger – for illustration purposes – up to ten heat exchangers which 

are common in practical applications of heat recovery in refineries. In all cases the cold 

stream is the crude oil, and it flows through the tube side of all exchangers, while the hot 

streams, which are side streams, pump arounds, or products of the atmospheric distillation 

unit, flow thought the shell side. The network structure and the details of each case are 

presented in detail here. 

For any optimization problem of the case studies the following initialization procedure 

was used: a constant time profile for all the variables, all binary variables are initialized at 

0.5, negligible fouling for all exchangers ( = 1 10 , = 1 10 , = 1), in networks 

with parallel branches the flow split is set at 50%, the mass flow rates and temperature of a 

stream (e.g. crude, naphtha) in the whole network are set at their inlet conditions, the length 

of the periods and their starting time are initialized as being evenly distributed – total 

operating time divided by the number of periods. The equality constraints of the model are 

used to initialize all other variables. 

The optimization solvers used for all case studies are BONMIN, for the MINLP 

formulation of small networks, and IPOPT, for all other optimization problems. BONMIN is 

a branch and bound solver which is only used in the optimal cleaning scheduling problem of 

networks with up to two exchangers with its default options. For solver IPOPT, an NLP 

interior point solver, the linear solver ma57 is used, and the barrier parameter, the bound push 

parameter, and the slack bound push parameter are all set at 1x10-6. 

Table A.1 summarizes the main cost parameters and operational constraints for each 

case study. 
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Table A.1. Cost parameters and operational constraints of all case studies 

Case No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

Case ID 1HE 2HE-S 2HE-B 4HE-S 4HE-B LN-S1 LN-S2 LN-S3 LN-B1 LN-B2 REF-X NR-S NR-B 

COT [K] 623.15 623.15 623.15 623.15 623.15 640.0 640.0 613.15 640.0 640.0 623.15 640.0 640.0 

Firing limit [MW] 100 100 100 90 90 90 90 100 90 90 90 90 90 

Operating time [days] 370 370 370 370 370 370 370 370 370 370 1500 600 600 

LB period length [days] 10 10 10 10 10 10 10 10 10 10 10 10 10 

UB period length [days] 90 90 90 90 90 90 90 90 90 90 350 150 150 

Production cost [$/kg] 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 

Fuel cost [$/MW-h] 27 27 27 27 27 27 27 27 27 27 25 27 27 

Carbon cost [$/ton] 30 30 30 30 30 30 30 30 30 30 0 30 30 

Carbon emission factor 

[ton/MW] 
0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0 0.015 0.015 

Furnace efficiency [%] 90 90 90 90 90 90 90 90 90 90 80 90 90 

Max. simultaneous 

cleanings [-] 
2 2 2 2 2 2 2 2 2 2 2 2 2 
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A.2.1. Case 1: “1HE” 

This case study is a single exchanger adapted from one of the units of the network 

presented in Coletti and Macchietto (2011a, 2011b). Figure A.1 shows the network, Table 

A.2 presents the configuration of the exchangers, fouling and cleaning parameters, and Table 

A.3 the streams conditions and physical properties parameters. 

 

Figure A.1. Network representation of case “1HE”. 

Table A.2. Heat exchangers specifications for case “1HE” 

 HEX1 

Shell diameter [mm] 1295 

Tube inner diameter [mm] 19.86 

Tube outer diameter [mm] 25.40 

Tube length [m] 6.1 

Number of tubes [-] 800 

Number of passes [-] 2 

Baffle cut [%] 25 

Tube layout [°] 45 

Number of baffles [-] 5 

Surface roughness 0.046 

Deposition constant [m2K/Wday] 648.0 

Removal constant [m4K/NWday] 3.89x10-7 

Fouling activation energy [J/mol] 35000 

Ageing frequency factor [1/day] 0 

Ageing activation energy [J/mol] 50000 

Cleaning time [days] 10 

Cleaning cost [$] 30000 
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Crude

Naphtha Furnace



291 

Table A.3. Stream specifications and physical properties for case “1HE” 

 Crude Naphtha 

Flow rate [kg/s] 90.0 37.7 

Inlet temperature [K] 463.15 483.15 

[kg/m3K] -0.783 -1.248 

[kg/m3] 1076.9 1145.4 

[W/mK2] -1.25x10-4 -1.09x10-4 

[W/mK] 0.161 0.141 

[J/kgK2] 3.669 3.298 

[J/kgK] 950.0 1201.5 

[K] 2185.1 2275.1 

[Pa s] 6.01x10-6 3.52x10-6 

 

A.2.2. Case 2: “2HE-S” 

This case study is a small network with two heat exchangers in series adapted from the 

units of the network presented in Coletti and Macchietto (2011a, 2011b). In this case the hot 

steam flows counter current through the exchangers with respect to the crude stream. Figure 

A.2 shows the network structure, Table A.4 presents the configuration of the exchangers, 

fouling and cleaning parameters, and Table A.5 the streams conditions and physical 

properties parameters. 

 

Figure A.2. Network representation of case “2HE-S”. 
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Table A.4. Heat exchangers specifications for case “2HE-S” 

 HEX1 HEX2 

Shell diameter [mm] 1400 1295 

Tube inner diameter [mm] 19.86 19.86 

Tube outer diameter [mm] 25.40 25.40 

Tube length [m] 5800 6100 

Number of tubes [-] 840 800 

Number of passes [-] 2 2 

Baffle cut [%] 25 25 

Tube layout [°] 45 45 

Number of baffles [-] 6 8 

Surface roughness 0.046 0.046 

Deposition constant [m2K/Wday] 648.0 648.0 

Removal constant [m4K/NWday] 3.89x10-7 3.89x10-7 

Fouling activation energy [J/mol] 35000 35000 

Ageing frequency factor [1/day] 0.00 0.00 

Ageing activation energy [J/mol] 50000 50000 

Cleaning time [days] 10 10 

Cleaning cost [$] 30000 30000 

 

Table A.5. Stream specifications and physical properties for case “2HE-S” 

 Crude BPA 

Flow rate [kg/s] 90.0 33.7 

Inlet temperature [K] 463.15 523.15 

[kg/m3K] -0.789 -0.671 

[kg/m3] 1079.5 1025.0 

[W/mK2] -1.25x10-4 -1.31x10-4 

[W/mK] 0.161 0.169 

[J/kgK2] 3.631 3.702 

[J/kgK] 967.9 1085.5 

[K] 2165.1 2397.2 

[Pa s] 6.27x10-6 5.00x10-6 
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A.2.3. Case 3: “2HE-B” 

This case study is a small network with two heat exchangers in parallel adapted from 

the units of the network presented in Coletti and Macchietto (2011a, 2011b). In this case the 

hot and cold streams are split and distributed to two exchangers. Depending on the operating 

mode the flow through the parallel branches can be: pressure driven, fixed, or free. This is 

the first case that introduces control elements using the split fraction of parallel branches. 

Figure A.3 shows the network structure, Table A.6 presents the configuration of the 

exchangers, fouling and cleaning parameters, and Table A.7 the streams conditions and 

physical properties parameters. 

 

Figure A.3. Network representation of case “2HE-B”. 
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Table A.6. Heat exchangers specifications for case “2HE-B” 

 HEX1 HEX2 

Shell diameter [mm] 1295 1295 

Tube inner diameter [mm] 19.86 19.86 

Tube outer diameter [mm] 25.40 25.40 

Tube length [m] 6100 6100 

Number of tubes [-] 800 800 

Number of passes [-] 2 2 

Baffle cut [%] 25 25 

Tube layout [°] 45 45 

Number of baffles [-] 8 8 

Surface roughness 0.046 0.046 

Deposition constant [m2K/Wday] 648.0 648.0 

Removal constant [m4K/NWday] 3.89x10-7 3.89x10-7 

Fouling activation energy [J/mol] 35000 35000 

Ageing frequency factor [1/day] 0.00 0.00 

Ageing activation energy [J/mol] 50000 50000 

Cleaning time [days] 10 10 

Cleaning cost [$] 30000 30000 

 

Table A.7. Stream specifications and physical properties for case “2HE-B” 

 Crude BPA 

Flow rate [kg/s] 90.0 28.2 

Inlet temperature [K] 463.15 523.15 

[kg/m3K] -0.786 -0.871 

[kg/m3] 1078.1 1091.6 

[W/mK2] -1.25x10-4 -1.22x10-4 

[W/mK] 0.161 0.158 

[J/kgK2] 3.650 3.417 

[J/kgK] 958.7 1094.2 

[K] 2175.0 2409.7 

[Pa s] 6.14x10-6 4.47x10-6 
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A.2.4. Case 4: “4HE-S” 

This case study is a network with four heat exchangers in series adapted from the units 

of the network presented in Coletti and Macchietto (2011a, 2011b). There are three 

independent hot streams, and one of them flows counter current through exchangers HEX2 

and HEX3. This case is used to demonstrate how a continuous time approach can optimize 

selected features of a cleaning scheduling problem. Figure A.4 shows the network structure, 

Table A.8 presents the configuration of the exchangers, fouling and cleaning parameters, and 

Table A.9 the streams conditions and physical properties parameters. 

 

Figure A.4. Network representation of case “4HE-S”. 

Table A.8. Heat exchangers specifications for case “4HE-S” 

 HEX1 HEX2 HEX3 HEX4 

Shell diameter [mm] 1295 1295 1295 1295 

Tube inner diameter [mm] 19.86 19.86 19.86 19.86 

Tube outer diameter [mm] 25.40 25.40 25.40 25.40 

Tube length [m] 6100 6100 6100 6100 

Number of tubes [-] 800 800 800 800 

Number of passes [-] 2 2 2 2 

Baffle cut [%] 25 25 25 25 

Tube layout [°] 45 45 45 45 

Number of baffles [-] 8 8 8 8 

Surface roughness 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 872.2 872.2 872.2 872.2 

Removal constant [m4K/NWday] 3.26x10-11 3.26x10-11 3.26x10-11 3.26x10-11 

Fouling activation energy [J/mol] 35000 35000 35000 35000 

Ageing frequency factor [1/day] 50.0 50.0 50.0 50.0 

Ageing activation energy [J/mol] 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 

  

HEX1

Crude

HEX2 HEX3 HEX4
Furnace

VR LGOKerosene



296 

Table A.9. Stream specifications and physical properties for case “4HE-S” 

 Crude Kerosene VR LGO 

Flow rate [kg/s] 90.0 40.0 20.0 20.0 

Inlet temperature [K] 443.15 473.15 633.15 528.15 

[kg/m3K] -0.784 -0.697 -0.615 -0.673 

[kg/m3] 1076.9 1072.6 1242.0 1096.2 

[W/mK2] -1.25x10-4 -1.30x10-4 -1.41x10-4 -1.34x10-4 

[W/mK] 0.161 0.167 0.182 0.172 

[J/kgK2] 3.668 3.767 2.977 3.491 

[J/kgK] 949.1 907.9 974.2 1028.0 

[K] 2194.9 1145.2 -310.8 1424.8 

[Pa s] 5.90x10-6 2.51x10-5 1.06x10-4 2.02x10-5 

 

A.2.5. Case 5: “4HE-B” 

This case study is a network with four heat exchangers of which three are distributed 

in parallel branches. It is adapted from the units of the network presented in Coletti and 

Macchietto (2011a, 2011b). This case has two control degrees of freedom that corresponds 

to two of the three flow rates of the parallel branches. Figure A.5 shows the network structure, 

Table A.10 presents the configuration of the exchangers, fouling and cleaning parameters, 

and Table A.11 the streams conditions and physical properties parameters. 

 

Figure A.5. Network representation of case “4HE-B”. 
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Table A.10. Heat exchangers specifications for case “4HE-B” 

 HEX1 HEX2A HEX2B HEX2C 

Shell diameter [mm] 1295 1400 1400 1400 

Tube inner diameter [mm] 19.86 19.86 19.86 19.86 

Tube outer diameter [mm] 25.40 25.40 25.40 25.40 

Tube length [m] 6100 5800 5800 6100 

Number of tubes [-] 800 600 600 600 

Number of passes [-] 2 2 2 4 

Baffle cut [%] 25 25 25 25 

Tube layout [°] 45 45 45 45 

Number of baffles [-] 8 6 6 7 

Surface roughness 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 648.0 734.4 734.4 561.6 

Removal constant [m4K/NWday] 3.89x10-7 3.46x10-7 3.46x10-7 3.89x10-7 

Fouling activation energy [J/mol] 35000 33000 33000 38000 

Ageing frequency factor [1/day] 0.00 0.00 0.00 0.00 

Ageing activation energy [J/mol] 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 

 

Table A.11. Stream specifications and physical properties for case “4HE-B” 

 Crude Kero VR LGO 

Flow rate [kg/s] 90.0 40.0 20.0 20.0 

Inlet temperature [K] 443.15 473.15 633.15 528.15 

[kg/m3K] -0.784 -0.697 -0.615 -0.673 

[kg/m3] 1076.9 1072.6 1242.0 1096.2 

[W/mK2] -1.25x10-4 -1.30x10-4 -1.41x10-4 -1.34x10-4 

[W/mK] 0.161 0.167 0.182 0.172 

[J/kgK2] 3.668 3.767 2.977 3.491 

[J/kgK] 949.1 907.9 974.2 1028.0 

[K] 2194.9 1145.2 -310.8 1424.8 

[Pa s] 5.90x10-6 2.51x10-5 1.06x10-4 2.02x10-5 
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A.2.6. Case 6: “LN-S1” 

This case study is a network with eight heat exchangers in series, where some of them 

interact though the hot stream. It is adapted from the units of the network and operating 

conditions presented in Coletti and Macchietto (2011b) and Ishiyama et al. (2015). This is 

the first case of industrial relevance regarding the number of units in the network. Figure A.6 

shows the network structure, Table A.12 presents the configuration of the exchangers, fouling 

and cleaning parameters, and Table A.13 the streams conditions and physical properties 

parameters. 

 

Figure A.6. Network representation of case “LN-S1”. 
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Table A.12. Heat exchangers specifications for case “LN-S1” 

 HEX1 HEX2 HEX3 HEX4 HEX5 HEX6 HEX7 HEX8 

Shell diameter [mm] 890 1016 848 1296 1296 940 940 940 

Tube inner diameter [mm] 16.35 16.35 16.35 16.35 16.35 16.35 16.35 16.35 

Tube outer diameter [mm] 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 

Tube length [m] 4850 4450 4450 6100 6100 6100 6100 6100 

Number of tubes [-] 810 1020 900 1810 1810 1032 848 1032 

Number of passes [-] 2 2 2 2 2 2 2 2 

Baffle cut [%] 25 25 25 25 25 25 25 25 

Tube layout [°] 45 45 45 45 45 45 45 45 

Number of baffles [-] 5 5 5 8 8 8 8 8 

Surface roughness 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

Deposition constant [m2K/Wday] 138.2 138.2 138.2 138.2 138.2 138.2 138.2 138.2 

Removal constant [m4K/NWday] 0 0 0 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 

Fouling activation energy [J/mol] 28500 28500 28500 28500 28500 28500 28500 28500 

Ageing frequency factor [1/day] 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 30000 30000 30000 30000 
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Table A.13. Stream specifications and physical properties for case “LN-S1” 

 Crude VR HVGO PA LGO LGO Kerosene PA Kero 

Flow rate [kg/s] 88.0 44.0 80.0 70.0 20.0 63.0 6.0 

Inlet temperature [K] 403.15 633.15 573.15 530.15 528.15 448.15 475.15 

[kg/m3K] -0.690 -0.600 -0.600 -0.620 -0.620 -0.730 -0.730 

[kg/m3] 1071.5 1233.9 1078.9 1039.4 1039.4 1019.5 1019.5 

[W/mK2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[W/mK] 0.110 0.150 0.110 0.110 0.110 0.120 0.120 

[J/kgK2] 3.950 3.810 3.810 3.840 3.840 4.090 4.090 

[J/kgK] 674.1 659.3 659.3 701.1 701.1 662.8 662.8 

[K] 1477.0 2191.2 2191.2 1907.3 1907.3 1372.1 1372.1 

[Pa s] 1.20x10-5 7.00x10-6 7.00x10-6 8.20x10-6 8.20x10-6 1.31x10-5 1.31x10-5 
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A.2.7. Case 7: “LN-S2” 

This case study is a network with seven heat exchangers in series, where some of them 

interact though the hot stream. It is adapted from the units of the network and operating 

conditions presented in Coletti and Macchietto (2011b). Figure A.7 shows the network 

structure, Table A.14 presents the configuration of the exchangers, fouling and cleaning 

parameters, and Table A.15 the streams conditions and physical properties parameters. 

 

Figure A.7. Network representation of case “LN-S2”. 
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Table A.14. Heat exchangers specifications for case “LN-S2” 

 HEX1 HEX2 HEX3 HEX4 HEX5 HEX6 HEX7 

Shell diameter [mm] 1295 1295 1295 1295 990 800 800 

Tube inner diameter [mm] 19.86 19.86 19.86 19.86 19.86 16.35 16.35 

Tube outer diameter [mm] 25.40 25.40 25.40 25.40 25.40 19.05 19.05 

Tube length [m] 6100 6100 6100 6100 6100 6100 6100 

Number of tubes [-] 800 764 764 500 630 630 630 

Number of passes [-] 2 2 2 2 2 2 2 

Baffle cut [%] 25 25 25 25 25 25 25 

Tube layout [°] 45 45 45 45 45 45 45 

Number of baffles [-] 8 8 8 8 16 16 14 

Surface roughness 0.046 0.046 0.046 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 138.2 138.2 138.2 138.2 138.2 138.2 138.2 

Removal constant [m4K/NWday] 0 0 0 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 

Fouling activation energy [J/mol] 35000 35000 35000 35000 35000 30000 30000 

Ageing frequency factor [1/day] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 30000 30000 30000 
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Table A.15. Stream specifications and physical properties for case “LN-S2” 

 Crude Kerosene 
PA 

Kerosene 
LGO PA LGO VR 

Flow rate [kg/s] 88.0 63.0 30.0 20.0 70.0 70.0 

Inlet temperature [K] 403.15 448.15 475.15 493.15 495.15 523.15 

[kg/m3K] -1.284 -0.660 -0.690 -0.650 -0.654 -0.492 

[kg/m3] 1103.0 1030.3 1069.7 1084.7 1088.4 1195.6 

[W/mK2] -1.06x10-4 -1.30x10-4 -1.30x10-4 -1.34x10-4 -1.34x10-4 -1.48x10-4 

[W/mK] 0.136 0.168 0.167 0.172 0.172 0.191 

[J/kgK2] 3.400 4.024 3.828 3.745 3.698 3.745 

[J/kgK] 1271.5 877.7 879.3 901.6 919.7 716.8 

[K] 1346.7 1057.4 1152.1 1474.9 1474.6 -391.6 

[Pa s] 9.71x10-6 2.64x10-5 2.48x10-5 1.82x10-5 1.85x10-5 1.39x10-4 
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A.2.8. Case 8: “LN-S3” 

This case study is a network with six heat exchangers in series, where only two interact 

though the hot stream of the shell side. It is adapted from the units of the network and 

operating conditions presented in Diaz-Bejarano, Coletti, and Macchietto (2017). Figure A.8 

shows the network structure, Table A.16 presents the configuration of the exchangers, fouling 

and cleaning parameters, and Table A.17 the streams conditions and physical properties 

parameters. 

 

Figure A.8. Network representation of case “LN-S3”. 
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Table A.16. Heat exchangers specifications for case “LN-S3” 

 HEX1 HEX2 HEX3A HEX3B HEX4 HEX5 

Shell diameter [mm] 1295 1295 1295 1295 990 990 

Tube inner diameter [mm] 19.86 19.86 19.86 19.86 19.86 19.86 

Tube outer diameter [mm] 25.4 25.4 25.4 25.4 25.4 25.4 

Tube length [m] 6100 6100 6100 6100 6100 6100 

Number of tubes [-] 800 764 764 382 630 1260 

Number of passes [-] 2 2 2 2 2 4 

Baffle cut [%] 25 25 25 25 25 25 

Tube layout [°] 45 45 45 45 45 45 

Number of baffles [-] 8 8 8 8 16 18 

Surface roughness 0.046 0.046 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 648 648 648 648 648 648 

Removal constant [m4K/NWday] 3.89x10-7 3.89x10-7 3.89x10-7 3.89x10-7 3.89x10-7 3.89x10-7 

Fouling activation energy [J/mol] 35000 35000 35000 35000 35000 35000 

Ageing frequency factor [1/day] 0.00 0.00 0.00 0.00 0.00 0.00 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 30000 30000 
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Table A.17. Stream specifications and physical properties for case “LN-S3” 

 Crude Naphtha BPA SS4 SS5 Residue 

Flow rate [kg/s] 90.0 37.7 28.2 50.0 50.1 49.0 

Inlet temperature [K] 463.15 483.15 523.15 563.15 593.15 633.15 

[kg/m3K] -0.812 -1.254 -0.881 -0.789 -0.828 -0.521 

[kg/m3] 1090.4 1148.4 1096.3 1119.0 1140.5 1114.3 

[W/mK2] -1.25x10-4 -1.09x10-4 -1.22x10-4 -1.28x10-4 -1.28x10-4 -1.48x10-4 

[W/mK] 0.161 0.141 0.158 0.165 0.165 0.190 

[J/kgK2] 3.483 3.286 3.370 3.264 3.019 3.110 

[J/kgK] 1037.5 1207.2 1117.8 1112.4 1248.7 1344.2 

[K] 2111.5 2276.0 2388.8 2396.5 1933.0 2805.7 

[Pa s] 7.03x10-6 3.52x10-6 4.66x10-6 5.63x10-6 1.05x10-6 4.77x10-6 
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A.2.9. Case 9: “LN-B1” 

This case study is a network with six heat exchangers, and some of them are distributed 

in two parallel branches. It is adapted from the units of the network and operating conditions 

presented in Coletti and Macchietto (2011b) and Ishiyama et al. (2015). The cold stream is 

split in two branches, as well as two of the hot streams of the network, which introduces 

additional degrees of freedom of control. In this case, the exchangers on each branch are 

different, so that the branches are not balanced and there is a potential benefit if the split 

fraction is controlled optimally to mitigate fouling. Figure A.9 shows the network structure, 

Table A.18 presents the configuration of the exchangers, fouling and cleaning parameters, 

and Table A.19 the streams conditions and physical properties parameters. 

 

Figure A.9. Network representation of case “LN-B1”. 
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Table A.18. Heat exchangers specifications for case “LN-B1” 

 HEX1 HEX2 HEX3 HEX4 HEX5 HEX6 

Shell diameter [mm] 584 798 1100 740 520 740 

Tube inner diameter [mm] 19.05 19.05 19.05 19.05 19.05 19.05 

Tube outer diameter [mm] 24.86 24.86 24.86 24.86 24.86 24.86 

Tube length [m] 6100 6100 6100 6100 6100 6100 

Number of tubes [-] 336 620 1130 968 240 968 

Number of passes [-] 2 4 6 4 2 4 

Baffle cut [%] 25 25 25 25 25 25 

Tube layout [°] 45 45 45 45 45 45 

Number of baffles [-] 8 8 8 8 8 8 

Surface roughness 0.150 0.150 0.150 0.150 0.150 0.150 

Deposition constant [m2K/Wday] 138.2 138.2 138.2 138.2 138.2 138.2 

Removal constant [m4K/NWday] 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 

Fouling activation energy [J/mol] 28500 28500 28500 28500 28500 28500 

Ageing frequency factor [1/day] 8.64 8.64 8.64 8.64 8.64 8.64 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 30000 30000 
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Table A.19. Stream specifications and physical properties for case “LN-B1” 

 Crude VR HVGO PA LGO 

Flow rate [kg/s] 88.0 44.0 80.0 70.0 

Inlet temperature [K] 403.15 633.15 573.15 530.15 

[kg/m3K] -0.690 -0.600 -0.600 -0.620 

[kg/m3] 1071.5 1233.9 1078.9 1039.4 

[W/mK2] 0.0 0.0 0.0 0.0 

[W/mK] 0.110 0.150 0.110 0.110 

[J/kgK2] 3.950 3.810 3.810 3.840 

[J/kgK] 674.1 659.3 659.3 701.1 

[K] 1477.0 2191.2 2191.2 1907.3 

[Pa s] 1.20x10-5 7.00x10-6 7.00x10-6 8.20x10-6 

 

A.2.10. Case 10: “LN-B2” 

This case study is a network with six heat exchangers, and some of them are distributed 

in two parallel branches. It is adapted from the units of the network and operating conditions 

presented in Coletti and Macchietto (2011b) and Ishiyama et al. (2015). The cold stream is 

split in two branches, as well as one of the hot streams of the network. This case is similar to 

the case “LN-B1”, but one of the hot streams interacts with two exchangers in series instead 

of being split. Figure A.10 shows the network structure, Table A.20 presents the 

configuration of the exchangers, fouling and cleaning parameters, and Table A.21 the streams 

conditions and physical properties parameters. 

 

Figure A.10. Network representation of case “LN-B2”. 
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Table A.20. Heat exchangers specifications for case “LN-B2” 

 HEX1 HEX2 HEX3 HEX4 HEX5 HEX6 

Shell diameter [mm] 1295 1295 1295 990 990 1295 

Tube inner diameter [mm] 19.86 19.86 19.86 19.86 19.86 19.86 

Tube outer diameter [mm] 25.40 25.40 25.40 25.40 25.40 25.40 

Tube length [m] 6100 6100 6100 6100 6100 6100 

Number of tubes [-] 800 764 480 500 500 480 

Number of passes [-] 2 2 4 2 2 4 

Baffle cut [%] 25 25 25 25 25 25 

Tube layout [°] 45 45 45 30 30 45 

Number of baffles [-] 8 8 8 8 8 8 

Surface roughness 0.046 0.046 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 138.2 138.2 138.2 138.2 138.2 138.2 

Removal constant [m4K/NWday] 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 8.02x10-8 

Fouling activation energy [J/mol] 28500 28500 28500 28500 28500 28500 

Ageing frequency factor [1/day] 0.00 0.00 0.00 0.00 0.00 0.00 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 30000 30000 
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Table A.21. Stream specifications and physical properties for case “LN-B2” 

 Crude Kero VR HVGO 

Flow rate [kg/s] 88.0 63.0 80.0 65.0 

Inlet temperature [K] 403.15 448.15 523.15 503.15 

[kg/m3K] -1.270 -0.656 -0.494 -0.582 

[kg/m3] 1096.9 1028.5 1196.2 1105.3 

[W/mK2] -1.06x10-4 -1.30x10-4 -1.48x10-4 -1.39x10-4 

[W/mK] 0.136 0.168 0.191 0.179 

[J/kgK2] 3.423 4.069 3.712 3.778 

[J/kgK] 1261.5 858.1 732.9 859.6 

[K] 1333.4 1063.0 -385.7 -179.0 

[Pa s] 1.00x10-5 2.61x10-5 1.38x10-4 1.00x10-4 

 

A.2.11. Case 11: “REF-X” 

This case study is a network with five heat exchangers of which four are double shells. 

It is adapted based on the network and operating conditions presented in Coletti and 

Macchietto (2011a); Coletti (2010); and Lanchas-Fuentes et al. (2016), and it corresponds to 

the hot-end of a real refinery preheat train. It has control degrees of freedom as the flow 

thought the parallel branches is not constrained. For this case, plant measurements of the flow 

rates, and streams temperature are available for model validation, characterization of the 

process variability, and testing of the algorithms and methodology. The data were collected 

as the daily average of the characteristic measure over 1240 days.  

This case study is widely used in this thesis for: model validation on a realistic scenario 

with plant variability, testing solution algorithms for the optimal cleaning scheduling 

problem in realistic settings, comparing the actual operation of the refinery with the potential 

of an optimal decision making approach, and implementing and validating an online fouling 

mitigation strategy based on flow control and cleaning scheduling. 

Figure A.11 shows the network structure, Table A.22 presents the configuration of the 

exchangers, fouling and cleaning parameters, and Table A.23 the streams conditions and 

physical properties parameters. 
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Figure A.11. Network representation of case “REF-X”. 
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Table A.22. Heat exchangers specifications for case “REF-X” 

 E01A E01B E02A E02B E03A E03B E04 E05A E05B 

Shell diameter [mm] 1245 1194 1397 1397 990 990 1270 1397 1397 

Tube inner diameter [mm] 19.86 19.86 19.86 19.86 13.51 13.51 19.86 19.86 19.86 

Tube outer diameter [mm] 25.40 25.40 25.40 25.40 19.05 19.05 25.40 25.40 25.40 

Tube length [m] 6090 6090 6090 6090 6090 6090 6090 6090 6090 

Number of tubes [-] 764 850 880 880 630 630 888 880 880 

Number of passes [-] 2 2 4 4 2 2 4 4 4 

Baffle cut [%] 25 22.5 25 25 25 25 17 25 25 

Tube layout [°] 45 45 45 45 45 45 45 45 45 

Number of baffles [-] 5 7 18 18 20 20 9 18 18 

Surface roughness 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 390.9 352.1 311.3 313.3 106.9 124.9 280.7 343.3 332.1 

Removal constant [m4K/NWday] 1.46x10-6 1.32x10-6 1.11x10-6 1.12x10-6 3.26x10-6 3.92x10-7 9.83x10-7 1.26x10-6 1.20x10-6 

Fouling activation energy [J/mol] 28500 28500 28500 28500 28500 28500 28380 28500 28500 

Ageing frequency factor [1/day] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 9 9 10 10 8 8 9 16 16 

Cleaning cost [$] 27000 27000 30000 30000 24000 24000 27000 48000 48000 
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Table A.23. Stream specifications and physical properties for case “REF-X” 

 Crude SS4 BPA RS SS5 

Flow rate [kg/s] 150.0 22.5 180.0 22.5 22.5 

Inlet temperature [K] 433.15 593.15 493.15 580.95 580.95 

[kg/m3K] -0.975 -0.733 -0.737 -0.565 -0.581 

[kg/m3] 1156.3 1125.7 1100.6 1113.9 1127.6 

[W/mK2] -1.21x10-4 -1.31x10-4 -1.29x10-4 -1.41x10-4 -1.40x10-4 

[W/mK] 0.156 0.169 0.166 0.182 0.181 

[J/kgK2] 3.192 3.284 3.598 3.667 3.595 

[J/kgK] 1064.7 1076.3 929.4 917.3 913.2 

[K] 1815.7 2190.8 2100.3 2979.6 2914.4 

[Pa s] 9.69x10-6 7.95x10-6 7.67x10-6 2.68x10-6 3.07x10-6 

 

A.2.12. Case 12: “NR-S” 

This case study is a retrofit network with seven fixed heat exchangers, and one potential 

unit (HEX7x) to include in three locations of the network. This network is adapted from the 

retrofit problem presented in Coletti, Macchietto, and Polley (2011), and three alternatives 

considered there are included in the superstructure representing the network. This is a 

network where all units are arranged in series, and the splitter and mixers of the hot and cold 

streams are only used to define a super structure that includes all three retrofit alternatives 

considered in the problem. In addition, this case includes a desalter which introduces a 

temperature drop of 4.5K, and defines two zones of the network: before the desalter where 

there is no fouling – low temperature – and after the desalter where fouling occurs as a 

consequence of high temperatures. 

This case does not include control degrees of freedom as there are no parallel branches, 

so it only integrates the optimal retrofit problem and the optimal cleaning scheduling 

problem. 

Figure A.12 shows the superstructure used to represent the network and retrofit 

alternatives. The exchangers that can be added or removed from the network are shown with 

a hash pattern. Table A.24 presents the configuration of the exchangers, fouling and cleaning 

parameters, and Table A.25 the streams conditions and physical properties parameters. 
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Figure A.12. Network representation of case “NR-S”. 

The three original retrofit alternatives considered by Coletti, Macchietto, and Polley 

(2011) are represented in Figure A.13. It is also shown (thick lines) how these alternatives 

are obtained from the superstructure representation used in the optimal retrofit problem. The 

superstructure used to represent the retrofit alternatives can include other network 

representations than those three considered. For example, a network where HEX7x is in 

parallel with HEX6 and HEX7 is feasible using the superstructure representation. 

a) 

 
b) 

 
c) 
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d) 

 
e) 

 
f) 

 

Figure A.13. Original retrofit alternatives of case “NR-S” and their representation in the 

network superstructure. a, b) C2, c, d) C3, e, f) C4. (Coletti, Macchietto, and Polley 2011) 
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Table A.24. Heat exchangers specifications for case “NR-S” 

 HEX1 HEX2 HEX3 HEX4 HEX5 HEX6 HEX7 HEX7x 

Shell diameter [mm] 444 584 584 798 1100 520 740 740 

Tube inner diameter [mm] 20.90 20.90 20.90 20.90 20.90 20.90 20.90 20.90 

Tube outer diameter [mm] 26.70 26.70 26.70 26.70 26.70 26.70 26.70 26.70 

Tube length [m] 6100 6100 6100 6100 6100 6100 6100 6100 

Number of tubes [-] 152 308 336 620 1130 240 968 968 

Number of passes [-] 6 8 2 4 6 2 4 4 

Baffle cut [%] 22 17 17 17 17 17 17 17 

Tube layout [°] 45 45 45 45 45 45 45 45 

Number of baffles [-] 32 40 43 37 41 41 41 41 

Surface roughness 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 0.0 0.0 0.0 788.4 788.4 788.4 788.4 788.4 

Removal constant [m4K/NWday] 0 0 0 3.42x10-7 3.42x10-7 3.42x10-7 3.42x10-7 3.42x10-7 

Fouling activation energy [J/mol] 38500 38500 38500 38500 38500 38500 38500 38500 

Ageing frequency factor [1/day] 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 30000 30000 30000 30000 
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Table A.25. Stream specifications and physical properties for case “NR-S” 

 Crude Kerosene Upper P/A Lower P/A LGO HVGO Residue 

Flow rate [kg/s] 27.8 2.8 11.1 16.7 5.6 2.8 13.9 

Inlet temperature [K] 305.15 478.15 493.15 553.15 563.15 553.15 633.15 

[kg/m3K] -0.690 -0.730 -0.730 -0.620 -0.620 -0.600 -0.600 

[kg/m3] 1071.5 1019.5 1019.5 1039.4 1039.4 1078.9 1233.9 

[W/mK2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[W/mK] 0.110 0.120 0.120 0.110 0.110 0.110 0.150 

[J/kgK2] 3.950 4.090 4.090 3.840 3.840 3.810 3.810 

[J/kgK] 674.1 662.8 662.8 701.1 701.1 659.3 659.3 

[K] 1477.0 1372.1 1372.1 1907.3 1907.3 2191.2 2191.2 

[Pa s] 1.20x10-5 1.31x10-5 1.31x10-5 8.20x10-6 8.20x10-6 7.00x10-6 7.00x10-6 
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A.2.13. Case 13: “NR-B” 

This case study is a retrofit network with five fixed heat exchangers, one that can be 

removed from the original network (E2), and five that can be used for retrofitting in different 

locations. This network is adapted from the retrofit problem presented in Yeap et al. (2005), 

and three alternatives considered there are included in the superstructure representing the 

network. This network includes control elements as there is the possibility to have parallel 

branches in the network, and one of the alternatives considered in Yeap et al. (2005) has this 

type of structure. Additional splitters and mixers for the hot and cold streams are used in the 

superstructure to define those retrofitting alternatives, and many new ones. 

Figure A.14 shows the superstructure of the network that defines all retrofit 

alternatives. The exchangers that can be added or removed from the network are shown with 

a hash pattern. The superstructure shows all possible connections for the exchangers, and the 

streams that can be redistributed are colour coded for clarity, so that the crude oil stream 

(blue), the VR stream (yellow), and the OR stream (dashed red) can be differentiated. Table 

A.26 presents the configuration of the exchangers, fouling and cleaning parameters, and 

Table A.27 the streams conditions and physical properties parameters. 

 

Figure A.14. Network representation of case “NR-B”. 

The original three alternatives considered in Yeap et al. (2005) are shown in Figure 

A.15 as well as their representation in the superstructure of the network (thick lines). The 

superstructure representation includes these three alternatives and many others that can 

perform even better. Note that the retrofit alternative III has been modified with respect to 

that of the original reference as temperature crossing in some exchangers was observed 
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probably because of the physical properties model or some specifications of the exchangers 

that were not reported in the original reference and had to be assumed. 

a) 

 
b) 

 
c) 

 
d) 
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e) 

 
f) 

 

Figure A.15. Original retrofit alternatives of case “NR-B” and their representation in the 

network superstructure. a, b) I, c, d) II, e, f) III. (Yeap et al. 2005) 

 



Table A.26. Heat exchangers specifications for case “NR-B” 

 E1 E2 E3 E4 E5 E6 E1a E5a E5b E6a E6b 

Shell diameter [mm] 1220 510 970 480 540 540 970 540 340 730 340 

Tube inner diameter [mm] 19.86 19.86 19.86 19.86 19.86 19.86 19.86 19.86 19.86 19.86 19.86 

Tube outer diameter [mm] 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 

Tube length [m] 6090 6090 6090 6090 6090 6090 6090 6090 6090 6090 6090 

Number of tubes [-] 724 388 962 470 388 388 486 196 128 822 128 

Number of passes [-] 2 2 2 2 2 2 2 2 2 2 2 

Baffle cut [%] 25 25 25 25 25 25 25 25 25 25 25 

Tube layout [°] 45 45 45 45 45 45 45 45 45 45 45 

Number of baffles [-] 10 8 8 12 8 16 8 12 16 12 8 

Surface roughness 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 

Deposition constant [m2K/Wday] 1.85x107 1.85x107 1.85x107 1.85x107 1.85x107 1.85x107 1.85x107 1.85x107 1.85x107 1.85x107 1.85x107 

Removal constant [m4K/NWday] 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 2.9x10-10 

Fouling activation energy [J/mol] 76000 76000 76000 76000 76000 76000 76000 76000 76000 76000 76000 

Ageing frequency factor [1/day] 0 0 0 0 0 0 0 0 0 0 0 

Ageing activation energy [J/mol] 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 

Cleaning time [days] 10 10 10 10 10 10 10 10 10 10 10 

Cleaning cost [$] 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 
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Table A.27. Stream specifications and physical properties for case “NR-B”* 

 Crude VSS APA VMPA VR OR 

Flow rate [kg/s] 105.0 13.0 70.0 106.0 18.0 52.0 

Inlet temperature [K] 393.15 488.15 540.15 557.15 574.15 577.15 

[kg/m3K] -0.975 -0.565 -0.733 -0.581 -0.492 -0.529 

[kg/m3] 1156.3 1113.9 1125.7 1127.6 1195.6 1154.7 

[W/mK2] -1.21x10-4 -1.41x10-4 -1.31x10-4 -1.40x10-4 -1.48x10-4 -1.45x10-4 

[W/mK] 0.156 0.182 0.169 0.181 0.191 0.186 

[J/kgK2] 3.192 3.667 3.284 3.595 3.745 3.706 

[J/kgK] 1064.7 917.3 1076.3 913.2 716.8 817.0 

[K] 1815.7 2979.6 2190.8 2914.4 -391.6 1294.0 

[Pa s] 9.69x10-6 2.68x10-6 7.95x10-6 3.07x10-6 1.39x10-4 7.09x10-5 

VSS: vacuum side stream 

APA: atmospheric pump around 

VMPA: vacuum mid pump around 

VR: vacuum residue 

OR: other residue stream 



Appendix B. 

 

Dynamic and distributed model for shell 

and tube heat exchangers 

This appendix introduces a dynamic and distributed model for shell and tube heat 

exchangers developed previously at Imperial College (Coletti and Macchietto 2011b; Diaz-

Bejarano, Coletti, and Macchietto 2016). This model is commercially available in Hexxcell 

StudioTM, and the platform offers a wide range of tools for thermo hydraulic analysis and 

fouling diagnostic of heat exchangers (Hexxcell Ltd. 2016). This tool is used in Chapter 5 to 

validate the modelling approach developed in this thesis, and in Chapter 6 to demonstrate 

that the benefits achieved optimizing heat exchanger networks with lumped models are still 

observed using other more detailed modelling approaches.  

B.1.   Modelling framework and constituent equations 

The model presented here for heat exchangers under fouling is dynamic and distributed 

in the axial and radial directions. Similarly to the heat exchanger model presented in Chapter 

3, this model also considers heat transfer among various domains: shell side, tube wall, 

deposit layer, and tube side; but it includes the axial distribution of the variables. It also 

considers explicitly each tube pass within the shell, and exchangers with multiple shell passes 

or different arrangements are modelled as individual shells connected by their inlet/outlet 

streams. Figure B.1 shows the schematic representation of a shell and tube heat exchanger 

used in this modelling framework. There is one tube domain per pass which flow can be co-

current or counter-current with respect to that of the shell side. The tube domain is 

represented by a single characteristic tube of the bundle assuming all tubes behave 

identically, although there are many more tubes per pass. In Figure B.1b all the different 
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domains involved in a single pass are observed. This also shows the general assumptions of 

the domains, their flow pattern, their interactions, and the boundary conditions (BC) used to 

link all of them. 

a) 

 

b) 

 

Figure B.1. Dynamic and distributed modelling framework. a) Shell and tube exchanger 

representation, b) Heat transfer domains in a single tube 

The main assumptions of this modelling framework are: 

• TEMA type AET shell 

• Negligible heat losses 

• Fouling only on tube side 

• Plug flow on the shell side (perfectly mixed radially) 

• Bell-Delaware method for the local heat transfer of the shell side 

• All tubes in a pass have the same behaviour 

• Tube and shell domains are axial distributed, radial averaged 

• Deposit and wall domains are axial and radial distributed 

• Physical properties are function of the local temperature 
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• Constant roughness of the deposit 

• Dynamic growth of the deposit captured using a moving boundary 

A more complete discussion of the model assumptions, limitations, and advantages can 

be found in Coletti and Macchietto (2011b; and Diaz-Bejarano, Coletti, and Macchietto 

(2016). Based on these assumptions the model is developed using conservation equations for 

each domain, and it is formulated as a large set of partial differential equations. Table B.1 

summarizes the model equations and classifies them depending on the domain where they 

are applicable. It also shows the boundary and initial conditions. The  variable is used to 

indicate the relative direction of the flow with respect to the inlet to the exchanger. A heat 

exchanger has as many tube side domains as tube passes, and each domain equations have 

different parameters and operating conditions. However, the overall effect of all tube passes 

is account for in the shell side energy balance. Finally, note that the deposit domain 

constituent equations are expressed in terms of dimensionless quantities to explicitly consider 

the moving boundary and how the deposit thickness changes over time and over the axial 

position in the tube; also, the fouling model is the Ebert-Panchal model evaluated at the local 

conditions. 

Table B.1. Main constituent equations of the distributed and dynamic model 

Shell side 

Energy balance 
= −( ) + ℎ ( − ) 

.  = 1 → ( = 0) = ;  = −1 → ( = ) =  

Tube side 

Energy balance 
= −( ) + ℎ ( − ), ∀ ∈  

.  = 1 → ( = 0) = ;  = −1 → ( = ) =  

Mass balance = , ∀ ∈  

Pressure drop 
− = ( )2( − 2 ) , ∀ ∈  

.  = 1 → ( = 0) = ;  = −1 → ( = ) =  
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Table B.1. Main constituent equations of the distributed and dynamic model (cont.) 

Tube wall 

Energy balance 
= 1 , ∀ ∈  

.  = 2⁄ : = −ℎ ( − );  = 2⁄ : =  

Deposit layer 

Domain 

transformation 
̃ = 2⁄ −

 

Energy balance 
− ̃ ̃ = ( 2⁄ − ̃ ) ̃ ( 2⁄ − ̃ ) ̃  

.  ̃ = 0: =  ;  ̃ = 1: = −ℎ ( − ) 

Fouling rate = . . exp − −  

Deposition rate =  

This modelling framework described for a single exchanger can be expanded to model 

heat exchanger networks easily, and all these features are available in Hexxcell StudioTM. In 

addition, other elements of the network such as furnace, mixers, splitters, and pumps can be 

included using the software. Hence, all case studies considered in this thesis can be also 

modelled and solved using this framework – only for simulation purposes. 
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Appendix C. 

 

Heuristic algorithms for online cleaning 

scheduling of preheat trains 

This appendix introduces heuristic algorithms developed for the online cleaning 

scheduling of heat exchanger networks under fouling. It aims to be a preliminary study of 

online fouling mitigation that is not based on optimization methods. It also serves as a 

reference point to compare and validate the performance of online optimization based 

algorithms for fouling mitigation and preheat train optimization. The algorithms are based 

on the definition of conditional cleanings on a rolling horizon using an economic criteria, and 

are implemented in gPROMS using the libraries of Hexxcell studioTM.  

C.1. Heuristic algorithms for online cleaning scheduling 

The heuristic algorithms described next are implemented in gPROMS using the 

libraries of Hexxcell StudioTM (Hexxcell Ltd. 2016) to model the performance of the heat 

exchangers and the network configuration. Therefore, these algorithms use a detail 

distributed model to define the cleaning scheduling of the network. They are based on an 

approximation of the dynamic decay of the heat duty of each exchanger caused by fouling. 

This approximation is used to predict the economic benefits of cleaning actions in a future 

time window. The trade-off between cleaning cost and future energy savings is used a 

decisions criterion to define the sequence and frequency of the cleanings, but it is limited to 

define one cleaning at the time. Variations of this heuristic are considered depending on the 

function used to estimate the performance decay of the exchangers, which can be: constant, 

linear, or quadratic.  

The heuristic algorithm is presented in Figure C.1. The prerequisites for these 

algorithm are: a dynamic model for the heat exchanger network that considers fouling, and 
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the economic indicators to estimate the cost of cleanings and the energy costs associated with 

the loss of performance of the network. The algorithm starts by estimating the heat duty for 

each exchanger under cleaned conditions ( , ∀ ∈ ), then it requires an estimation of 

the performance decay of each exchanger, which is the heat duty loss because of fouling per 

unit. At this step is where the algorithm may vary, and here three prediction alternatives of 

the performance decay are considered: constant heat duty, linear decay of the heat duty, and 

quadratic approximation of the heat duty decay. Figure C.2 illustrates theses prediction 

approaches. The linear, and quadratic approximations of the performance decay are based on 

a Taylor series expansion of the function at = ∗, so that the constant term correspond to 

the current value of the function, the slope ( , ) to the first derivate, and the constant of the 

quadratic term ( ) to the second derivative. The derivatives of the function are estimated 

from a simulation of the network performance which is done before the beginning of the 

operation. Note that these models are predicting how the heat duty of the exchangers 

decreases because of fouling and the interactions of the units in the network, and they use as 

starting point the current state of the exchanger at time ∗. For the linear and quadratic 

approximations, it is assumed that the rate of change of the heat duty is constant, in other 

words the model parameters ( , , ) are constant and only determined with respect to the 

cleaned conditions. These parameters do not capture the effect of different flow rates, or inlet 

temperatures, although in principle they could be updated online as more data and 

information about the process operation is collected. 

It is important to mention that the algorithm can consider simultaneous cleanings of 

subsets of heat exchangers as long as the subsets are defined a priori. To consider this, the 

set of cleaning arrangements (exchangers that can be cleaned simultaneously) is defined: = {1,2, … , }. The number of elements of this set does not have to be the same number 

of exchangers in the network, it can have more or fewer elements. The parameter , ∀ ∈, ∈  is used to define the exchangers that are cleaned simultaneously for each 

cleaning arrangement defined. For example, if only individual cleanings of all the exchangers 

in the network are considered, the parameter ,  is an identity matrix with dimension × . In the case that more than one exchanger can be cleaned simultaneously, the 

row of the parameter ,  corresponding to that cleaning arrangement will have at least two 

nonzero entries. 
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Figure C.1. Heuristic algorithm for online cleaning schedule of HEN. 

 

Figure C.2. Estimation of the heat duty decay for individual exchangers using three 

approximations. 

The algorithm uses a fixed time step ( ) at which the conditions to perform a cleaning 

are evaluated, and this time step can be as small as to evaluate the cleaning conditions 

continuously, → 0. The conditions that define when a cleaning is performed are based on 

an economic criterion that represents the trade-off between the energy recover in monetary 

value and the cleaning cost. This economic threshold is defined in Eq. (C.1).  represents 

the economic credits measured as the difference between the predicted heat duty after 
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cleaning, and the predicted heat duty from the current conditions of the unit over a future 

prediction horizon FPH, Eq. (C.2).  represents the energy loss during the cleaning for not 

having that exchanger or subset of exchangers operating, Eq. (C.3).  is the cleaning cost, 

Eq. (C.4); and  is the economic threshold defined by the analyst for the cleanings, in this 

case is zero which means that cleaning accepted are those with a break even period of FPH 

– the cost of the cleaning is equal to the energy recovery benefits over this time. 

− − ≥ , ∀ ∈  (C.1) 

= ,∈ − ( )∗
∗ , ∀ ∈  (C.2) 

= ,∈ ( = ∗)Τ , , ∀ ∈  (C.3) 

= ,∈ , , ∀ ∈  (C.4) 

The algorithm finishes when the final operating time is reached. In summary, this 

heuristic algorithm uses an approximation of the heat duty decrease cause by fouling to 

predict the economic trade-off of the cleanings at each time instance. The algorithms consider 

network interactions and economic trade-off for defining the cleaning schedule, but it ignores 

the operational limits such as temperature and pressure drop limitations, and the effect of 

variable flow rates and stream temperatures on the performance prediction of the system. 

C.2. Application to a real case study 

The heuristic algorithm is used to solve the cleaning scheduling problem of the case 

study REF-X. This is a case study of an actual refinery for which the actual cleaning schedule 

is available, so that the benefits of alternative approaches can be directly compared. The 

specifications of the case are presented in Appendix A, and the optimal cleanings scheduling 

with and without control actions was obtained in Chapter 5. 

The HEN has five exchangers, and four of them are double shell. For those units with 

multiple shells, all the shells have to be cleaned simultaneously and these constraints are 

imposed in the heuristic algorithms by the definition of the set of cleaning arrangements  

and of the matrix , . 
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C.2.1. Online cleaning scheduling 

The cleaning scheduling of the case study is defined online using the heuristic 

algorithms, and its various ways to predict the decay of the heat duty of individual 

exchangers. Although the network has parallel branches, the flow split is assumed fixed at 

50% for all the scenarios considered in this section. 

Figure C.3 shows the Gantt charts for all the cleaning schedules considered here. They 

are significantly different in terms of number of cleanings, frequency of cleanings, and 

exchanges cleaned. For example, only in the actual cleaning schedule E05A/B is cleaned, 

while the other algorithms never predict a cleaning for this unit because the economic credits 

are not enough to compensate for the cleaning cost. For all other cleaning schedules, a pattern 

and constant frequency in the cleanings can be observed, which indicates the limits of the 

operation and the points in time at which it is beneficial to perform cleanings. While the 

optimal cleaning schedule – obtained in Chapter 5, Figure 5.11, for REF-X case – predicts 

cleanings for most of the exchangers at least once, the heuristic algorithms only predict 

cleanings for E01A/B and exchanger E04, and the only difference among them is the 

frequency and starting time of the cleanings. While the optimal alternative can capture the 

effects over the whole prediction horizon, the heuristic algorithms are limited to the future 

prediction horizon defined and the results depend on the value of this parameter. However, 

exchangers E01A/B and E04 are those with the highest fouling rate, therefore it is expected 

that their cleanings are more frequent than those of the rest. 

a) 

 
 

 

 

 



333 

b) 

 
c) 

 

Figure C.3. Cleaning schedule of case REF-X determined by heuristic algorithms that can 

be applied online. 

All the alternative schedules obtained from using heuristics perform better than the 

actual cleaning schedule, and they reduce the operational cost from $ 0.8 M to $ 1.2 M for 

an operation horizon of 4 years. Although all alternatives improve the operation, there is no 

significant difference between the benefits obtained with the linear approximation and the 

quadratic approximation of the heat duty decay. The predictions obtained with these two 

approaches are similar, and there are only small variations on the cleaning time of the 

exchangers.  

For longer operational times the heuristic algorithms may predict the cleanings of other 

exchangers because the economic credits of their cleanings increase with time as the fouling 

thermal resistance increases. For example, Figure C.4 shows how the economic credits for 

each set of possible cleanings evolve with time, and it explicitly shows when certain units 

cross the threshold defined for the cleanings. A cleaning action in this plot is identified by 

the discontinuities and jumps in the value of the function, and it is defined each time a 
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threshold is reached. Note that the value presented include the cleaning cost, the energy cost 

of a unit out of service, and the potential future energy recovery of a cleaned unit, which are 

different for each exchanger. Finally, note that for those exchangers that are not cleaned in 

this operating horizon, the economic credits have an increasing trend, although it is affected 

by the cleanings of other units in the network. 

 

Figure C.4. Evolution of the overall benefits of cleanings – LHS of Eq. (C.1) for the case 

study using a quadratic approximation for the heat duty. 

C.2.2. Introducing control elements 

The use of heuristics can be integrated with the optimal flow distribution of the network 

aiming to minimize the total operating cost. To illustrate the potential of incorporating control 

decisions in the cleaning schedule definition, for each cleaning schedule obtained using 

heuristics an optimal control problem is solved to define the optimal flow distribution profiles 

for the network. Although this procedure is done offline after applying the heuristic algorithm 

and it is only done for illustration purposes, in principle a steady state optimization could be 

performed to optimally determine the split fraction at every sampling time. 

Figure C.5 shows the furnace duty and the split fraction for those cleaning schedules 

obtained using the heuristic algorithm. Although the flow control is optimally defined in a 

sequential fashion, these results serve to illustrate the importance of the interactions between 

scheduling and control, and that they can both be defined online and using heuristic 

approximations. Regardless of the heuristic method use for predicting the duty decay, when 

it is coupled with the control decisions the furnace duty decreases significantly, and 
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reductions of up to 2.2 MW can be achieved. These important benefits are realized because 

the flow distribution reacts to the cleanings, so that when a unit is idle the flow is diverted 

from that unit if possible, and also because the flow rates are adapted dynamically to recover 

more energy and make the most of units with the lowest fouling resistance. 

a) 

 

d) 

 

b) 

 

e) 

 
c) 

 

f) 

 

Figure C.5. Furnace duty (column 1), and split fraction to E02 branch (column 2) of the 

case study when the cleaning schedule is defined using heuristics (row 1: constant duty 

prediction, row 2: linear duty prediction, row 3: quadratic duty prediction). 
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The total operating cost of each cleaning schedule determine with the heuristic 

algorithm is compared against the actual operation, and against the optimal operation of the 

network – Chapter 5. Figure C.6 illustrates the cost of these alternatives, indicates the 

cleaning and energy cost associated with each, and demonstrates the improvements obtained 

when control decisions are integrated in the definition of the cleaning schedule. 

 

Figure C.6. Cost comparison of all alternatives for REF-X case. Using heuristics vs 

optimization to define the cleaning schedule of the network. 

The cleaning schedules obtained with the heuristic algorithm perform better than the 

actual one, and worse than the optimal one. An expected result since the optimization 

formulation considers all possible interactions during the whole operating time. It is 

interesting to note that the heuristic that uses a constant prediction of the heat duty decay is 

the one with the lowest operational cost among all the schedules defined by heuristics, but 

the one with the highest cleaning cost. Although the instant economic credits are over 

predicted in the future prediction horizon, the overall cost during the whole operating time is 

greater because of the frequent cleanings. Nevertheless, there is not a large difference 

between this alternative and the other heuristics that use a linear or quadratic prediction of 

the heat duty decay. The total operational cost predicted by these alternatives differ in less 

than $ 0.3 M, and there is no significant difference between the schedule defined with the 

linear prediction of the duty, and that defined with the quadratic prediction of the duty. 

Introducing optimal flow distribution on a given cleaning schedule – or done online 

and simultaneously – have large benefits for the operation. Even for the actual cleaning 
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schedule there are potential savings of $ 1.3 M by only manipulating the dynamic flow 

distribution. Similar cost reductions are observed when control decisions are included in the 

heuristic algorithms that define the cleaning schedule. The operating cost can be reduced 

from $ 1.8 M up to $ 2.3 M in these cases. However, none of these heuristic algorithms 

perform better than the optimal solution of cleaning scheduling and flow distribution. In 

Figure C.6 the minimum cost is observed for the optimal alternatives despite being a solution 

with a fixed operating horizon, instead of a online one using a rolling horizon as the heuristic 

approaches. No individual fouling mitigation approach can produce this reduction of the total 

operating cost, which shows the importance of considering both alternatives. Moreover, the 

simultaneous optimization of the cleaning scheduling and flow distribution control has the 

lowest total operating cost for the surrogate model because it considers both decisions at the 

same level and can exploit the synergy between them. 

The use of heuristic algorithms based on a receding horizon is a preliminary study for 

the online fouling mitigation of HEN. The algorithms developed demonstrated that decisions 

involving cleaning of units can be taken on real time based on appropriate predictions of the 

future performance of the units, and that integrating control and scheduling decisions should 

be a priority to minimize the operating cost of the system. The heuristics allows a quick 

definition of the cleanings and cleaning sequence, although it is not optimal and does not 

considered all the interactions and effects in the network. More rigorous optimization based 

approaches are required to exploit the synergies and interactions presented in large industrial 

networks. Also, accurate models should be used for predicting the performance of the system 

so that all dynamic effects, such as changes in flow rates and stream temperatures, can be 

captured. 
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Appendix D. 

 

Dissemination record 

Journal peer-reviewed articles 

Lozano Santamaría, F., Macchietto, S. Online integration of optimal cleaning 

scheduling and control of heat exchanger networks under fouling. Industrial & Engineering 

Chemistry Research 2020, 59, 2471 – 2490. 

DOI: https://doi.org/10.1021/acs.iecr.9b04531  

Lozano Santamaría, F, Macchietto, S. Integration of optimal cleaning scheduling and 

control of heat exchanger networks under fouling: MPCC solution. Computers & Chemical 

Engineering. 2019, 126, 128–146. 

DOI: https://doi.org/10.1016/j.compchemeng.2019.04.012  

Lozano Santamaría, F; Macchietto, S. Integration of Optimal Cleaning Scheduling and 

Control of Heat Exchanger Networks Undergoing Fouling: Model and Formulation. 

Industrial & Engineering Chemistry Research 2018, 57, 12842 – 12860. 

DOI: https://doi.org/10.1021/acs.iecr.8b01701  

Lozano Santamaría, F., Macchietto, S. Refinery preheat train network modelling and 

optimization: validation of surrogate model for process optimization purposes. 2020. Ready 

for submission to publication to Industrial and Engineering Chemistry Research journal. 

Lozano Santamaría, F., Macchietto, S. Optimal heat exchanger network retrofit 

including fouling dynamics and cleaning scheduling. 2020. In preparation 

Lozano Santamaría, F., Macchietto, S. Online control and cleaning scheduling of heat 

exchanger networks considering schedule stability. 2020. In preparation 
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Refereed conferences proceedings  

Lozano Santamaría, F, Macchietto, S. Online optimal cleaning scheduling and control 

of heat exchanger networks under fouling with large disturbances. In proceedings of the 30th 

European Symposium on Computer Aided Process Engineering (ESCAPE30), 24 – 27, May 

2020, Milan, Italy. Elsevier. 

Lozano Santamaría, F, Honein, E, Macchietto, S. Simultaneous optimization of retrofit, 

cleaning schedule, and control of heat exchanger networks subject to fouling. In proceedings 

of the 30th European Symposium on Computer Aided Process Engineering (ESCAPE30), 24 

– 27, May 2020, Milan, Italy. Elsevier. 

Lozano Santamaría, F, Macchietto, S. Integration of optimal cleaning scheduling and 

control for fouling mitigation in heat exchanger networks: a receding horizon approach. Heat 

exchanger fouling & cleaning conference XIII, 2 – 7 June 2019, Josefow, Poland.  

DOI: http://www.heatexchanger-fouling.com/proceedings19.htm   

Lozano Santamaría, F, Macchietto, S. Model validation for the optimization of refinery 

preheat trains under fouling. Heat exchanger fouling & cleaning conference XIII, 2 – 7 June 

2019, Josefow, Poland.  

DOI: http://www.heatexchanger-fouling.com/proceedings19.htm   

Lozano Santamaría, F; Macchietto, S. Integration of Optimal Cleaning Scheduling and 

Flow Split control for crude oil fouling mitigation in the operation of refinery heat exchanger 

networks. In M. R. Eden, M. Ierapetritou and G. P. Towler (Editors), Proceedings of the 13th 

International Symposium on Process Systems Engineering (PSE 2018), Part B, pp.1087-

1092, Elsevier  

DOI: https://doi.org/10.1016/B978-0-444-64241-7.50176-2    

Lozano Santamaría, F; Macchietto, S. Simultaneous optimal control and optimal 

scheduling of heat exchanger networks subject to fouling. 13th international conference on 

heat transfer, fluid mechanics and thermodynamics, Portoroz, Slovenia, 2017.  

DOI: http://hdl.handle.net/2263/62467  

 

 

 



340 

Conference presentations without proceedings  

Lozano Santamaría, F; Macchietto, S. Optimal cleaning scheduling and control of heat 

exchanger networks: problem formulation and solution strategy. AIChE Annual meeting 

2018. Pittsburgh, Pennsylvania, USA. 27 October – 2 November, 2018.  

Lozano Santamaría, F; Macchietto, S. Optimal cleaning scheduling and control of heat 

exchanger networks: an industrial case study. AIChE Annual meeting 2018. Pittsburgh, 

Pennsylvania, USA. 27 October – 2 November, 2018.  

Coletti, F; Lozano Santamaria, F; Diaz-Bejarano, E; Macchietto, S. Optimization of 

refinery preheat trains: Predictive maintenance and operations improvement. AIChE spring 

meeting and 14th global congress on process safety, Orlando, USA 22 – 26 April, 2018.  

Lozano Santamaría, F; Macchietto, S. Reaction engineering approach to model the 

deposition and transformation of unwanted material in heat exchanger surfaces with refinery 

applications. ChemEngDay UK 2018, Molecules to Manufacturing. Leeds, UK, 2018. 

Seminars and talks 

Lozano Santamaría, F; Macchietto, S. Online optimal cleaning scheduling and control 

of heat exchanger networks under fouling. PhD Symposium, Department of Chemical 

Engineering, Imperial College, London, UK, 1 July, 2019. 
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