14 research outputs found

    3D Model Assisted Image Segmentation

    Get PDF
    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for proces

    3D Object Class Detection in the Wild

    Full text link
    Object class detection has been a synonym for 2D bounding box localization for the longest time, fueled by the success of powerful statistical learning techniques, combined with robust image representations. Only recently, there has been a growing interest in revisiting the promise of computer vision from the early days: to precisely delineate the contents of a visual scene, object by object, in 3D. In this paper, we draw from recent advances in object detection and 2D-3D object lifting in order to design an object class detector that is particularly tailored towards 3D object class detection. Our 3D object class detection method consists of several stages gradually enriching the object detection output with object viewpoint, keypoints and 3D shape estimates. Following careful design, in each stage it constantly improves the performance and achieves state-ofthe-art performance in simultaneous 2D bounding box and viewpoint estimation on the challenging Pascal3D+ dataset

    Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

    Full text link
    While the majority of today's object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we address this issue from the perspective of transfer learning, and design an object class model that explicitly leverages correlations between visual features. Specifically, our model represents prior distributions over permissible multi-view detectors in a parametric way -- the priors are learned once from training data of a source object class, and can later be used to facilitate the learning of a detector for a target class. As we show in our experiments, this transfer is not only beneficial for detectors based on basic-level category representations, but also enables the robust learning of detectors that represent classes at finer levels of granularity, where training data is typically even scarcer and more unbalanced. As a result, we report largely improved performance in simultaneous 2D object localization and viewpoint estimation on a recent dataset of challenging street scenes.Comment: 13 pages, 7 figures, 4 tables, International Conference on Learning Representations 201

    3D Model Assisted Image Segmentation

    Get PDF
    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for process control work in a manufacturing plant and identifying parts of a car from a photo for automatic damage detection. Unfortunately most of an object’s parts of interest in such applications share the same pixel characteristics, having similar colour and texture. This makes segmenting the object into its components a non-trivial task for conventional image segmentation algorithms. In this paper, we propose a “Model Assisted Segmentation ” method to tackle this problem. A 3D model of the object is registered over the given image by optimising a novel gradient based loss function. This registration obtains the full 3D pose from an image of the object. The image can have an arbitrary view of the object and is not limited to a particular set of views. The segmentation is subsequently performed using a level-set based method, using the projected contours of the registered 3D model as initialisation curves. The method is fully automatic and requires no user interaction. Also, the system does not require any prior training. We present our results on photographs of a real car

    Image-based human pose estimation

    Get PDF

    3D Object Representations for Recognition.

    Full text link
    Object recognition from images is a longstanding and challenging problem in computer vision. The main challenge is that the appearance of objects in images is affected by a number of factors, such as illumination, scale, camera viewpoint, intra-class variability, occlusion, truncation, and so on. How to handle all these factors in object recognition is still an open problem. In this dissertation, I present my efforts in building 3D object representations for object recognition. Compared to 2D appearance based object representations, 3D object representations can capture the 3D nature of objects and better handle viewpoint variation, occlusion and truncation in object recognition. I introduce three new 3D object representations: the 3D aspect part representation, the 3D aspectlet representation and the 3D voxel pattern representation. These representations are built to handle different challenging factors in object recognition. The 3D aspect part representation is able to capture the appearance change of object categories due to viewpoint transformation. The 3D aspectlet representation and the 3D voxel pattern representation are designed to handle occlusions between objects in addition to viewpoint change. Based on these representations, we propose new object recognition methods and conduct experiments on benchmark datasets to verify the advantages of our methods. Furthermore, we introduce, PASCAL3D+, a new large scale dataset for 3D object recognition by aligning objects in images with 3D CAD models. We also propose two novel methods to tackle object co-detection and multiview object tracking using our 3D aspect part representation, and a novel Convolutional Neural Network-based approach for object detection using our 3D voxel pattern representation. In order to track multiple objects in videos, we introduce a new online multi-object tracking framework based on Markov Decision Processes. Lastly, I conclude the dissertation and discuss future steps for 3D object recognition.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120836/1/yuxiang_1.pd
    corecore