928 research outputs found

    Immunity and Simplicity for Exact Counting and Other Counting Classes

    Full text link
    Ko [RAIRO 24, 1990] and Bruschi [TCS 102, 1992] showed that in some relativized world, PSPACE (in fact, ParityP) contains a set that is immune to the polynomial hierarchy (PH). In this paper, we study and settle the question of (relativized) separations with immunity for PH and the counting classes PP, C_{=}P, and ParityP in all possible pairwise combinations. Our main result is that there is an oracle A relative to which C_{=}P contains a set that is immune to BPP^{ParityP}. In particular, this C_{=}P^A set is immune to PH^{A} and ParityP^{A}. Strengthening results of Tor\'{a}n [J.ACM 38, 1991] and Green [IPL 37, 1991], we also show that, in suitable relativizations, NP contains a C_{=}P-immune set, and ParityP contains a PP^{PH}-immune set. This implies the existence of a C_{=}P^{B}-simple set for some oracle B, which extends results of Balc\'{a}zar et al. [SIAM J.Comp. 14, 1985; RAIRO 22, 1988] and provides the first example of a simple set in a class not known to be contained in PH. Our proof technique requires a circuit lower bound for ``exact counting'' that is derived from Razborov's [Mat. Zametki 41, 1987] lower bound for majority.Comment: 20 page

    A Novel Application of Boolean Functions with High Algebraic Immunity in Minimal Codes

    Full text link
    Boolean functions with high algebraic immunity are important cryptographic primitives in some stream ciphers. In this paper, two methodologies for constructing binary minimal codes from sets, Boolean functions and vectorial Boolean functions with high algebraic immunity are proposed. More precisely, a general construction of new minimal codes using minimal codes contained in Reed-Muller codes and sets without nonzero low degree annihilators is presented. The other construction allows us to yield minimal codes from certain subcodes of Reed-Muller codes and vectorial Boolean functions with high algebraic immunity. Via these general constructions, infinite families of minimal binary linear codes of dimension mm and length less than or equal to m(m+1)/2m(m+1)/2 are obtained. In addition, a lower bound on the minimum distance of the proposed minimal linear codes is established. Conjectures and open problems are also presented. The results of this paper show that Boolean functions with high algebraic immunity have nice applications in several fields such as symmetric cryptography, coding theory and secret sharing schemes

    Rotation symmetric Boolean functions---count and cryptographic properties

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1.1.137.6388Rotation symmetric (RotS) Boolean functions have been used as components of different cryptosystems. This class of Boolean functions are invariant under circular translation of indices. Using Burnsides lemma it can be seen that the number of n-variable rotation symmetric Boolean functions is 2gn, where gn = 1 nPt|n (t) 2n t , and (.) is the Euler phi-function. In this paper, we find the number of short and long cycles of elements in Fn2 having fixed weight, under the RotS action. As a consequence we obtain the number of homogeneous RotS functions having algebraic degree w. Our results make the search space of RotS functions much reduced and we successfully analyzed important cryptographic properties of such functions by executing computer programs. We study RotS bent functions up to 10 variables and observe (experimentally) that there is no homogeneous rotation symmetric bent function having degree > 2. Further, we studied the RotS functions on 5, 6, 7 variables by computer search for correlation immunity and propagation characteristics and found some functions with very good cryptographic properties which were not known earlier

    Fast algebraic immunity of Boolean functions and LCD codes

    Get PDF
    Nowadays, the resistance against algebraic attacks and fast algebraic attacks are considered as an important cryptographic property for Boolean functions used in stream ciphers. Both attacks are very powerful analysis concepts and can be applied to symmetric cryptographic algorithms used in stream ciphers. The notion of algebraic immunity has received wide attention since it is a powerful tool to measure the resistance of a Boolean function to standard algebraic attacks. Nevertheless, an algebraic tool to handle the resistance to fast algebraic attacks is not clearly identified in the literature. In the current paper, we propose a new parameter to measure the resistance of a Boolean function to fast algebraic attack. We also introduce the notion of fast immunity profile and show that it informs both on the resistance to standard and fast algebraic attacks. Further, we evaluate our parameter for two secondary constructions of Boolean functions. Moreover, A coding-theory approach to the characterization of perfect algebraic immune functions is presented. Via this characterization, infinite families of binary linear complementary dual codes (or LCD codes for short) are obtained from perfect algebraic immune functions. The binary LCD codes presented in this paper have applications in armoring implementations against so-called side-channel attacks (SCA) and fault non-invasive attacks, in addition to their applications in communication and data storage systems

    Heuristic search of (semi-)bent functions based on cellular automata

    Get PDF
    An interesting thread in the research of Boolean functions for cryptography and coding theory is the study of secondary constructions: given a known function with a good cryptographic profile, the aim is to extend it to a (usually larger) function possessing analogous properties. In this work, we continue the investigation of a secondary construction based on cellular automata (CA), focusing on the classes of bent and semi-bent functions. We prove that our construction preserves the algebraic degree of the local rule, and we narrow our attention to the subclass of quadratic functions, performing several experiments based on exhaustive combinatorial search and heuristic optimization through Evolutionary Strategies (ES). Finally, we classify the obtained results up to permutation equivalence, remarking that the number of equivalence classes that our CA-XOR construction can successfully extend grows very quickly with respect to the CA diameter

    Improved lower bound on the number of balanced symmetric functions over GF(p)

    Get PDF
    The lower bound on the number of n-variable balanced symmetric functions over finite fields GF(p) presented in {\cite{Cusick}} is improved in this paper

    Enumeration of Balanced Symmetric Functions over GF(p)

    Get PDF
    It is proved that the construction and enumeration of the number of balanced symmetric functions over GF(p) are equivalent to solving an equation system and enumerating the solutions. Furthermore, we give an lower bound on number of balanced symmetric functions over GF(p), and the lower bound provides best known results

    When a Boolean Function can be Expressed as the Sum of two Bent Functions

    Get PDF
    In this paper we study the problem that when a Boolean function can be represented as the sum of two bent functions. This problem was recently presented by N. Tokareva in studying the number of bent functions. Firstly, many functions, such as quadratic Boolean functions, Maiorana-MacFarland bent functions, partial spread functions etc, are proved to be able to be represented as the sum of two bent functions. Methods to construct such functions from low dimension ones are also introduced. N. Tokareva\u27s main hypothesis is proved for n≀6n\leq 6. Moreover, two hypotheses which are equivalent to N. Tokareva\u27s main hypothesis are presented. These hypotheses may lead to new ideas or methods to solve this problem. At last, necessary and sufficient conditions on the problem when the sum of several bent functions is again a bent function are given
    • 

    corecore