51,329 research outputs found

    Results in lattices, ortholattices, and graphs

    Get PDF
    This dissertation contains two parts: lattice theory and graph theory. In the lattice theory part, we have two main subjects. First, the class of all distributive lattices is one of the most familiar classes of lattices. We introduce π-versions of five familiar equivalent conditions for distributivity by applying the various conditions to 3-element antichains only. We prove that they are inequivalent concepts, and characterize them via exclusion systems. A lattice L satisfies D0π, if a ✶ (b ✶ c) ≤ (a ✶ b) ✶ c for all 3-element antichains { a, b, c}. We consider a congruence relation ∼ whose blocks are the maximal autonomous chains and define the order- skeleton of a lattice L to be L˜ := L/∼. We prove that the following are equivalent for a lattice L: (i) L satisfies D0π, ( ii) L˜ satisfies any of the five π-versions of distributivity, (iii) the order-skeleton L˜ is distributive. Second, the symmetric difference notion for Boolean algebra is well-known. Matoušek introduced the orthocomplemented difference lattices (ODLs), which are ortholattices associated with a symmetric difference. He proved that the class of ODLs forms a variety. We focus on the class of all ODLs that are set-representable and prove that this class is not locally finite by constructing an infinite set-representable ODL that is generated by three elements. In the graph theory part, we prove generating theorems and splitter theorems for 5-regular graphs. A generating theorem for a certain class of graphs tells us how to generate all graphs in this class from a few graphs by using some graph operations. A splitter theorem tells us how to build up any graph G from any graph H if G contains H. In this dissertation, we find generating theorems for 5-regular graphs and 5-regular loopless graphs for various edge-connectivities. We also find splitter theorems for 5-regular graphs for various edge-connectivities

    On string topology of classifying spaces

    Get PDF
    Let G be a compact Lie group. By work of Chataur and Menichi, the homology of the space of free loops in the classifying space of G is known to be the value on the circle in a homological conformal field theory. This means in particular that it admits operations parameterized by homology classes of classifying spaces of diffeomorphism groups of surfaces. Here we present a radical extension of this result, giving a new construction in which diffeomorphisms are replaced with homotopy equivalences, and surfaces with boundary are replaced with arbitrary spaces homotopy equivalent to finite graphs. The result is a novel kind of field theory which is related to both the diffeomorphism groups of surfaces and the automorphism groups of free groups with boundaries. Our work shows that the algebraic structures in string topology of classifying spaces can be brought into line with, and in fact far exceed, those available in string topology of manifolds. For simplicity, we restrict to the characteristic 2 case. The generalization to arbitrary characteristic will be addressed in a subsequent paper.Comment: 93 pages; v4: minor changes; to appear in Advances in Mathematic

    Universal graphs and universal permutations

    Full text link
    Let XX be a family of graphs and XnX_n the set of nn-vertex graphs in XX. A graph U(n)U^{(n)} containing all graphs from XnX_n as induced subgraphs is called nn-universal for XX. Moreover, we say that U(n)U^{(n)} is a proper nn-universal graph for XX if it belongs to XX. In the present paper, we construct a proper nn-universal graph for the class of split permutation graphs. Our solution includes two ingredients: a proper universal 321-avoiding permutation and a bijection between 321-avoiding permutations and symmetric split permutation graphs. The nn-universal split permutation graph constructed in this paper has 4n34n^3 vertices, which means that this construction is order-optimal.Comment: To appear in Discrete Mathematics, Algorithms and Application

    Inverse monoids of partial graph automorphisms

    Full text link
    A partial automorphism of a finite graph is an isomorphism between its vertex induced subgraphs. The set of all partial automorphisms of a given finite graph forms an inverse monoid under composition (of partial maps). We describe the algebraic structure of such inverse monoids by the means of the standard tools of inverse semigroup theory, namely Green's relations and some properties of the natural partial order, and give a characterization of inverse monoids which arise as inverse monoids of partial graph automorphisms. We extend our results to digraphs and edge-colored digraphs as well

    Pattern vectors from algebraic graph theory

    Get PDF
    Graphstructures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low- dimensional space using a number of alternative strategies, including principal components analysis ( PCA), multidimensional scaling ( MDS), and locality preserving projection ( LPP). Experimentally, we demonstrate that the embeddings result in well- defined graph clusters. Our experiments with the spectral representation involve both synthetic and real- world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real- world experiments show that the method can be used to locate clusters of graphs
    corecore