9,810 research outputs found

    Contour Dynamics Methods

    Get PDF
    In an early paper on the stability of fluid layers with uniform vorticity Rayleigh (1880) remarks: "... In such cases, the velocity curve is composed of portions of straight lines which meet each other at finite angles. This state of things may be supposed to be slightly disturbed by bending the surfaces of transition, and the determination of the subsequent motion depends upon that of the form of these surfaces. For co retains its constant value throughout each layer unchanged in the absence of friction, and by a well-known theorem the whole motion depends upon [omega]." We can now recognize this as essentially the principal of contour dynamics (CD), where [omega] is the uniform vorticity. The theorem referred to is the Biot-Savart law. Nearly a century later Zabusky et al (1979) presented numerical CD calculations of nonlinear vortex patch evolution. Subsequently, owing to its compact form conferring a deceptive simplicity, CD has become a widely used method for the investigation of two-dimensional rotational flow of an incompressible inviscid fluid. The aim of this article is to survey the development, technical details, and vortex-dynamic applications of the CD method in an effort to assess its impact on our understanding of the mechanics of rotational flow in two dimensions at ultrahigh Reynolds numbers. The study of the dynamics of two- and three-dimensional vortex mechanics by computational methods has been an active research area for more than two decades. Quite apart from many practical applications in the aerodynamics of separated flows, the theoretical and numerical study of vortices in incompressible fluids has been stimulated by the idea that turbulent fluid motion may be viewed as comprising ensembles of more or less coherent laminar vortex structures that interact via relatively simple dynamics and by the appeal of the vorticity equation, which does not contain the fluid pressure. Two-dimensional vortex interactions have been perceived as supposedly relevant to the origins of coherent structures observed experimentally in mixing layers, jets, and wakes, and for models of large-scale atmospheric and oceanic turbulence. Interest has often focused on the limit of infinite Reynolds number, where in the absence of boundaries, the inviscid Euler equations are assumed to properly describe the flow dynamics. The numerous surveys of progress in the study of vorticity and the use of numerical methods applied to vortex mechanics include articles by Saffman & Baker (1979) and Saffman (1981) on inviscid vortex interactions and Aref (1983) on two-dimensional flows. Numerical methods have been surveyed by Chorin (1980), and Leonard (1980, 1985). Caflisch (1988) describes work on the mathematical aspects of the subject. Zabusky (1981), Aref (1983), and Melander et al (1987b) discuss various aspects of CD. The review of Dritschel (1989) gives emphasis to numerical issues in CD and to recent computations with contour surgery. This article is confined to a discussion of vortices on a two-dimensional surface. We generally follow Saffman & Baker (1979) in matters of definition. In two dimensions a vortex sheet is a line of discontinuity in velocity while a vortex jump is a line of discontinuity in vorticity. We shall, however, use filament to denote a two-dimensional ribbon of vorticity surrounded by fluid with vorticity of different magnitude (which may be zero), rather than the more usual three-dimensional idea of a vortex tube. The ambiguity is unfortunate but is already in the literature. Additionally, a vortex patch is a finite, singly connected area of uniform vorticity while a vortex strip is an infinite strip of uniform vorticity with finite thickness, or equivalently, an infinite filament. Contour Dynamics will refer to the numerical solution of initial value problems for piecewise constant vorticity distributions by the Lagrangian method of calculating the evolution of the vorticity jumps. Such flows are often related to corresponding solutions of the Euler equations that are steady in some translating or rotating frame of reference. These solutions will be called vortex equilibria, and the numerical technique for computing their shapes based on CD is often referred to as contour statics. The mathematical foundation for the study of vorticity was laid primarily by the well-known investigations of Helmholtz, Kelvin, J. J. Thomson, Love, and others. In our century, efforts to produce numerical simulations of flows governed by the Euler equations have utilized a variety of Eulerian, Lagrangian, and hybrid methods. Among the former are the class of spectral methods that now comprise the prevailing tool for large-scale two- and three-dimensional calculations (see Hussaini & Zang 1987). The Lagrangian methods for two-dimensional flows have been predominantly vortex tracking techniques based on the Helmholtz vorticity laws. The first initial value calculations were those of Rosenhead (193l) and Westwater (1935) who attempted to calculate vortex sheet evolution by the motion of O(10) point vortices. Subsequent efforts by Moore (1974) (see also Moore 1983, 1985) and others to produce more refined computations for vortex sheets have failed for reasons related to the tendency for initially smooth vortex sheet data to produce singularities (Moore 1979). Discrete vortex methods used to study the nonlinear dynamics of vortex patches and layers have included the evolution of assemblies of point vortices by direct summation (e.g. Acton 1976) and the cloud in cell method (Roberts & Christiansen 1972, Christiansen & Zabusky 1973, Aref & Siggia 1980, 1981). For reviews see Leonard (1980) and Aref (1983). These techniques have often been criticized for their lack of accuracy and numerical convergence and because they may be subject to grid scale dispersion. However, many qualitative vortex phenomena observed in nature and in experiments, such as amalgamation events and others still under active investigation (e.g. filamentation) were first simulated numerically with discrete vortices. The contour dynamics approach is attractive because it appears to allow direct access, at least for small times, to the inviscid dynamics for vorticity distributions smoother than those of either point vortices or vortex sheets, while at the same time enabling the mapping of the two-dimensional Euler equations to a one-dimensional Lagrangian form. In Section 2 we discuss the formulation and numerical implementation of contour dynamics for the Euler equations in two dimensions. Section 3 is concerned with applications to isolated and multiple vortex systems and to vortex layers. An attempt is made to relate this work to calculations of the relevant vortex equilibria and to results obtained with other methods. Axisymmetric contour dynamics and the treatment of the multi-layer model of quasigeostrophic flows are described in Section 4 while Section 5 is devoted to a discussion of the tendency shown by vorticity jumps to undergo the strange and subtle phenomenon of filamentation

    Structure and stability of the compressible Stuart vortex

    Get PDF
    The structure and two- and three-dimensional stability properties of a linear array of compressible Stuart vortices (CSV; Stuart 1967; Meiron et al. 2000) are investigated both analytically and numerically. The CSV is a family of steady, homentropic, two-dimensional solutions to the compressible Euler equations, parameterized by the free-stream Mach number M_∞, and the mass flux _ inside a single vortex core. Known solutions have 0 < M_∞ < 1. To investigate the normal-mode stability of the generally spatially non-uniform CSV solutions, the linear partial-differential equations describing the time evolution of small perturbations to the CSV base state are solved numerically using a normal-mode analysis in conjunction with a spectral method. The effect of increasing M_∞ on the two main classes of instabilities found by Pierrehumbert & Widnall (1982) for the incompressible limit M_∞ → 0 is studied. It is found that both two- and three-dimensional subharmonic instabilities cease to promote pairing events even at moderate M_∞. The fundamental mode becomes dominant at higher Mach numbers, although it ceases to peak strongly at a single spanwise wavenumber. We also find, over the range of ε investigated, a new instability corresponding to an instability on a parallel shear layer. The significance of these instabilities to experimental observations of growth in the compressible mixing layer is discussed. In an Appendix, we study the CSV equations when ε is small and M_∞ is finite using a perturbation expansion in powers of ε. An eigenvalue determining the structure of the perturbed vorticity and density fields is obtained from a singular Sturm–Liouville problem for the stream-function perturbation at O(ε). The resulting small-amplitude steady CSV solutions are shown to represent a bifurcation from the neutral point in the stability of a parallel shear layer with a tanh-velocity profile in a compressible inviscid perfect gas at uniform temperature

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    A fully semi-Lagrangian discretization for the 2D Navier--Stokes equations in the vorticity--streamfunction formulation

    Full text link
    A numerical method for the two-dimensional, incompressible Navier--Stokes equations in vorticity--streamfunction form is proposed, which employs semi-Lagrangian discretizations for both the advection and diffusion terms, thus achieving unconditional stability without the need to solve linear systems beyond that required by the Poisson solver for the reconstruction of the streamfunction. A description of the discretization of Dirichlet boundary conditions for the semi-Lagrangian approach to diffusion terms is also presented. Numerical experiments on classical benchmarks for incompressible flow in simple geometries validate the proposed method

    ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Get PDF
    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling

    On the existence of stationary splash singularities for the Euler equations

    Full text link
    In this paper we discuss the existence of stationary incompressible fluids with splash singularities. Specifically, we show that there are stationary solutions to the Euler equations with two fluids whose interfaces are arbitrarily close to a splash, and that there are stationary water waves with splash singularities.Comment: 19 page

    Optimal mixing enhancement

    Get PDF
    We introduce a general-purpose method for optimising the mixing rate of advective fluid flows. An existing velocity field is perturbed in a C1C^1 neighborhood to maximize the mixing rate for flows generated by velocity fields in this neighborhood. Our numerical approach is based on the infinitesimal generator of the flow and is solved by standard linear programming methods. The perturbed flow may be easily constrained to preserve the same steady state distribution as the original flow, and various natural geometric constraints can also be simply applied. The same technique can also be used to optimize the mixing rate of advection-diffusion flow models by manipulating the drift term in a small neighborhood
    corecore