9,590 research outputs found

    Fault-Tolerant Detection Systems on the King's Grid

    Full text link
    A detection system, modeled in a graph, uses "detectors" on a subset of vertices to uniquely identify an "intruder" at any vertex. We consider two types of detection systems: open-locating-dominating (OLD) sets and identifying codes (ICs). An OLD set gives each vertex a unique, non-empty open neighborhood of detectors, while an IC provides a unique, non-empty closed neighborhood of detectors. We explore their fault-tolerant variants: redundant OLD (RED:OLD) sets and redundant ICs (RED:ICs), which ensure that removing/disabling at most one detector guarantees the properties of OLD sets and ICs, respectively. This paper focuses on constructing optimal RED:OLD sets and RED:ICs on the infinite king's grid, and presents the proof for the bounds on their minimum densities; [3/10, 1/3] for RED:OLD sets and [3/11, 1/3] for RED:ICs

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure

    Automated Discharging Arguments for Density Problems in Grids

    Full text link
    Discharging arguments demonstrate a connection between local structure and global averages. This makes it an effective tool for proving lower bounds on the density of special sets in infinite grids. However, the minimum density of an identifying code in the hexagonal grid remains open, with an upper bound of 370.428571\frac{3}{7} \approx 0.428571 and a lower bound of 5120.416666\frac{5}{12}\approx 0.416666. We present a new, experimental framework for producing discharging arguments using an algorithm. This algorithm replaces the lengthy case analysis of human-written discharging arguments with a linear program that produces the best possible lower bound using the specified set of discharging rules. We use this framework to present a lower bound of 23550.418181\frac{23}{55} \approx 0.418181 on the density of an identifying code in the hexagonal grid, and also find several sharp lower bounds for variations on identifying codes in the hexagonal, square, and triangular grids.Comment: This is an extended abstract, with 10 pages, 2 appendices, 5 tables, and 2 figure

    Optimal Index Codes via a Duality between Index Coding and Network Coding

    Full text link
    In Index Coding, the goal is to use a broadcast channel as efficiently as possible to communicate information from a source to multiple receivers which can possess some of the information symbols at the source as side-information. In this work, we present a duality relationship between index coding (IC) and multiple-unicast network coding (NC). It is known that the IC problem can be represented using a side-information graph GG (with number of vertices nn equal to the number of source symbols). The size of the maximum acyclic induced subgraph, denoted by MAISMAIS is a lower bound on the \textit{broadcast rate}. For IC problems with MAIS=n1MAIS=n-1 and MAIS=n2MAIS=n-2, prior work has shown that binary (over F2{\mathbb F}_2) linear index codes achieve the MAISMAIS lower bound for the broadcast rate and thus are optimal. In this work, we use the the duality relationship between NC and IC to show that for a class of IC problems with MAIS=n3MAIS=n-3, binary linear index codes achieve the MAISMAIS lower bound on the broadcast rate. In contrast, it is known that there exists IC problems with MAIS=n3MAIS=n-3 and optimal broadcast rate strictly greater than MAISMAIS

    Vertex identifying codes for the n-dimensional lattice

    Full text link
    An rr-identifying code on a graph GG is a set CV(G)C\subset V(G) such that for every vertex in V(G)V(G), the intersection of the radius-rr closed neighborhood with CC is nonempty and different. Here, we provide an overview on codes for the nn-dimensional lattice, discussing the case of 1-identifying codes, constructing a sparse code for the 4-dimensional lattice as well as showing that for fixed nn, the minimum density of an rr-identifying code is Θ(1/rn1)\Theta(1/r^{n-1}).Comment: 10p

    Centroidal bases in graphs

    Get PDF
    We introduce the notion of a centroidal locating set of a graph GG, that is, a set LL of vertices such that all vertices in GG are uniquely determined by their relative distances to the vertices of LL. A centroidal locating set of GG of minimum size is called a centroidal basis, and its size is the centroidal dimension CD(G)CD(G). This notion, which is related to previous concepts, gives a new way of identifying the vertices of a graph. The centroidal dimension of a graph GG is lower- and upper-bounded by the metric dimension and twice the location-domination number of GG, respectively. The latter two parameters are standard and well-studied notions in the field of graph identification. We show that for any graph GG with nn vertices and maximum degree at least~2, (1+o(1))lnnlnlnnCD(G)n1(1+o(1))\frac{\ln n}{\ln\ln n}\leq CD(G) \leq n-1. We discuss the tightness of these bounds and in particular, we characterize the set of graphs reaching the upper bound. We then show that for graphs in which every pair of vertices is connected via a bounded number of paths, CD(G)=Ω(E(G))CD(G)=\Omega\left(\sqrt{|E(G)|}\right), the bound being tight for paths and cycles. We finally investigate the computational complexity of determining CD(G)CD(G) for an input graph GG, showing that the problem is hard and cannot even be approximated efficiently up to a factor of o(logn)o(\log n). We also give an O(nlnn)O\left(\sqrt{n\ln n}\right)-approximation algorithm
    corecore