3 research outputs found

    Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation

    Full text link
    [EN] In this paper, we deal with uncertainty quantification for the random Legendre differential equation, with input coefficient A and initial conditions X-0 and X-1. In a previous study (Calbo et al. in Comput Math Appl 61(9):2782-2792, 2011), a mean square convergent power series solution on (-1/e, 1/e) was constructed, under the assumptions of mean fourth integrability of X-0 and X-1, independence, and at most exponential growth of the absolute moments of A. In this paper, we relax these conditions to construct an L-p solution (1 <= p <= infinity) to the random Legendre differential equation on the whole domain (-1, 1), as in its deterministic counterpart. Our hypotheses assume no independence and less integrability of X-0 and X-1. Moreover, the growth condition on the moments of A is characterized by the boundedness of A, which simplifies the proofs significantly. We also provide approximations of the expectation and variance of the response process. The numerical experiments show the wide applicability of our findings. A comparison with Monte Carlo simulations and gPC expansions is performed.This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation. Mediterranean Journal of Mathematics. 16(3):1-14. https://doi.org/10.1007/s00009-019-1338-6S114163Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)Strand, J.L.: Random ordinary differential equations. J. Differ. Equ. 7(3), 538–553 (1970)Smith, R.C.: Uncertainty quantification. Theory, implementation, and application. SIAM Comput. Sci. Eng. New York (2013) ISBN 9781611973211Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin (2013)Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., Villanueva, R.-J.: Solving continuous models with dependent uncertainty: a computational approach. Abstr. Appl. Anal. 2013, 983839 (2013). https://doi.org/10.1155/2013/983839Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010)El-Tawil, M.A.: The approximate solutions of some stochastic differential equations using transformations. Appl. Math. Comput. 164(1), 167–178 (2005)Cortés, J.-C., Sevilla-Peris, P., Jódar, L.: Constructing approximate diffusion processes with uncertain data. Math. Comput. Simul. 73(1–4), 125–132 (2006)Cortés, J.-C., Jódar, L., Villafuerte, L., Villanueva, R.-J.: Computing mean square approximations of random diffusion models with source term. Math. Comput. Simul. 76(1–3), 44–48 (2007)Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011)Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015)Nouri, N.: Study on stochastic differential equations via modified Adomian decomposition method. U.P.B. Sci. Bull. Ser. A 78(1), 81–90 (2016)Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 623, 1–19 (2015)Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016)Soheili, Ali R, Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015)Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)Villafuerte, L., Braumann, C.A., Cortés, J.-C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010)Licea, J., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013)Cortés, J.-C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010)Calbo, G., Cortés, J.-C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011)Calbo, G., Cortés, J.-C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011)Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017)Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Roman. Rep. Phys. 65(2), 350–362 (2013)Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011)Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016)Norman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, Oxford (1994)Ernst, O.G., Mugler, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM Math. Modell. Num. Anal. 46(2), 317–339 (2012)Shi, W., Zhang, C.: Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Appl. Num. Math. 62(12), 1954–1964 (2012)Calatayud, J., Cortés, J.-C., Jornet, M.: On the convergence of adaptive gPC for non-linear random difference equations: theoretical analysis and some practical recommendations. J. Nonlinear Sci. Appl. 11(9), 1077–1084 (2018

    Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme

    Full text link
    [EN] We study the random heat partial differential equation on a bounded domain assuming that the diffusion coefficient and the boundary conditions are random variables, and the initial condition is a stochastic process. Under general conditions, this stochastic system possesses a unique solution stochastic process in the almost sure and mean square senses. To quantify the uncertainty for this solution process, the computation of the probability density function is a major goal. By using a random finite difference scheme, we approximate the stochastic solution at each point by a sequence of random variables, whose probability density functions are computable, i.e., we construct a sequence of approximating density functions. We include numerical experiments to illustrate the applicability of our method.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. The co-author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud, J.; Cortés, J.; Díaz, J.; Jornet, M. (2020). Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme. Applied Numerical Mathematics. 151:413-424. https://doi.org/10.1016/j.apnum.2020.01.012S413424151Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving random mixed heat problems: A random integral transform approach. Journal of Computational and Applied Mathematics, 291, 5-19. doi:10.1016/j.cam.2014.09.021Cortés, J. C., Sevilla-Peris, P., & Jódar, L. (2005). Analytic-numerical approximating processes of diffusion equation with data uncertainty. Computers & Mathematics with Applications, 49(7-8), 1255-1266. doi:10.1016/j.camwa.2004.05.015Cortés, J. C., Sevilla-Peris, P., & Jódar, L. (2006). Constructing approximate diffusion processes with uncertain data. Mathematics and Computers in Simulation, 73(1-4), 125-132. doi:10.1016/j.matcom.2006.06.009Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011Debussche, A., & Printems, J. (2008). Weak order for the discretization of the stochastic heat equation. Mathematics of Computation, 78(266), 845-863. doi:10.1090/s0025-5718-08-02184-4Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Geissert, M., Kovács, M., & Larsson, S. (2009). Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT Numerical Mathematics, 49(2), 343-356. doi:10.1007/s10543-009-0227-yHeydari, M. H., Hooshmandasl, M. R., Barid Loghmani, G., & Cattani, C. (2015). Wavelets Galerkin method for solving stochastic heat equation. International Journal of Computer Mathematics, 93(9), 1579-1596. doi:10.1080/00207160.2015.1067311Hien, T. D., & Kleiber, M. (1997). Stochastic finite element modelling in linear transient heat transfer. Computer Methods in Applied Mechanics and Engineering, 144(1-2), 111-124. doi:10.1016/s0045-7825(96)01168-1Lord, G. J., & Tambue, A. (2019). Stochastic exponential integrators for a finite element discretisation of SPDEs with additive noise. Applied Numerical Mathematics, 136, 163-182. doi:10.1016/j.apnum.2018.10.008Lord, G. J., Powell, C. E., & Shardlow, T. (2009). An Introduction to Computational Stochastic PDEs. doi:10.1017/cbo9781139017329Nouri, K., Ranjbar, H., & Torkzadeh, L. (2019). Modified stochastic theta methods by ODEs solvers for stochastic differential equations. Communications in Nonlinear Science and Numerical Simulation, 68, 336-346. doi:10.1016/j.cnsns.2018.08.013Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6Xiu, D., & Karniadakis, G. E. (2003). A new stochastic approach to transient heat conduction modeling with uncertainty. International Journal of Heat and Mass Transfer, 46(24), 4681-4693. doi:10.1016/s0017-9310(03)00299-0Xu, Z. (2014). A stochastic analysis of steady and transient heat conduction in random media using a homogenization approach. Applied Mathematical Modelling, 38(13), 3233-3243. doi:10.1016/j.apm.2013.11.04
    corecore