12,290 research outputs found

    Affine buildings for dihedral groups

    Full text link
    We construct rank 2 thick nondiscrete affine buildings associated with an arbitrary finite dihedral group.Comment: 40 pages, 10 figure

    Efficient Computation of Multiple Density-Based Clustering Hierarchies

    Full text link
    HDBSCAN*, a state-of-the-art density-based hierarchical clustering method, produces a hierarchical organization of clusters in a dataset w.r.t. a parameter mpts. While the performance of HDBSCAN* is robust w.r.t. mpts in the sense that a small change in mpts typically leads to only a small or no change in the clustering structure, choosing a "good" mpts value can be challenging: depending on the data distribution, a high or low value for mpts may be more appropriate, and certain data clusters may reveal themselves at different values of mpts. To explore results for a range of mpts values, however, one has to run HDBSCAN* for each value in the range independently, which is computationally inefficient. In this paper, we propose an efficient approach to compute all HDBSCAN* hierarchies for a range of mpts values by replacing the graph used by HDBSCAN* with a much smaller graph that is guaranteed to contain the required information. An extensive experimental evaluation shows that with our approach one can obtain over one hundred hierarchies for the computational cost equivalent to running HDBSCAN* about 2 times.Comment: A short version of this paper appears at IEEE ICDM 2017. Corrected typos. Revised abstrac

    Measuring relative opinion from location-based social media: A case study of the 2016 U.S. presidential election

    Get PDF
    Social media has become an emerging alternative to opinion polls for public opinion collection, while it is still posing many challenges as a passive data source, such as structurelessness, quantifiability, and representativeness. Social media data with geotags provide new opportunities to unveil the geographic locations of users expressing their opinions. This paper aims to answer two questions: 1) whether quantifiable measurement of public opinion can be obtained from social media and 2) whether it can produce better or complementary measures compared to opinion polls. This research proposes a novel approach to measure the relative opinion of Twitter users towards public issues in order to accommodate more complex opinion structures and take advantage of the geography pertaining to the public issues. To ensure that this new measure is technically feasible, a modeling framework is developed including building a training dataset by adopting a state-of-the-art approach and devising a new deep learning method called Opinion-Oriented Word Embedding. With a case study of the tweets selected for the 2016 U.S. presidential election, we demonstrate the predictive superiority of our relative opinion approach and we show how it can aid visual analytics and support opinion predictions. Although the relative opinion measure is proved to be more robust compared to polling, our study also suggests that the former can advantageously complement the later in opinion prediction

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field
    • …
    corecore