Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2011

Results in lattices, ortholattices, and graphs

Jianning Su

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations
b Part of the Applied Mathematics Commons, and the Other Mathematics Commons



https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.latech.edu%2Fdissertations%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.latech.edu%2Fdissertations%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages

UMI Number: 3459739

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3459739
Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



RESULTS IN LATTICES, ORTHOLATTICES, AND GRAPHS
by

Jianning Su, B. S., M. S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

May 2011



LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

4/18/2011

Date

We hereby recommend that the dissertation prepared under our supervision

by Jianning Su

entitled

Results in lattices, ortholattices, and graphs

be accepted in  partial fulfillment of the requirements for the Degree of

Doctor of Philosophy
[{ /@ é/Z(sor of Disseytatign Research

Head of Department
Computational Analysis and Modeling
Department

Recommendation concurred in:

/% Razre 5194)

K o, 4o
m/ @ G-zc-f Advisory Committee
Ho &I

Approved:

Approved:

}
[

‘M~
“Director of Graduate Studies

Dean of the Col]%

Dean of the Graduatg School

GS Form 13a
(6/07)



ABSTRACT

This dissertation contains two parts: lattice theory and graph theory.

In the lattice theory part, we have two main subjects. First, the class of all
distributive lattices is one of the most familiar classes of lattices. We introduce
“m-versions” of five familiar equivalent conditions for distributivity by applying the
various conditions to 3-element antichains only. We prove that they are inequivalent
concepts, and characterize them via exclusion systems. A lattice L satisfies Dy, if
aA(bVe) < (anb)Vefor all 3-element antichains {a, b, c}. We consider a congruence
relation ~ whose blocks are the maximal autonomous chains and define the order-
skeleton of a lattice L to be L := L /~. We prove that the following are equivalent for a
lattice L: (i) L satisfies Doy, (i3) L satisfies any of the five m-versions of distributivity,
(#3t) the order-skeleton L is distributive.

Second, the symmetric difference notion for Boolean algebra is well-known. Ma-
tousek introduced the orthocomplemented difference lattices (ODLs), which are or-
tholattices associated with a symmetric difference. He proved that the class of ODLs
forms a variety. We focus on the class of all ODLs that are set-representable and
prove that this class is not locally finite by constructing an infinite set-representable
ODL that is generated by three elements.

In the graph theory part, we prove generating theorems and splitter theorems for

5-regular graphs. A generating theorem for a certain class of graphs tells us how to

iil



v
generate all graphs in this class from a few graphs by using some graph operations.
A splitter theorem tells us how to build up any graph G from any graph H if G
“contains” H. In this dissertation, we find generating theorems for 5-regular graphs
and 5-regular loopless graphs for various edge-connectivities. We also find splitter

theorems for 5-regular graphs for various edge-connectivities.
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LATTICE THEORY



CHAPTER 1

REVIEW OF LATTICES

1.1 Posets and Lattices

In this chapter, we provide some basic concepts and results on lattices and dis-
tributive lattices.

Definition 1.1.1. Let P be a set. A partial order on P is a binary relation < on P
such that, for all z,y,z € P,

(1) z < z (reflexivity),

(i7) <y and y < z imply z = y (antisymmetry),
(171) = <y and y < z imply z < z (transitivity).
The pair (P; <) is called a partially ordered set (or poset); when there is no ambiguity,
we sometimes refer to it as P.

Let P be a poset with z,y € P. If x < y or y < x, then we say that x and y
are comparable, denoted by x [ y; otherwise, z and y are parallel (or incomparable),
denoted by z || y. A poset P is a chain if every two elements of P are comparable.
A poset P is an antichain if every two distinct elements of P are parallel.

Given two posets P and ), a mapping ¢ from P onto @) is an (order-)isomorphism
if 2 < yin P if and only if ¢(z) < ¢(y) in Q. Two posets P and @ are (order-)

isomorphic, denoted by P = @, if there exists an isomorphism from P onto Q).
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We use the symbol “:=" to mean “equals by definition.” Given any poset (P; <)
we can form a new poset (P*; <*), called the dual of (P; <), by defining P* := P and
xz <* y holds in P* if and only if y < z holds in P. A poset (P; é) is self-dual if P is
isomorphic to its dual P*. To each statement T about the poset P there corresponds
a dual statement T* about the poset P* obtained by reversing the ordering in S.
Given a statement about posets that is true in all posets, the dual statement is also
true in all posets. This is the Duality Principle for Posets.

In this dissertation, we write A C B to mean that A is a subset of B; we write
AC Btomean A C B and A # B. We use N for the positive integers {1,2,3,...}
and Ny for the non-negative integers {0,1,2,...}. Given a set S, we use #S for the
cardinality of S.

Let P be a poset and let S € P. An element x € P is an upper bound of S if
s < xforall s € S. An element z € P is the least upper bound of S, or supremum
of S (supS) if z is an upper bound of S, and s < y for all s € S implies z < y.
Dually, we can define what it means for z to be a lower bound of S, and for z to be
the greatest lower bound of S, also called the infimum of S (inf S). If sup S (resp.,
inf S) exists, then we denote it by \/ S (resp., A\ S) and call it the join (resp., meet)
of S. We sometimes write \/, S (resp., Ap S) to emphasize that \/ S (resp., A S) is
calculated in P. For z,y € P, if sup{z,y} (resp., inf{z, y}) exists, then we denote it
by z Vy (resp., x A y) and call it the join (resp., meet) of z and y.

Definition 1.1.2. Let L be a non-empty poset. If both z vV y and z A y exist for all
z,y € L, then L is called a lattice. If both \/ S and A S exist for all S C L, then L

is called a complete lattice. A lattice L is usually expressed as (L;V,A). A lattice L
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has a top element (resp., bottom element), usually denoted by 1 (resp., 0), if x < 1
(resp., 0 < z) for all x € L. A lattice L with top and bottom elements is called a
bounded lattice. A nonempty subset S of a lattice L is called a sublattice if x Vy € S
and x Ay € Sforall z,y € S.

An n-ary operation on a set A is a function that takes n elements of A and
returns a single element of A. A nullary operation is a O-ary operation. A unary
operation is a l-ary operation. A binary operation is a 2-ary operation. An operation
is an n-ary operation for some n € Ng. An algebra (or algebraic structure) is a
tuple (A; F) where A is a set and F is a collection of operations on A. If F is
finite, say F = {f1, fa,..., fe} for some k € N, then we write (4; fi, fo, ..., fx} for
(A; F). We say that (A; f1, f2, ..., fx) is an algebra of type (ny,ny, ..., ny) if, for each
1€ {1,2,...,k}, f, is an n;-ary operation.

Let (A; F4) and (B;Fg) be two algebras of the same type. Then (B;Fg) is
a subalgebra of (A; F4) if B C A and every operation in Fp is the corresponding
operation in F4 restricted to B. Note that the intersection of a family of subalgebras
is a subalgebra. Hence, for each non-empty subset S of an algebra A, there exists a
smallest subalgebra of A containing S; we call this the subalgebra of A generated by
S, denoted by ['(S). If S = {a, b, c}, then we write ['{a, b, c} for I'(S). An algebra A
is 3-generated if A is generated by a 3-element subset of A.

A lattice L can be defined alternatively as an algebra (L;V,A) of type (2,2)
satisfying

(1) xVy=yVa, zANy=yAz (commutative laws),

(¢i) (xVy)Vz=zV(yVz),(xAy)Az=2zA(yA z) (associative laws),



(i11) V= z, x Az = z (idempotent laws), and
(iv) eV (xANy)==x, x ANz Vy) =z (absorption laws).

Given a lattice (L;V, A), one can define a partial order on L by setting z < y if
and only if z =z Ay forall z,y € L.

Note that the dual of a statement about lattices phrased in terms of vV and A is
obtained simply by interchanging the symbols V and A. This is called the Duality
Principle for Lattices.

Let L and M be two lattices. A mapping ¢ : L — M is said to be a {lattice-)
homomorphism if, for all z,y € L, ¢(z Vy) = ¢(z) vV ¢(y) and ¢(x Ay) = ¢(x) A d(y).
A bijective homomorphism is called a (lattice-)isomorphism. Two lattices L and M
are isomorphic, denoted by L = M, if there exists an isomorphism from L onto Af.
An injective homomorphism is called a (lattice-)embedding. A lattice M is (lattice-)
embeddable in a lattice L if there exists an embedding from L into M.

Let L and M be two lattices. The cartesian product of L apd M is (L x M;V,A)
where V and A are defined by (a,b) V (¢,d) := (a V ¢,b VvV d) and (a,b) A (¢, d) =
(anc,bAd) for all a,c € L and b, ¢ € M. Note that the cartesian product is a lattice.
We denote this lattice by L x M when there is no ambiguity. In this dissertation, we
write n for an n-element chain. For example, 3 is a 3-element chain. Given a lattice
L and an integer n > 1, we denote by L™ the cartesian product of n copies of L. For

example, 2° is an 8-element lattices.



1.2 Distributive Lattices

Distributive lattices are perhaps the most familiar class of lattices. They are
ubiquitous but rather specific structures.

Definition 1.2.1. Let L be a lattice with a,b,c € L. We define
M(a,b,c) tomean a A (bV (aAc))=(aAb)V(aAc), and
M*(a,b,c) tomean aV (bA(aVc))=(aVb)A(aVc).

A lattice L is modular if M(a,b,c) holds for all a,b,c € L.

The prototypical non-modular example is the lattice N5 which is presented in
Figure 1.1. Dedekind characterized modular lattices by the following theorem.
Theorem 1.2.2 (Dedekind). A lattice L is non-modular if and only if N5 can be
embedded into L.

Theorem 1.2.3. Let L be a lattice. The following statements are equivalent.
(1) L is modular, v.e., M(a,b,c) holds for all a,b,c € L.
(11) M*(a,b,c) holds for all a,b,c € L.
Proof. Note that Nj is self-dual, so that the theorem follows from Theorem 1.2.2 and
its dual statement. O
Definition 1.2.4. Let L be a lattice with a,b,¢c € L. We define
D(a,b,c) tomean a A (bVc)=(anb)V(aAc),
D*(a,b,c) tomean aV (bAc) = (aVb)A(aVc),
Dp(a,b,c) tomean (a Ab)V(bAc)V(cAa)=(aVb) A(bVc)A(cVa), and
Dola,b,c) tomean a A (bVc) < (anbd) Ve

A lattice L is distributive if D(a, b, c) holds for all a,b,c € L.
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The prototypical non-distributive examples are M3 and N5 which are presented

in Figure 1.1. Birkhoff characterized distributive lattices by the following theorem.

Ms Ns

Figure 1.1: Two standard non-distributive lattices

Theorem 1.2.5 (Birkhoff). A lattice L is non-distributive if and only if M3 or Nj
can be embedded into L.
Theorem 1.2.6. Let L be a lattice. The following statements are equivalent.
(1) L is dz’stribzlttz've, i.e., D(a,b,c) holds for all a,b,c € L.
(1) D*(a,b,c) holds for all a,b,c € L.
(111) Dy(a, b, c) holds for all a,b,c € L.
(iv) Dola,b,c) holds for all a,b,c € L.
Proof. (i) < (ii) Since M3 and Ny are self-dual, this follows immediately from The-
orem 1.2.5 and its dual statement.
(1) = (1i1) Suppose that D{(a, b, c) holds for all a, b, ¢ € L. Hence D*(a,b, c) holds
forall a,b,c € L. Let d,e, f € L. We have that
(dAe)V(enf)V(FAD) = (en(dV V(A S)
=(evV@Af)A{Vf)=(dVe)A(eV f)A(fVd).
(11) = (wv) Suppose that D,,(a,b,c) holds for all a,b,c € L. Let d,e, f € L.

Then, dA(eV f) < (dVe)AdV f)n(eVf)={dne)V(dNf)V(enf) < (dAe)V f.
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(1v) = (1) Suppose that Dg(a,b,c) holds for all a,b,¢c € L. Let d,e, f € L. Since
dhe<dA(eV fand dA f<dA(eV f), wehave (dANe)V(dAf)<dA(eV f).
We also have that
dN(eV fy=dAn{dN(fVe)<dA((dNf)Ve)
=dAN(eV{dNf)<(dAe)V(dA ).

Thus, dA(eV f)=(dAe)V(dAf). O



CHAPTER 2

ORDER-SKELETONS

2.1 Order-skeleton on a Lattice

Let L be a lattice and let a,b € L. As usual, we write [a,b] :={z € L | a < 2 < b}
and [a,b) := {z € L | a < z < b}. We allow for the possibility that a € b, in which
case, of course, both sets are empty. Define n{a) := {b € L | b || a}. We denote the
set of antichains in L by 7, and the set of n-element antichains in L by 7}, where
n > 1. The following definition plays an important role.

a ~ b means a }f b and 7w(a) = 7(c) for all ¢ € [a,b] U [b, al.

Following [32], we define a non-empty subset S of L to be (order-)autonomous in
case, for all p ¢ S, (1) if there is an s € S with s < p, then z < p for all z € S, and
(2) if there is an s € S with p < s, then p < z for all z € S.

All the results in this section can be found in [12, 34]. We present the proofs for
completeness.

Lemma 2.1.1. Let L be a lattice with a,b € L. The following are equivalent.
(1) a~b.
(1) [a,b] or [b,a] s a chain and 7(a) = w(b).

(1) [a,b] or [b,a] 15 an autonomous chan.
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Proof (1) = (1) We may assume that a ~ b and a < b We need only to show that
la,b] 18 a chain  For any ¢,d € [a,b], we have 7(c) = m(a) = 7(d), so that c }f d It
follows that [a, b] 1s a chain

(11) = (m1) Since m(a) = m(b), we have a }f b We may assume a < b, so that [a, 8]
1s a chain Let ¢ € [a,b] and p ¢ [a,b] If p < ¢ < b, then since 7(a) = 7(b), we have
p ¥ a, so that p < a, thus, p < z for all € [a,b] Dually, 1if ¢ < p, then z < p for all
z € [a,b] Therefore, [a,b] 1s autonomous

(17) = () We may assume that [a, b] 1s an autonomous chain Let ¢ € [q, b] and
z ¢ [a,c] Notethat, z < aif and only if z < ¢, and @ < z 1f and only if ¢ <z Thus,
z || a1if and only if ¢ || ¢ It follows that m(a) = 7(c), so that a ~ b d

Given a lattice L and a binary relation R on L, then R 1s reflexwve if xRz for all
z € L, R1s symmetric if x Ry implies yRz for all z,y € L, R 1s transitwe if Ry and
yRz imply xRz for all z,y,z € L A binary relation on a lattice L 1s an equivalence
relation 1if 1t 18 reflexive, symmetric, and transitive An equivalence relation on a
lattice L 18 a congruence relation if, for any a,b,c,d € L, a 8 b and ¢ 0 d imply that
(ave)8(bvd) and (anc) 8 (bAd)
Lemma 2.1.2. Let L be a lattice and 0 be an equwvalence relation on L Then 0
18 a congruence relation on L if and only of, for any a,b,c € L, a 8 b wmplies that
(ave)y@(bve)and (anc) 0 (bAc)
Proof (=) This follows immediately from the definition

(<) Let a,b,c,d € L with a0 band cd We have that (aVe) 0 (bVve)f (bVd)

and (aAc) 8 (bAc) G (bAd) O
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Lemma 2.1.3. Let L be a lattice and let A, B be two autonomous chains in L such
that ANB # 0 Then AU B 1s an autonomous chain
Proof Let c € AN B We first prove that AU B 1sachain Leta€ Aandbe B
We may assume that b ¢ A Since A 1s autonomous and b }f ¢, we have b }f a Hence,
AU B 1s a chain We now prove that AU B 1s autonomous Let p ¢ AU B If there
exists an s € AU B such that s < p, then ¢ < p,sothat zt < pforallz € AUB
Similarly, if there exists an £ € AU B such that p < s, then p <z forallz € AUB
Thus, AU B 1s autonomous O
Lemma 2.1.4. The relation ~ defined on a lattice L 1s an equivalence relation on
L
Proof The reflexivity and symmetry follow directly from the defimtion The transi-
tivity follows from the fact that the subsets of autonomous chains are autonomous
chains and Lemma 2 1 3 ([
Lemma 2.1.5. The relation ~ defined on a lattice L 15 a congruence relation on L
Proof By Lemma 2 14, ~ defines an equivalence relation on L Let a,b,c € L with
a ~b Since a }f b, we may assume that a < b We shall argue that a V¢~ bV c by
the following two cases

Case 1 Suppose that a }f ¢ Since 7(a) = w(b), we have b}t ¢ Thus, {a,b,c} 15 a
chamm Ifc<a<b, thenavVe=a~b=0bVve fa<c<b thenavec=c~b=0bVe
Ilfa<b<ec thenaVve=c~c=>bVc Therefore, in all cases, aVe~bVe

Case 2 Suppose that a || ¢ Since a < b, we have a V¢ < bV ¢ By Lemma 211
part (221), [a,b] 1s an autonomous chain Since a < a V ¢, we have b < a V ¢, so that

bvec<aVce Thus, aVe=0bVc, and therefore, aVe~bVe
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By a dual argument, we have a A ¢ ~ bAc¢. Therefore, by Lemma 2.1.2, ~ defines
a congruence relation. O
Define [a] :={b|a~b}and L := L/~ = {[a] | a € L }. We call the quotient
lattice (E, Vi, A;) the order-skeleton of L.
Lemma 2.1.6. Let L be a lattice with a,b € L. Then
(v) [a] <z [b] of and only +f there exrst a1 € [a] and by € [b] such that a; <p by,
(1) [a] <7 [b] of and only 1f a <p b and {a] # [b],
(101) [a] Vg [b] exists and equals [a Vi b,
(rw) [a] Ng [b] exists and equals [a Ap b);
(v) a|lL b of and only of [a] || [b]; and
(v1) wr(a) = m(b) of and only of 3 ([a]) = 73 ([b])
Proof. (1), (n), (1), and (w) follow directly from the fact that ~ is a congruence
relation (cf. [9]). Also, (v) follows from (1) and the definition of ~, and (vt) follows
from (v). O
For a lattice L with a € L, the element a is join-reducible if there exist b,c < a
such that a = bV ¢ A meet-reducible element is defined dually. An element a is
doubly-reducible if it is both join-reducible and meet-reducible. Note that under this
definition, 0 is not join-reducible and 1 is not meet-reducible.
For convenience of notation, we use a, b, ¢ for elements in L and x, vy, z for elements
m L The following lemma ensures that there 1s at most one join-reducible (resp ,
meet-reducible) element of £ in each [a] € L.
Lemma 2.1.7. Let L be a lattice witha € L and z € L.

() If a s jown-reducible in L, then N\ [a] exists and A\ [a] = a.
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(1) If x 15 yown-reducible in L, then A,z exists and \; z € z.
(111) If a 15 meet-reducible wn L, then \/,[a] exists and \/,[a] = a.
(w) If z 15 meet-reducible wn L, then V, z exists and \/, x € .
Proof By duality, we need only prove (1) and (u2).

(1) Let a € L be join-reducible. We need only show that a is the lower bound of
{a]. There exist b, ¢ € L such that b || c and a = bV c. Since b || c and a }fz, ¢, we
have [a] # [b]. By Lemma 2.1.6 (2), we have [b] <7 [a], so that [b] <7 [a]. Let u € [a].
By Lemma 2.1.6 (u1), b <p u. Similarly, ¢ <; u. Hence, a = bV ¢ <y u.

(11) Since z is join-reducible in L, there exist b, ¢ € L such that [], [c] <; = and
z = [b] V; [c]. By Lemma 2.1.6 (u), for all a € z, we have b,c < a, so that bvpc < a.
By Lemma 2.1.6 (1), z = [b VL c|, so bV ¢ € . Therefore b vy, ¢ is the smallest
element m z, i.e., Az =0bV,c€ . a
Lemma 2.1.8. Let L be a lattice with z € L. Then

(1) = 18 a mazvmal autonomous chawn n L;

(11) L= (/f) ={{z}|ze L}, ve, ~73 15 equality on L.

() L=L of and only of L = {{a} | a € L}
Proof. (1) Let x € L. For any b,c € x, we have b ~ ¢, so that b Jf, ¢; hence z is a
chain. Let p ¢ z and b,c € z. If b < p, then by Lemma 2.1.1, we have that [b, c|
or [c,b] is autonomous, so that ¢ <, p. Similarly, p <; b implies p < ¢. Hence, z is
autonomous. We now show that z is maximal Let S C L be an autonomous chain

containing z For a € z and s € S, we have that [a, s] or [s, a] is autonomous, so that

by Lemma 2 1.1, a ~ s. Thus, S C [a] = z, 1.e., z is a maximal autonomous chain.
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(1) Let =,y € L and z ~5 y. Since z }; y, we may assume that z <5 v,
and hence, there exist a € z and b € y such that a <, b. For any ¢ € L with
a<pc¢<pb, wehave x <7 [c] <7 y. Thus, n7(z) = 73([c]), so that by Lemma 2 1.6
(n), 7(a) = w(c). It follows that a ~ b, so that © = y. Therefore, 7 = {z}.

(m) If L = {{a} | a € L}, then the function a — [a] is easily seen to be an
isomorphism. For the converse, assume that L = L via the isomorphism f : L — L.
Let a,b € L with a ~ b. We may assume that a < b. Since f is an isomorphism, we
have f(a) <3 f(b). Let x be an arbitrary element in [f(a), f(b)] and let ¢ == f~1(x).
We have ¢ € [a, b], and thus, 7(c) = 7(a) since a ~ b. Since f is an isomorphism,
we have m;(z) = mz(f(a)). Therefore, by definition, f(a) ~; f(b). By (u2), we have
f(a) = f(b), so that a = b. Therefore, ~ is equality on L, and L = {{a} |a € L}. O

The following lemma, utilizes the Axiom of Choice.

Lemma 2.1.9. Let L be a lattice. Consider the following conditions.

(1) Every doubly-reducible element in L 1s a singleton subset of L

(1) There exsts an embedding 8 : L — L such that 8(z) € z for every z € L.
(11¢) L s embeddable n L.

(1v) The cardinality of the set of doubly-reducible elements in L equals the cardinality

of the set of doubly-reducible elements in L

Then (1) < (u) = (1) = (w) Moreover, of L contains finitely many doubly-
reducible elements, then the four conditions are equivalent to each other
Proof (i) = (1) Assume that every doubly-reducible element in L is a singleton
subset of L. Note that, by Lemma 2.1.7, if z is join-reducible (resp., meet-reducible)

m L, then A, z (resp., \/, z) exists and A, z € « (resp., \/, « € ). By assumption, if
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z is doubly-reducible in L, then A, z = \/, z. Thus, there exists a selection function
8: L — L such that
(1) B(z) € =,
(2) if z is join-reducible, then B(z) = A, z, and
(3) if x is meet-reducible, then f(z) =/, z.

For all z,y € L, if 8(z) = B(y), then = = [B(z)] = [B(y)] = y. Hence, the
mapping 8 : L — L is one-to-one. We now show that 8 is a homomorphism. Let
[a],[b] € L. 1f [a] #z (0], then B(la] Vi [b]) = B([a]) Vi B([b]). If [a] ||z [b], then both
[a] V7 [b] and a Vy b are join-reducible, so that by Lemma 2.1.6 (:22) and Lemma
2.1.7, B(la) Vi [b]) = B(lavi bt]) = ALla Ve b] = B([a]) Vi B([b]). Dually, we have
B(la] Az [b]) = B(la]) AL B([b]). Therefore, 8 is an embedding.

() = (1) Let B8: L < L be an embedding such that 8(z) € z for every z € L.
Let z € L be a doubly-reducible element. Since z is join-reducible in L, there exist
y.z € L such that y |7 z and © = y V; z. By Lemma 2.1.6 (v), 8(y) ||z 8(2), so that
B(z) = B(y) Vi B(z) is join-reducible in L. By Lemma 2.1.7, 8(z) = A, z. Dually,
B(z) =V, z, sothat A; v =V, z, i.e, z is a singleton subset of L.

(11) = (1) This follows immediately from the definition.

(1) = (w) Let f: L — L be an embedding. Let ¢; and c; be the cardinality of
the doubly-reducible elements in L and L respectively. Note that f maps the doubly-
reducible elements in L to the doubly-reducible elements in L, so that c; < ¢z. Also

note that every doubly-reducible element a € L corresponds to a doubly-reducible

clement [a] € L, so that ¢, < cz. Therefore, ¢y, = c;.
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Now assume that L contains finitely many doubly-reducible elements
(w) = (1) Suppose that z 15 doubly-reducible n L but not a singleton subset
of L Since every doubly-reducible element a € L corresponds to a doubly-reducible
element [a] € L, we have ¢, < c; Also note that there 1s no doubly-reducible element
in L that corresponds to x It follows that ¢; < ¢z which contradicts (vv) O
Let { Lo }aer be a collection of pairwise disjoint bounded lattices such that #L, > 2
and #I > 1 Let L = {0,1} U (UI(La - {OLa,lLQ})> with the partial ordering
ag
defined by z <y m Lifandonlyif x =0,y =1, or z <, vy for some o € I Then
L 1s called the horizontal sum of {L4}aer, denoted by L = HS({L, 1+ € I}) Given
two bounded lattices L; and L, with #L; > 3 and #L, > 3, we denote the horizontal
sum of L, and L, by HS(L,, L,) Note that the horizontal sum of 2 and a lattice L
with #L > 2 1s 1somorphic to L
Note that, in Lemma 2 1 9, parts (1), (v22), and (sv) are not in general equivalent
to each other For example, let L be the horizontal sum of L5 (see Figure 3 1) with
countably many copies of the 32 Then L 1s the horizontal sum of countably many
copies of the 32 Then L 1s embeddable 1n L, but L contains a horizontal summand
1somorphic to Lq5 so that L contans a doubly-reducible element which 1s not a single-
ton subset of L, 1e, (wt) = (1) Now let M = ({0, {a}, {b},{qa,b},{a,b,c},{a,b,d},
{a,b,c,d}},U,N) which contains a doubly-reducible element {a,b} Let @ be the
horizontal sum of Lis with countably many copies of M In this example, both Q

and @ have countably many doubly-reducible elements, but @ 1s not embeddable 1n

Q,1e, (w) = (111)
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Define a pentagon in a lattice L to be a quintuple (a, b, c, u,v) (see Figure 2.1)

such that a,b,c,u,v € Landv<b<a<u, cha=v, cVb=u.

v

Figure 2.1- A pentagon

Lemma 2.1.10. Let L be a lattice Ifz 18 non-modular, then L contans a pentagon
(x,y, z,u,v) and there exists an element w € L such that either

(1) =y viw and {w,y, 2} €73, or

(1) y =2 Az w and {w,z, 2} € 73
Proof Let (z1,v, 2, u,v) be a pentagon 1n L (see Theorem 1.2 2). Since z1 #7 vy, there
exists zp € L such that y <7 2o <7 1 and 7(y) # m(z2). Note that, (z2,v, z,u, v) 18
a pentagon. Smce (y) # m(zy), we have either (2*) there exists w € L with w 7z v
and w }7 2o, or (u*) there exists w € L with w |z z2 and w }7 y. By duality, we
may assume that (¢*) holds Since y <j z; and y £; w, we have z, £; w. Since
zo £7 w and w Y7 T2, we have w <; 7, Let x = y V; w. We have y <; z <j o,
and thus, (z,y.z,u,v) is a pentagon Since w £; y and z Az z = v <j y, we have
w £; ¢ Ajz Since w £7 Ay z and w <j x, we have w £; z Smnce w <; z and
z £5 x, we have z £ w Thus, w |5 z, and {w,y, 2z} € 71%. Therefore, (1) holds In

the dual case (12*), (1) holds O



CHAPTER 3
7-VERSIONS OF DISTRIBUTIVITY

In this chapter, we define five m-versions of distributivity and characterize them

via exclusion system.

3.1 m-Versions of Distributivity
Recall that a lattice L is distributive if any one, and hence by Theorem 1.2.6 all,
of the following equivalent conditions hold:
(x) D(a,b,c) for all a,b,c € L,
(1) D*(a,b,c) for all a,b,c € L,
(111) Dm(a,b,c) for all a,b,c € L,
(1) Dola,b,c) for all a,b,c € L.

By a m-version of distributivity we mean that version of distributivity assumed to
hold only for antichains. More specifically, we make the following definitions. A lattice
L is m-meet-distributive (resp., w-jown-distributive) if D(a, b, ¢) (resp., D*(a, b, ¢)) holds
for all {a,b,c} € m}. A lattice L is w-dustributwe if it is both 7m-meet-distributive and
m-join-distributive. A lattice L satisfies the m-median law if D,,(a,b,c) holds for all
{a,b,c} € m3. A lattice L satisfies Dg, if Dg(a,b,c) holds for all {a,b,c} € n}.
We have resisted considering m-semi-distributivity because it is equivalent to semi-

distributivity as defined in [8].
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The following theorem tells the importance of the condition Dy, .

Theorem 3.1.1. Let L be a lattice The following statements are equivalent
(1) L satisfies Doy.

(1) L satisfies Doy
(m2) L s dustributive.
Proof. First, we prove that (i) and (u2) are equivalent.

(1) © (1) Assume that L satisfies Do,. For {[a], [b],[c]} € 72, we have {a,b,c} €
73 and [a] Az ([0]Vz[c]) = [an(bVe)] <3 [(anb)ve] = ([a]Af [b]) Vi [c]. Thus, L satisfies
Dgr. We now assume that L does not satisfy Dg,. Then there exists {a, b, c} € 7} such
that aA(bVe) € (anb)Ve. Let d=an(bVe) and e = (aAb) Ve, so that d £ e. Since
{a,b,c} € 77, we have {[a], [b], [c]} € 73. Sinced < a,c < e,and ¢ £ a, we have e £ d.
Thus, d || e. It follows, [d] ||z [e]. Since [a] Az ([b]Vzc]) = [d] £ [e] = ([a] Az [B]) Vi dl,
we have Dq([al, [], [c]) does not hold. Thus, L does not satisfy Dy.

We now prove that (22) and (u12) are equivalent.

(1) < (11) Assume that L is distributive. For any {z,v, z} € 72, tA;(yViz) =
(x A y) Vi (2 Ag 2) <5 (z A5 y) Vi 2. Thus, L satisfies Do;. We now assume that
L is not distributive Then L contains a sublattice isomorphic to M3 or Ns. It 1s
easy to verify that A3 does not satisfy Dy,. We may assume that L contains a
pentagon (z,v, z.u,v). By Lemma 2 1.10, we may assume that there exists w € L
such that z = y Vy w and {w,y, 2} € F%. Since w A7 2 <; ¥ A; 2 = v <; y, we have

N (zViy) =w Lz y=(wAz2) Viy, le, L does not satisfy Doy. O



20
Lemma 3.1.2. Let L be a modular lattice. The following statements are equivalent.
(1) L 1s distributive.
(12) L s w-distributive.
(1) L 1s w-meet-distributive.
(1) L 18 w-youn-distributive.
(v) L satisfies the m-median law.
(n1) L satisfies Doy.
Proof By definition, distributivity implies each of the five m-versions of distributivity.
We now suppose that L is not distributive. Since L is modular, by Theorems 1.2.5
and 1.2.2, L contains a sublattice isomorphic to Mj, which does not satisfies any of
the five m-versions of distributivity. Therefore, the lemma is proved. |
Lemma 3.1.2 tells us that, in a modular lattice, each of the five m-versions of
distributivity is equivalent to distributivity. However, in general, they are not equiv-
alent to each other. Note that in Figure 3.1, L;; is m-meet-distributive but not
m-join-distributive, while Lq4 is m-join-distributive but not m-meet-distributive. L5
satisfies Dg, but does not satisfy the m-median law. Also, both L3 and L4 satisfy

Dy, and the m-median law, but do not satisfy m-distributivity.
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3.2 Exclusion Systems for m-Versions of Distributivity

In this section, we characterize the five m-versions of distributivity via exclusion
systems.

Let C; and Cy be two classes of algebras such that C; C Cy; an exclusion system
for C; C Cy is a class S C Cy — Cy such that, for L € Cy, L ¢ C; if and only if there
exists S € S isomorphic to a subalgebra of L. We denote by £, D, and M the classes
of lattices, distributive lattices, and modular lattices, respectively. Let Doy, Dmr,
Dpr, Dyr, and D, be the classes of lattices satisfying Dy, the m-median law, m-meet-
distributivity, 7-join-distributivity, and w-distributivity, respectively. Recall that Ns
is the 5-element non-modular lattice and Mj is the 5-element modular non-distributive
lattice (see Figure 1.1). Theorem 1.2.5 states that {73, N5} is an exclusion system
for D ¢ £. We write 1 (resp., 0g) for the top (resp., bottom) element of a sublattice
K of a lattice L.

The following lemma follows immediately from Theorems 1.2.5 and 1.2.2.
Lemma 3.2.1. The singleton set { M3} s an exclusion system for D C M.

Recall that Dy(a,b,¢) means a A (bV ¢) < (a Ab) Ve Dually, we can define
Dj(a,b,c) tomean (aVb)Ac<aV(bAc). Notethat D§(a,b,c) = Do(c, b, a).

We now present three lemmas about the condition Dy(a, b, ¢) and the property
Daoy.

Lemma 3.2.2. Let L be a lattice wath {a,b,c} € 73.
(1) Ifan(bvc) ¢ {anbanc}, then {an(bVc), b c} e

() Ifav(bnc) ¢ {aVvbaVc}, then {aV (bAc),bc} € i
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(w1) IfaVb < lpgapey and aVc < lpgpey, then {{aVb) AaVe),bc} € 3.
(w) If Orgapey < aAb and Oppapey < aAc, then {{(aAb)V(aAc) b} € 3.
Proof. By duality, we need only prove (¢) and (11).

(1) Let a1 := a A (bV ¢) and assume that a; ¢ {a Ab,aAc}. Since a; # anb
and a Ab < ay, we have a A b < ay. Sinceay Ab=aA(bVc)Ab=aANb<a; and
a1 Ab = aAb < b, we have a; || b. By symmetry, a; || c. It follows that {a,b,c} € }.

(1) Let ay := (aVb)A(aVc) Since a < a, and a £ b, we also have a,, £ b.
We have b £ a,, otherwise, b < a, = (aVb) A(aVec) < aVc which implies
Irfapey = aVbVe = aVec, contradicting a V ¢ < lpgepc. Hence, a, || b. By
symmetry, a, || c. Therefore, {ay,b,c} € 7}. a
Lemma 3.2.3. Let L be a lattice wnth {a,b,c} € m3. The folloung statements are
equivalent.

(1) Do(a,b,c) holds.
() cvV(an(bVve)=(anb) Ve
(i) an(dve)=an(cV(anb))
(w) {an(bVe),b (anb)Vch ¢
Proof (1) = (w) Assume that a A (bVc) < (aAb)Vc Then
(anb)ve={(an(bVe)V({anb)Vve)=an(bVve)Ve=cV(an(bVe)).

(1) = (1) Assume that cV(aA(bVe)) = (aAbd) Ve Since aA(bVe) <
cV({an(bVve)) = (aAb) Ve, we have that

aNn(bVve)=(an(bVe)AN({(anb)Ve)y=aN((aNd)Ve)=aA(cV(aAb)).

(11) = (1) Assume that a A (bV¢c) = aA(cV (aAb)). Since an(bVc) =

an(cV(anb)) <cV{aAb) = (anb)Vc, we have that {aA(bVe), b, (anb) V) ¢
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(w) = (1) Let a3 :=aA(bVc¢)and ¢; := (aAb) Ve Note that a; < a and
¢ < ¢;. Assume that {a;,b,¢;} ¢ m3. We have that a; §f b, b }f ¢1, or a; ff ¢;. Note
that, since b £ a and a; < a, we have b £ a;. Therefore, if a; ff b, then since b £ a1,
we have a; < b, so that a; < aAb < (aAb)Vec=c. Similarly, since ¢ £ b and
¢ < ¢1, we have ¢; £ b. Therefore, if b }f ¢, then since ¢; £ b, we have b < ¢y, so that
a; = aN(bVe) <bVe < e Thus, we may assume that a; Yf ¢;. Since ¢ < ¢y, a; < a,
and ¢ £ a, we have ¢; £ a;. Thus, a1 < ¢1. O
Lemma 3.2.4. Let L be a lattice. The following statements are equivalent.

(1) The lattice L does not satisfy Doy .

(1) There exists {a,b,c} € 3 such thata <bVcandaAb<c.
(111) There exsts {a,b,c} € 7 such that a Ab = Opfapep and bV ¢ = Iriape}-
Proof. Let a; :=a A (bVc¢)and ¢; ;= (a Ab)Vc. Note that a; < a and ¢ < ¢;.

(1) = (u) Since L does not satisfy Dy,, there exists {a,b, ¢} € w3 such that
a1 £ ¢1. By Lemma 3.2.3 (w), {a1,b,c1} € 3. Thus, a1 Ab=aAb < (aAb)Ve=c.
Similarly, a; < bV ey,

(11) = (21) Since aAb < ¢, aANb=aAbAc=0pgpc. Similarly, bV e = Irfapc}-

(112) = (1) We have that aA(bVe) =a £ c=(aAb) Ve, ie., Dyla,b,c) does not
hold. O

Notice that distributivity implies Dy, but Dg, does not imply distributivity. For
example, L5 is a non-distributive lattice satisfying Do,. Moreover, for {a, b, c} € 73,
if either D(a,b,c) or D*(c,b,a) holds, then Dg(a,b,c) holds. But the converse is
not true. Figure 3.2 is an example of a lattice satisfying Dy,, but not D(a,b,c) or

D*(c,b,a).
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Figure 3.2: A lattice L satisfying Dy, but satisfying neither D(a,b,¢) nor D*(c, b, a).

Recall that a lattice L is a subdirect product of a family (L,),e; of lattices if
(1) L is a sublattice of HIL,, and
1€
(1) the projection mapping =, satisfies 7,(L) = L, for each 1 € I.
An embedding a: L — H[Ll is subdirect if o(L) is a subdirect product of L,. A
1€

lattice L is subdirectly wrreducible if, for every subdirect embedding a: L — I—IIL“
1€
there is an ¢ € I such that m, 0o a: L — L, is an isomorphism.

We follow the notation from [22, 16, 17]. Note that Ms, Ly, Lo, L3, L4, Ls, L1,
L1s and Lqs are subdirectly irreducible lattices and each li is the order-skeleton of
the corresponding lattice L, for 1+ = 6,7,8 as found in these references.

In [10], Davey and Rival proved the following lemma.

Lemma 3.2.5. Let L be a lattice containing a pentagon (a, b, ¢, u,v) and an element

d such that a = bV d and {b,c,d} € 3. Then L contains a sublattice 1somorphic to

Ll: L3) L4; ,Ef;; /L\;) or /E;
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Observe that L; and L, are dual, Ly and Lg are dual By Lemma 2 1 10, Lemma
325 and 1ts dual, and the fact that the eight lattices Ly, Lo, L3, Ly, Ls,fg,f;, and
E; are not modular, we have the following corollary
Corollary 3.2.6. Let L be a lattice The order-skeleton L s modular of and only of
L contamns no sublattice wsomorphic to Ly, La, L, Ly, Ls, E;, E, or Z;

Note that the lattices Ms, L1, L, L3, Lq, L;,,Z;,Z;, and f; satisfy the condition
(1) n Lemma 2 19 Therefore, we have the following corollary
Corollary 3.2.7. For F € {Mjs, Ly, L, L3, Ly, Ls,zg, E;, E;}, sz contains a sublat-
tice 1somorphic to I, then L contains a sublattice 1somorphic to F

Let (Lp, <) be the poset of all finite lattices with the ordering defined by order-
embedding, 1 e, L1 < L 1f and only 1f there exists a one-to-one mapping f L; — Ls
such that x < y1f and only if f(z) < f(y) for all z,y € L; One can verify that the
half open interval [Ms, 3%) of Lr 1s precisely {Ms, L1, Lq, L3, Ly, Ls, Le, L7, Zg}

We now characterize the condition Dy,
Theorem 3.2.8. The wnterval [Ms,3%) = {]\43,Ll,LQ,Lg,L4,L5,’L\é,E,Z;} 1S an
exclusion system for Dy, C L
Proof Observe that the nine lattices in [M3, 3?) do not satisfy Dy, We now argue
that, if L does not satisfy Dy, then L contains a sublattice isomorphic to a lattice
n [Al3, 3%)

Suppose that L does not satisfy Dy, By Theorem 311, L 1s not distributive
If L s modular, then by Lemma 3 2 1, 1t contains a sublattice 1somorphic to M;

If L 1s non-modular, then by Corollary 3 2 6, 1t contains a sublattice isomorphic to
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one of Ly, Ly, L3, Ly, Ls, ’LVG, E, Z; Hence, by Corollary 3 2 7, L contains a sublattice
1somorphic to one of M3, Ly, Lo, L3, Ly, Ls, Z;,E, f; O

Recall that a lattice L satisfies the m-median law 1if and only if D,,(a,b,c) holds
for all {a,b,c} € 73 Two elements a,b of a lattice L are complements if and only
favb=1and aAb =0 For convenience of notation, for a,b,¢ € L, define
a, =(avb)A(ave),b, ={(aVvb)A(bVvc),ande, = (aVec)A(bVe) Dually, define
a =(anb)Vvianc),b =(anb)Vv(bAac),and ¢ = (anc¢)V(bAc) Also, define
m, =(aVbABVc)A(cVa)andm =(aAb)V(bAc)V (cAa)

It 15 easy to verify that the nine lattices in [M3, 3%) do not satisfy the m-median
law, so that D,,, C Dy,

Lemma 3.2.9. Let L be a lattice such that L = 32 If L does not satisfy the m-median
law, then Lis 18 embeddable mn L

Proof Note that L =~ 3255 generated by 1ts 3-element antichain  Since L does
not satisfy the m-median law, there exists {a,b,c} € 73 such that D,,(a,b,c) does
not hold Since {[a], [0],[c]} € 7%, we have L = I'z{lal, [b], [c]} Without loss of
generality, we may assume that [a] and [c] are complements mm L Since Dy, (a,b,c)
does not hold, we have m; = (a Ab)V(bAc)V(cha) <(aVb)ABVc)A(cVa)=
m, Smce my = b < b < b, =m, and my ~ m,, we have [my] = [b] = [m,]
Consider the inverse image of ~ L — LmL Itis straightforward to verify that
{0,1,a,by,b;,c,anbbAc,aVbbVe} = Ly O
Lemma 3.2.10. The singleton set {L15} 15 an exclusion system for Doy C Doy
Proof It 1s easy to verify that L5 does not satisfy the m-median law Now assume that

L satisfies Dy, but does not satisfy the m-median law There exists {a, b, c} € 7} such
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that D,,(a, b, c) does not hold, so that m; < m, Since L satisfies Do,, by Theorem
311, L1s distributive, so that m; ~ m,,

We claim that at least two of a, b, and ¢ are parallel to m, Otherwise, we may
assume that m, #f a and m, § b If my, < a and m, < b, then m, < aAb < my,
contradicting m; < m, If a < m, and b < m,, then a < m; and b < my, so
that m, < aVv b < my, contradicting m; < m, If a < my, and m, < b, then a < b,
contradicting a || b If b < m, and m, < a, then b < a, contradicting a || & Therefore,
two of a, b, and ¢ are parallel to m,,

We may assume that m, || a and m, || b, so that {a,b,m,} € 73 Observe that
anb<m, <aVb 1e, aand b are complement elements in I'{a,b,m,} One can
verify that 'z {[a], [b], [m.]} = 3% so that by Lemma 329, L5 1s a sublattice of
L d

By Theorem 3 2 8 and Lemma 3 2 10, we have the following theorem
Theorem 3.2.11. The set [M3,3%) U {L1s} 15 an exclusion system for Dy, C L

It 1s easy to verify that the ten lattices in [Ms3,3%) U {L;5} are not m-meet-
distributive, so that Dy C Dyur
Lemma 3.2.12. The singleton set {L14} 15 an exclusion system for Dpr C Dypr
Proof 1t 1s easy to verify that Li; 1s not m-meet-distributive Now assume that
L satisfies the m-median law, but does not satisfy the m-meet-distributivity There
exists {a;,b,c} € 7 such that D(ay,b,c) does not hold Let a = a; A (bV¢) Since
aiAb < (a1 AD)V (a1 Ac) < aiA(bVe) = a, we have a # a3 Ab By symmetry, a # a;Ac

By Lemma 322 (1), {a,b,c} € 73 We have (a Ab)V (aAc)=(ag Ab)V (a1 Ac) <
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arAN(bVe)=an(bVec),ie., D(a,b,c) does not hold. Let F' = I'{a,b,c}. We have
bVec=aVbVvc=1p.

Since L satisfies the m-median law, we have m; = m,. Since bV ¢ = 1p, m, =
(aVb)A(bVe)A(eva) = (aVb)A(aVe) = ay. Since a; = (aAb)V(aAc) < an(bVc) =
aNlp=a<a,and qV(bAc)=(anb)V{(bAc)V(cAa)=m =m, = a,, we have
Or < bAc. Since a < a, and a £ b, we have a, £ b. Since a, £ b and b, < b, we have
ay # b Since a, # b and bV (aAc)=(aAb)V(bAc)V(cAa)=m =my = ay,
we have Or < a A c. By symmetry, 0 < a Ab. By Lemma 3.2.2 (w), {a;,b,¢c} € 73,
{a,b,c} € 73, and {a,b,¢} € 3. Since b £ c and ¢ < ¢, we have b £ ¢. By
symmetry, ¢; £ b. Thus, b || ¢;. It follows, {a, b, ¢} € 73. Since a < a, = my =
m=b Ve, (anb)Viang) <(anb)Vianc) <a=aA(bVc), ie, D(a,b,c)
does not hold. Since aAb < g <aand aAb<b <b, wehave aANb < g Al < aAb,
so that a; A by = a Ab. Similarly, b A ¢, = bAc and a; A ¢; = a A c. Observe that
a Vb =bVe=a Ve =my,so that ['{a; b, ¢} = 23 Since q; < a < my, we have
{a, b, e} = L. O

By Theorem 3 2 11, Lemma 3.2 12, and their dual statements, we have the follow-
ing three theorems.

Theorem 3.2.13. The set [Ms, 32)U{Li4, L15} 15 an exclusion system for Do, C L
Theorem 3.2.14. The set [Ms3,3%)U{Li3, Li5} 15 an exclusion system for Dy, C L.
Theorem 3.2.15. The set [M3,3%)U{ L3, L14, L15} 15 an ezclusion system for D, C
L

Comment 3.2.16. By definition, 7-distributivity implies both 7-meet-distributivity

and 7-join-distributivity. By comparing the exclusion systems of the w-versions of
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distributivity, one can also see that either one of m-meet-distributivity and w-join-
distributivity implies the m-median law, and the m-median law implies Dy,. In par-
ticular, w-distributivity implies Dy,.

By using the previous theorems concerning exclusion systems with Theorem 3.1.1,
we have the following corollary.
Corollary 3.2.17. Let L be a lattice. The following statements are equivalent
(1) L satisfies Dox.
(1) L contains no sublattice 1somorphic to a lattice wn [M3, 32).

(12) L 1s dustributive.

(10) L 1s m-distributve

(v) L 1s m-meet-distributive.
(vi) L 1s w-joun-distributwve.
(vi) L satisfies the m-median law.
(nir) L satisfies Do
This corollary tells us that, if a lattice L is isomorphic to its own order-skeleton,
then all these m-properties are equivalent to distributivity. We conclude this section

by observing that no two of the properties (112) - (viur) are equivalent for general

lattices.

3.3 Other Versions of Weak Distributivity
We now discuss the relation between the m-versions of distributivity to some weak-

ened conditions found in the references [11] and [20].
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Note that both 2 and N; are w-distributive lattices, but 2 x N5 does not satisfy Dy,
Thus, by Comment 3 2 16, both 2 and Nj satisfy the five w-versions of distributivity,
but 2 x N; does not satisfy any of these five conditions Therefore, the five classes
of lattices satisfying the various w-versions of distributivity are not lattice varieties
since they are not closed under products

A lattice L 1s semu distributive whenever, for every a, b, ¢ € L,

(SD1) anb=aANcimphesaAb=aA (bVc), and
(SD2) aVb=aVcimphesaVb=aV (bAc)

It 1s easy to show that the w-version of semi-distributivity defined as before by
applying the conditions only to {a,b,c} € 7} 15 equivalent to semi-distributivity
Davey, Poguntke, and Rival proved that { M3, L1, Ls, L3, L4, L5} 1s an exclusion system
for SD C L where SD 1s the class of all semi-distributive lattices [8]

A lattice L 1s near distributive whenever, for every a,b,¢c € L,

(ND1) an(dbvec)=an(bV(an(cV(anb)))) and

(ND2) aVv(bAc)=aV (bA(aV(cA(aVb))))
As with semi-distributivity, 1t 1s not difficult to show that the =m-version of near-
distributivity 1s equivalent to near-distributivity It 1s also easy to show that near-
distributivity implies semi-distributivity The following lemma shows that Dg, implies
near-distributivity
Lemma 3.3.1. Let L be a lattice If L satisfies Dy, then L s near-distributive
Proof Since the m-version of near-distributivity 1s equivalent to near-distributivity, we
need only to show that the 7-version holds Let {a,b,c} € 73 By Lemma 3 2 3 (1),

we know that aA(bVe) = an(cV(and)) Letr =an(bV(an(cV(aAb)))) be the right
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hand side of (ND1). Since aA(cV(aAb)) < aand an(cV(aAb)) < bV(an(cV(anb))),
we have aA(cV{aAb) < r. Also, we have r < aA(bV(aA(cVD))) <an(bV(cVd)) =
aA(bVc). Therefore, aA(bVc)=r=aAn(bV(an(cV(anb)))),ie., (NDI) holds.
By duality, (ND2) holds. Therefore, L is near-distributive. 0O

A lattice L is almost-distributive if it is near-distributive and for every z, v, z,u, v €
L,

(AD1) vA(uVve)<uV(cA(vVa));, and

(AD2) vV (und)Zun(dV(vAad)),
where a = (z Ay)V(zAz),c=xzAyV(zAz),d = (xVy) A(zVz), and
d=xzV(yA(xzVz)). Note that a’ is the dual of a, ¢’ is the dual of ¢, and (AD2) is
the dual of (AD1).
Lemma 3.3.2. Let L be a lattice. If L satisfies Dy, then L 1s almost distributive.
Proof. Let L be a lattice satisfying Dy,. By Lemma 3.3.1, L is near-distributive.
Thus, by duality, we need only to show that (AD1) holds.

Since L satisfies Dy, by Theorem 3.1.1, L is distributive. Recall that ~ is a
congruence relation on L. In L, [a] = [(z Ay) V (z A 2)] = ([z] Az lyl) Vi ([2] Af [2]) =
@] Ap (vl vy [2]) = [# A (yV 2)] = [c]. Thus, a ~ ¢ and clearly, a < c. If a | v,
then ¢ || v and by Lemma 2.1.7, vVa = Alvval = AlvVc = v Ve so that
vA(uVve)<uVe=uV(cA(vVe)=uVicA(vVa)) Ifv<a,thenvA(uVe) <
v<a<uVa=uVicA(vva)) lfc<wv thenvA(uVe)<uVe=uV(cA{vVa)).
Ifa<v<c¢thenvA(uVe)=v<uVv=uV(cA(vVa)). Thus, (AD1) holds. O

Note that the converse of this lemma is not true. For example, fL\; is almost

distributive but does not satisfy Dqs.
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Day introduced in [3] the “doubling” construction which can “double” an interval
in a lattice. Here we consider the special case when the interval is a singleton subset.
Let L be a lattice with d € L. We define L[d] := (L\{d}) U {d1, d2} with the partial
order such that < y in L[d] if and only if one of the following conditions hold:

(1) z,y e L\{d} and z <y in L;

(1) z € {dy,de}, y € L\{d}, and d < y;
() z e L\{d}, y € {d1,dz}, and z < d;

(w) (z,y) € {(dr, dr), (d1, da), (d2, da)}-
Note that E[E] ~ D. If D = D, then the order-skeleton lf?\[c?] is isomorphic to D,
and every block of the order-skeleton is a singleton subset except one block which is
a doubleton subset.

In [31], Rose proved that for any subdirectly irreducible lattice L, L is almost
distributive if and only if L & D[d] for some distributive lattice D and d € D (see
also [16, 20]).

Lemma 3.3.3. Let L = DId] for some distributive lattice D with d € D. If L con-
tawns a pentagon (a, b, c,u, v) and 0 1s the smallest congruence relation that identifies
a and b, then L/8 = D and 0 1s the congruence relation that identifies only a and b
Lemma 3.3.4. Let L be a w-distributwve lattice with z,y,2 € L and L = D[d] for
some distributwe lattice D with d € D. If L contains a pentagon (a,b,c,u,v) and
zVv=yVu, then (x Nz)Vv={(yAz)Vo.

Proof Assume that (xAz)Vv # (yAz)Vu. Let 6 be the smallest congruence relation

that identifies a and b. By Lemma 3.3.3, L/ is distributive, so that [(z A 2) V v]g =

([z]onolzlo) Volulo = ([zloVs[vle) Na([2loVa[vle) = [(zV)A(zV)]s = [(yVu)A(2VU)]p =
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[(yAz)Vuls Since (zAz)Vvl (yAz)Vu, we have {(zA2) Vv, (yAz) Vo) = {a,b}
and we may assume that (z Az)Vv=aand (yAz)Vv="> Since a £ b, we have
z £y NotethatzVa=2zVv=yVo=yVb Smcea<zVa=yVbanda£b,
we have y £ b Smce z <zVa=yVvandz £y, wehave b £ y Thus, y || b Since
b<yvb=yVuv<yVcandbf€c wehavey £ c Smcey<yVb=yVuv<yVe,
we have ¢ € y Hence, y || ¢, so that {y,b,c} € 7} SmcebAy<bandaAybbAy,
we have aAy=bAvy Simcea <zVa=yVv<yVceand L is w-distributive, we
havea =aAn(yVe)=(any)V(anc) =((bAy)V(bAc) <b, contradicting b < a
Therefore, (z A z) Vo= (yAz)Vu O
Lemma 3.3.5. Let L be a subdirectly wrreducible n-distributive lattice If L contains
a pentagon (a,b,c,u,v), thenu =1 andv =0
Proof Let L be a subdirectly irreducible w-distributive lattice and let {a, b, ¢, u, v) be
a pentagon in L Assume that u # 1 or v ¥ 0 By duality, we may assume v # 0
Define a relation « on L by z a yif and only if z Vv = y Vv It 1s easy to see
that o 1s an equivalence relation such that for any z,y,2z € L with z « y, we have
rVzayVzand, by Lemma 334, zAzayA z, so that « 1s a congruence relation
Let 6 be the smallest congruence relation that identifies a and b By Lemma 3 3 3,
6 1dentifies only @ and b Note that, since a Vv =a # b =0V v, we have a ¢ b, so
that § #£ o Let 8 be a congruence relation with 8 C « and 8 C 0, and suppose that
¢,d € Lwithcfd Since ¢ 8 d, we have ¢ = d or {¢,d} = {a,b} Since ¢ « d, we have
¢ = d Therefore, § 1s equality, which implies that L 1s not subdirectly irreducible,

contradicting the assumption O
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Theorem 3.3.6. Let L be a subdirectly wrreducible lattice with L # Ns  Then L 1s
distrmbutwe 1of and only iof L 1s m-distributive
Proof Let L be a subdirectly irreducible m-distributive lattice with L # N; By
Comment 3 2 16, L satisfies Dg,, and by Lemma 3 3 2, L 1s almost distributive, so
that L = DI[d] for some distributive lattice D and d € D Assume that L 1s not
distributive, so that L contains a pentagon (a,b, ¢, u,v) By Lemma 335, u =1 and
v =0 Since L # Ns, there exists e € L such that e ¢ {a,b,c,0,1} We have a £ e,
for if a < e, then (a,b,c Ae,bV (c Ae),0) 15 a pentagon, so that, by Lemma 335
agam, 1 = bV (cAe) < e, contradicting e # 1 Similarly, e £ b Since L 1s subdirectly
irreducible, e ¢ [b,al, so that e || a and e || b Since {a,b,e,aVe,aAe} 1s a pentagon,
by Lemma 335, aVe=bVe=1landaAe =bAe =0 Let § be the smallest
congruence relation that identifies a and b By Lemma 3 3 3, # 1dentifies only a and
b Simce [clg=[cA(aVe)pg=[(cAa)V(cAe)lsg=][cA ely, we have c § c Ae, so that
c=cAe Smilarly, c = ¢ Ve, so that ¢ = e, contradicting the assumption O
Theorem 3.3.7. Let L be a subdirectly wrreducible lattice Then L 1s almost distribu-
twe 1f and only +f L satisfies Doy
Proof By Lemma 3 3 2, Dy, implies almost distributivity We now prove the suffi-
ciency Let L be a subdirectly irreducible almost distributive lattice There exists a
distributive lattice D and an element d € D such that L = D[d] Notice that the
order-skeleton I = ﬁc/i] ~Ds distributive, by Corollary 3 2 17, L satisfies Dy, [
In [11], Erné mtroduce n-zipper-distributivity and the conditions of H, where

n > 3 It turns out that the w-version of n-zipper-distributivity 1s also equivalent to
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n-zipper-distributivity. In Figure 3.3, we present a diagram indicating the implica-
tions between the various of weakened distributive conditions discussed above. We
observe that nothing collapses except the five 7m-versions of distributivity discussed in

Corollary 3.2.17 even if a lattice L is isomorphic to its own order-skeleton.

meet-semi-distributivity

4-zipper-distributivity

semi-distributivity mect-ncar-distributivity

near-distributivity modularity

3-zipper-distributivity
almost-distributivity

Do H,
T
m-median law
m-meet-distributivity m-join-distributivity Hy
w-distributivity

distributivity

Figure 3.3: The relations between various weakened distributive conditions.



CHAPTER 4

ORTHOCOMPLEMENTED DIFFERENCE LATTICES

4.1 Introduction

Recall that a lattice L is bounded if and only if there exist 0,1 € L such that
OAz=0and l=1vzforallz e L.

Definition 4.1.1. An algebra (L;V,A,’,0,1) of type (2,2,1,0,0) is called an or-
tholattice (OL) or orthocomplemented lattice, if (L;V,A,0,1) is a bounded lattice
satisfying

(1) v’ =landz A2’ =0,

(1) 2" =z, and

() (xvVy) =2'Ay and (zAy) =2 V.
An OL L 1s said to be an orthomodular lattice (OML) if, for all z,y € L with z <,
zV(z'ANy) =vy. A subset S of an OML L is a sub-OML if, for all z,y € S, zVy € S,
xAyeS andz €85,

Matousek introduced the notion of symmetric difference for OLs in [23]. He and
Ptak developed the notion in [24, 25, 26, 27]. This extends the standard set-theoretic
symmetric difference for power sets.

Definition 4.1.2. A (symmetric) difference algebra is an algebra (D; A, 0,1) of type

(2,0,0) in which the following identities hold:

37
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(DA1) zA(yAz) = (zAy)Az,
(DA2) zA0 = z,
(DA3) zAr =0,
(DA4) If there exists a non-zero element, then 1 # 0

Note that, for all z,y € D, we have that Ay = (zAy)A0 = (zAy)A(zAyAyAzx) =
(zAy)A(zAy)A(yAzx) = 0A(yAz) = yAz Hence, difference algebra 1s symmetric

The most familiar example of a difference algebra 1s (P(X), A, 0, X) where X 1s a
set and A 1s the standard set-theoretic symmetric difference on the power set P(X)
of X

A class V of algebras of type F 1s called a varety if V 1s the class of all algebras
of type F satisfying a given set of 1dentities Recall that, a lattice can be defined so
that the operations V and A satisfy the commutative, associative, idempotent, and
absorption law, which are identities Hence, the class £ of all lattices forms a variety
The class of all OLs 1s a variety since OL 1s defined by 1dentities
Definition 4.1.3. An algebra (L,V,A/A,’,0,1) of type (2,2,2,1,0,0) 1s called an
orthocomplemented difference lattice (ODL) of (L, Vv, A, ’,0,1) 1s an OL and the fol-
lowing 1dentities hold
(D1) zA(yAz) = (zAy)Az,
(D2) zA1l =1Az = 2/,
(D3) xAy <z Vy

Matousek proved in [23] that for an ODL (L, V, A, A, /,0,1), the OL (L, V, A, 7,0, 1)
1s an OML, denoted by Lg,p, the algebra (L, A, 0,1) 1s a difference algebra, denoted

by §(L) For simplicity of notation, we also use (Lgupp, A) to represent the ODL L
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We denote the class of all ODLs by ODL and note that this class forms a variety
since ODL 1s defined by equations For definitions and elementary results related to
OMLs not explicitly given here, we refer to [18]

Recall the definition of subalgebra in Section 1 1 To indicate which structure we
are working on, we use sub-OML (resp , sub-ODL) to mean the subalgebra of an OML
(resp, ODL) Given a subset S, we also use I'*(S), OME(S), and I'°PL(S) to mean
the subalgebra generated by S in a difference algebra, OML, or ODL, respectively

In this chapter, we focus on the class of all ODLs that are set-representable We
construct an example showing that there exists a 3-generated infinite set-representable

ODL This answers the final open question posed by Matousek in [27]

4.2 ODLs and Set-Representable ODLs

In this section, we introduce the notions of ODLs and set-representable ODLs

Let L be a lattice Two elements a,b € L are orthogonal, denoted by a L b, if
a < An element a # 0 of L 1s an atom 1if there 1s no element b € L such that
0<b<a Alattice L 1s atomic if, for each z # 0 1n L, there exists an atom a € L
such that a < x A lattice L 1s atomustic if every z # 0 in L 1s the join of a set of
atoms 1n L It 1s well-known ([18], page 140) that an OML 1s atomic if and only if 1t
1s atomuistic

Given an OML L, a mapping s L — {0,1} C R 1s called a dispersion free state
on L1if (1) =1 and z L y in L imphles s(zVy) = s(z)+ s(y) A set S of dispersion
free states 1s full in case z < y m L 1f and only if s(z) < s(y) forall s € S An OML

L 1s concrete if 1t has a full set of dispersion free states
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Lemma 4.2.1. An atomic OML L has a full set of dispersion free states if and only
if, for all non-orthogonal atoms a,b € L, there exists a dispersion free state s on L
such that s(a) = s(b) = 1.
Proof. (=) Suppose that L has a full set of dispersion free states. Let a,b € L be
two non-orthogonal atoms in L. Then a £ ¥, so that there exists a dispersion free
state s on L such that s(a) =1 and s(¥') =0, i.e., s(a) = s(b) = 1.

(<) Let z,y € L withz £ y. Since z £ v, there is an atom a € L such that a < z
and a £ y. Since y’ £ o/, there is an atom b € L such that b <y’ and b £ a’. Hence
a L b, so that there exists a dispersion free state on L such that s(a) = s(b) = 1.
Since a < z and s(a) = 1, we have s(z) = 1. Since b < y’ and s(b) = 1, we have
s(y') =1, ie., s(y) =0. |
Definition 4.2.2. Let X be a set and let @ C P(X). Then the pair (X, Q) is said
to be a D-ring if X € Q and AAB € Q) for all A, B € 2, where A is the set-theoretic
symmetric difference.

Definition 4.2.3. An ODL (L;V,A,AL,0,1) is said to be a set-representable ODL
(SRODL) if there exists a D-ring (X, ) such that (L; <, Ar,0,1) is isomorphic to
(;C, A0, X). We denote the class of SRODLs by SRODL.

Note that the 2-element addition abelian group (Z,; ®) forms a difference algebra
(Zy;®,0,1). We write Z, for this difference algebra when there is no ambiguity and
write 0 < 1 1n Zy
Definition 4.2.4. Let L be an ODL and s : L — Z, be a mapping. Then s is said

to be an ODL-evaluation on L if the following properties hold for all z,y € L:
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() <y = s(z) < s(y),
(1) s(zAy) = s(z) @ s(y)
A set S of ODL-evaluations on L 1s full in case z < y 1n L 1f and only 1if s(z) < s(y)
foralls e S

For a mapping s L — Zs from an ODL L to Z,, we define 5§ Lg,,p — {0,1} CR
to be the mapping from the OML Lgp, to {0,1} € R such that, for all z € L,
s(z) =11n Zy 1f and only if 5(z) =1 m R

Let L; and Ly be two ODLs It 1s easy to see that the Cartesian product L; x Lg
1s also an ODL by defining all the operations coordinatewise For fixed ¢+ € {1, 2},
if s, 18 an ODL-evaluation on L,, then the mapping s Ly X Ly — Z, defined by
s((x1,22)) = s,(x,) 1s an ODL-evaluation on Ly x L, This can also be generalized
to the Cartesian product of any family of ODLs
Lemma 4.2.5. Let L be an ODL with z,y € L Then (2’ Ay) V (z Avy') < zAy <
(xVvy) A (@ VYY)
Proof By defimtion zAy < x Vy Since xAy = zA1A1Ay = /Ay’ < 2’ VvV ¢/,
we have zAy < (z Vy) A (' Vy') Since (zAy) = zAyAl = zAy < zV v/,
Ay = (zVy') < zAy Sumilarly, t Ay’ < xAy Hence, (' Ay)V(zAy) <zAy O
Lemma 4.2.6. Let L be an ODLwithx,y € L Thenz 1 yif and only if zAy = zVvy
Proof (=) Suppose z 1L y Smce z L y, we have z Ay = 0, so that 2’ V¢ =1
We also have z < vy’ and y < 2/ Hence, by Lemma 4 2 5, we have that zAy <

(avy)n(@ Vy) =(zVvy)Al =zVy = (zAy) V(2 Ay) < 2Ay Thus, zAy =z Vy
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(<) Suppose zAy = zVy Since zAy = zAyAl = (zAy) = (x Vy) =" Avy/,
we have that z = zA0 = zA(Y'Ay') = (DAY )AY < (2AY) VY = (@' Ay ) VY =4
Hence, z L vy O
Lemma 4.2.7. Let L be an ODL and s be an ODL-evaluation Then 3 is a dispersion
free state on the OML Lgypp
Proof Let z,y € L with z L y By Lemma 426, z Vy = xAy We need only to
show that 5(x Vy) = 5(z) +3(y) Since s(x) ®s(y) = s(zAy) = s(xVy) £ s(x),s(y),
we know that s(z) and s(y) cannot evaluate to one simultaneously Thus, 3(z Vy) =
5(z) + 5(y) O
Matousek proved the following lemma in [23]
Lemma 4.2.8. An ODL L 1s an SRODL if and only if L has a full set of ODL-

evaluations

4.3 SRODL is not Locally Finite

A lattice L s locally finate 1f the sublattice generated by a finite subset of L 1s finite
In this section, we construct a 3-generated set-representable ODL that has infinitely
many elements We conclude that the class SRODL of all set-representable ODLs 1s
not locally finite and therefore the class ODL of all ODLs 1s not locally finite

In [27], Matousek and Pték introduce a ‘labeling of atoms” and give a constructive
proof showing that finite cubic OMLs with certain properties are ODL-embeddable
Here we distill the 1dea of labeling atoms and generalize 1t to the infinite case

Let L be an OML For z,y € L, z and y are compatible, denoted by z Cy, 1if

r=(xAy)V(zAy') Forz e L, wedefine C(z) ={ye L xCy} A block of an
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OML L is a maximal compatible sublattice. An OML L is cubic if each of its blocks
is isomorphic to 23. We denote the set of atoms in L by At(L) and the set of blocks
in L by BI(L).
Lemma 4.3.1. Let L be a Boolean algebra and A be a symmetric difference defined
on L such that xAl = x' for all x € L. Then the following two statements are
equivalent.

(1) zAy <z Vy forall x,y € L, r.e., (L;A) is an ODL.

() xAy =z Vyforall z,y € L withx L y.
Furthermore, 1f L = 23 with At(L) = {a,b,c}, then each condition is equivalent to
the following condition.
(1) aAbAc =1.
Proof. (1) = (u) If (1) holds then (L;A) is an ODL since zAl =z’ for all z € L, so
that (i) follows from Lemma 4.2.6.

(1) = (1) Let L be a Boolean algebra with a symmetric difference A that satisfies
(12) such that Al = 2/ for all x € L. Let x,y € L. We need only to show that
rAy < zVy. Since (zAy) L (xAy'), we have x = (z Ay) V(2 AY) = (zAy)A(z AY').
Similarly, y = (y A z)A(y A z'). Since (z Ay') L (y A '), we have,

Ay = (z Ay) Az AY)A(y Az) Ay A T)
=(zAY)Ayra)=(@@ry)vyra)<zvy.

Now suppose that L = 23 with atoms a, b, c.

(12) = (112) We have aAbAc = (aVb)Ac=Ac=c Vc=1.
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(11) = (i1) Let z,y € L with z L y. We will argue that zAy = z Vy. We may
assume that z,y ¢ {0,1}. Since x L y, one of z,y has to be an atom, say = a. If
y is a coatom, then y = d/, so that zAy = aAd’ = 1 = z Vy. Otherwise, we may
assume y = b, so that zAy = aAb=cAl = =a Vb O

In [23], Matousek proved the following lemma.

Lemma 4.3.2. Let L be an ODL. Let z,y,z € L with zCy and Cz Then
zC (yAz) and z A (yAz) = (x ANy)A(z A 2).

By a straightforward calculation, one sees that for an ODL L and for any a €
L, ([0,a]; Aljgq)) is an ODL. We write [0, a] instead of ([0, a]; Aloq) if there is no
ambiguity.

Lemma 4.3.3. Let L be an ODL with ¢ € L. Then xCc for all x € L if and only if
L =[0,c] x [0,¢] as ODLs.

Proof. (=) Define ¢ : L — [0,c] x [0,¢] by &(z) == (z Ac,z A () for all z € L.
We know that ¢ is an OML-isomorphism (see [18]). Let z,y € L. By Lemma 4.3.2,
we have (zAy) Ac = (x A c)A(y Ac) and (zAy) A = (x A d)A(y A /). Hence,
d(zAy) = ((2QAy) Ne, (xAy) AN) = (zNe,a AE)Ay A e,y A ) = d(z)Ad(y), Le., ¢
is an ODL-isomorphism. Thus, L 2 [0,¢] x [0,¢] as an ODL.

(<) If L =1[0,¢]x[0,c] as an ODL, then Lgypp = [0, cJsupp X [0, ¢/]supp 88 an OML.
By Theorem 1 in Section 3 in [18], zCc for all z € L. a
Definition 4.3.4. Let A: K — D be an injective mapping from an OML K into a
difference algebra D. We say that A is a D-labeling of K if

(1) Mlk) = 1p,

(11) for all a,b € K with a Lk b, we have A(a Vg b) = A(a) Ap A(b),
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(11) for all a,b € K with a Vx b < 1k, there exists ¢ € K such that ¢ < a Vg b and
Ac) = Aa) Ap A(b).
We say that the OML K is labeled by the difference algebra D via the mapping A.
Lemma 4.3.5. Let K be an OML and let D be a difference algebra. Let A: K — D
be a D-labeling. Then A(Og) = 0p and A(z’') = AM(x)Aplp forallz € K.
Proof. Since O Lg Ox, we have that \(0g) = A0k Vi Ox) = MOg)ApA(Ok), so
that A(Ox) = Op. For z € K, we have that 1p = A(1x) = Az Vk 2') = A(z)ApA(z'),
so that A(z') = Mz)Aplp. O
Lemma 4.3.6. Let (K,)aex be a disjoint family of OMLs and let D be a difference
algebra. Each K, is labeled by D via a mapping A,: K, — D. If A\,(z) # As(y)
for all o, 8 € & with a # B and z € K, \{Ok,,1k.}, v € Kp\{Oxk,, 1k,}, then
K := HS((K4)aex) is labeled by D via the mapping A := LEJ Aa-
ack

Proof. Let a,b € K and assume that a,b ¢ {Ok,1x}. If a Lg b, then a Lk, b for
some a € K, s0 that A(a Vi b) = Ay(a Vi, b) = Aa(a)ApAa(b) = Aa)ApA(b). If
aVg b < 1k, then a Vg, b < 1k, for some 8 € &, so that there exists ¢ € Kp such
that ¢ < a Vg, b and A(c) = Aplc) = Ag(a)ApArg(b) = Ma)ApA(b). Hence, X is a
D-labeling of K. O

For a set X, we say that a subset S is co-finite if its complement S¢ is finite. In
this section, we choose FC(Z) := {S C Z | either S is finite or S is co-finite}, the
family of finite or co-finite subsets of Z, with the set-theoretical symmetric difference

A to do the labeling. We denote the OML obtained from the horizontal sum of &

copies of 22 by MO,..
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Definition 4.3.7. Given an OML K. We say that K is a base of an ODL L in case

(1) K is a sub-OML of Lgypp,

() aApbe K for all a,b € K with a Vg b < 1k, and
(11) L is generated by K as an ODL.
If K is a base of an ODL L and Lg,pp = HS(K, T') for some OML T, then we call T' a
taal of L. If T = MO, for some cardinal number T, then we say the tail T' a standard
taal of L.
Definition 4.3.8. Let K be an OML and let D be a difference algebra. We say that
D is an envelope for K if

(1) K S D,

(1) Op = 0 and 1p = 1k, and
(111) (Ck(2); Aplek(r)) is an ODL for all z € K with z # 0, 1.
Lemma 4.3.9. Let K be an OML and let D be a difference algebra. Let A: K — D
be a D-labeling.

(1) Let T* := P2(AMK))\NK)U{0p, 1p}. Then T* can be organized into an OML
such that T* = MO, for some cardinal number x and &' = zAplp for all
zeT.

(u) Let L := K* := HS(K,T?). For z,y € L, define zAy := A"} (A(z)ApA(y)) if
AMz)ApA(y) € AM(K) and zAy := AN(x)ApA(y) otherwise. Then L is an ODL.

(222) The OML K is a base of the ODL L with T* a standard tail.
Proof. (1) For each z € TA(A\(K))\AN(K), we organize {0p,1p,z,zAplp} into 22

with 2’ := zAplp, denoted by B,. Then T* can be organized into the OML



47
HS ({B,: z € PA(A(K))\M(K)}) = MO, for some cardinal number  such that
2 =xAplp forallz € T.

(12) Note that A on L is associative and ' = zAlp forall z € L. Let y,z € L
and assume that y Vp z < 1;. Then y, 2z € K, so that there exists a w € K such that
w<yVgz=1yVyzand A(w) = A(y)ApA(z). Hence yAz = w < y v z. Therefore,
L is an ODL.

(111) Note that K is a sub-OML of Lgyp, = HS(K,T?) and L is generated by K
as an ODL. Let a,b € K with aVg b < 1g. Then there exists an element ¢ € K such
that ¢ < aVgband A(c) = A(a)ApA(b). Hence aAb = ¢ € K. Therefore, K is a base
of L with T a standard base. O
Definition 4.3.10. Let K be an OML and let D be a difference algebra. Let \: K —
D be a D-labeling. We define K* the ODL in Lemma 4.3.9 and T* the standard tail
in Lemma 4.3.9.

Lemma 4.3.11. If an OML K is a base of an ODL L, then
(1) the difference algebra §(L) is an envelop for K, and
(17) the OML K is labeled by the difference algebra ¢(L) via the identity mapping
10 K— §(L).
Proof. (1) Since K is a sub-OML of Ly, we have that K C §(L) and Os) = Ok,
151y = 1. For z € K with z # Ok, 1k, we have that both ([0, z}x; Aplos),) and
(10,2"]x; Apljo,ar), ) are ODLs and Ck (z) = [0, 2], %[0, 2'] k, so that (Cx(z); Aplck(z))

is an ODL.
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(11) We have 1(1x) = 11. For a,b € K with a Lg b, we have 1(a Vg b) = aVgb=
aApb = 1(a)Api(b). For ¢,d € K with ¢ Vg d < 1k, let ¢ := aApb < a Vg b, so that
we have 1(c) = ¢ = alApb = 1(a)Ap(b). a

The following lemma generalize Theorem 3.10 of [27] and give the relations be-
tween labeling, base, and envelop.
Lemma 4.3.12. Let K be an OML and D be a difference algebra such that K ¢ D
and D = I'®(K). Let 1: K — D be the identity mapping. Then the following
statements are equivalent.

(1) K*is an ODL and K is a base of K* with 7" a standard tail.
(11) The difference algebra D is an envelop for K.
(112) The OML K is labeled by the difference algebra D via the identity mapping
1 K= D.

Proof (1) = (1) This follows from Lemma 4.3.11.

(1) = () We have (1) = 1p. Let a,b € K with a Lx b and assume
a # Og,1x. Since (Ck(a); Alcy(e)) is an ODL and a,b € Ck(a), we have that
aVgb) =aVigb=alApb=1(a)Api(b). Let c,d € K with ¢ Vg d < 1x and assume
¢,d # 0g. Since (Ck(c Vi d); Alcg(eviay) is an ODL and ¢, d € Ck(c Vi d), we have
that cApd < ¢ Vg d and 1(cApd) = cApd = 1(c)Api(d). Therefore, 1 is a D-labeling.

(11) = (1) This follows from 4.3.9. O
Example. Let FC(Z) be the family of finite or co-finite subsets of Z. Let A be the
standard set-theoretic symmetric difference and let ¢ be the set complementation.
Then (FC(Z); A, 0, Z) is a difference algebra. As usual, we represent a block B of a

cubic OML by the set of atoms in B. We use certain subsets of FC(Z) to present the
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Greechie diagram of a cubic OML K, whose atoms At(Kp) and blocks Bl{K,) are
the following:

At(Ko) = {{n+ 1), {n,n+1}, {n,n+4}, {n,n+1,n+2n+3},
{n,n+2}°{n,n+3}°{n,n+1,n+ 3}
{n,n+2,n+3}°{n,n+2,n+4}°:ne Z},

BIU(Ko) = {{{n,n+ 1}, {n+ L,n+2}, {n,n+2}},
{{n+1,n+2},{n,n+1,n+2,n+3}{nn+ 3},
{{n+1},{n,n+1L,n+2,n+3}{n,n+2,n+ 3},
{{n+2},{n,n+1,n+2,n+3},{n,n+1,n+3}},

({n+2) fnn+4), {(nn+2,n+4)) :ne z}.

Note that the Greechie diagram given in Figure 4.1 spirals infinitely in both di-
rections. The ordering in Ky induced by the block structure is not set inclusion. In
fact, no structure, from FC(Z) is used in Ky other than the symmetric difference A.
Also note that the elements of Ky are precisely the empty set, the singleton subset
of Z, the doubleton subsets of Z consisting of two integers differing by at most 4, the
3-element subsets of Z consisting of three non-consecutive integers such that one of
them differs from the other two by at most 2, the 4-element subsets of Z consisting
of consecutive integers, and complements of such subsets. (One can replace Z by N
and remove the three dots below the elements 12 and 2 in Figure 4.1 to get another
example which spirals infinitely in one direction only; we prefer the example given

because the proofs are shorter due to the symmetry.)
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Figure 4.1: The partially labeled Greechie diagram of the infinite cubic OML Kj.
Additional labels are obtained from the A inherited from FC(Z). We represent a set
such as {1, 4, k, [} by the string 17kl where 1 < j <k <.

Remark. We choose the elements of K from FC(Z) and choose the identity mapping
1: Ko — FC(Z) so that each element of K coincides with its labeling. In Figure 4.1,
we give the partial labeling for K such that, for each block in the diagram, two atoms
are labeled. To obtain the complete labeling for K, we first label the top element by
Z and bottom element by @: for each block, we label the third atom by the symmetric
difference of the other two atoms with Z; and then we label each coatom by symmetric
difference of the corresponding atom with Z. Note that, for each block, the symmetric
difference of the three atoms is the top element Z.
Lemma 4.3.13. (1) The difference algebra FC(Z) 1s an envelop for Ky.

(1) The OML Kj is labeled by the difference algebra FC(Z) via the identity mapping

1. Kg — FC(Z)
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(i) Lo := K} is an ODL with §(Lg) = FC(Z).
(12v) The OML Kj is a base of the ODL Ly with T* a standard tail of Ly.
Proof. (1) It is sufficient to show that (C(z); Alc(z)) is an ODL for all z € Ky with
z # Ok,, lk,. Note that C(x) is either a block or three blocks whose intersection is
{O0ky, 1y, 2, 2"}, 1f C(z) is a block, then by Lemma 4.3.1, (C(z); Alc() is an ODL.
Otherwise, we may assume z € {{1},{1,2},{1,2,3,4}}. One can verify that in each
case, (C(z); Ale)) is an ODL.

Parts (1), (212), and (wv) follow from Lemma 4.3.12. O
Convention. Henceforth we use Ky exclusively for the cubic OML presented in
Example 4.3 and Lg for the ODL generated by K,. We point out that the ODL Ly
contains all the elements of FC(Z). The OML (Lg)sypp is the horizontal sum of the
OML K, and the standard tail T°.

The following lemma shows that the ODL Lg is not locally finite.

Lemma 4.3.14. The ODL Ly is a 3-generated infinite ODL.

Proof. 1t is clear that Lo is infinite. For n € Z, let G, := {{n — 1}, {n}, {n + 1}}.
For simplicity, we write I for I'°PL in this proof. We claim that G, C I'(Gy) for all
n € Z. By symmetry, it is enough to show that G, C I'(Gy) for all n > 0. We will
prove this by induction.

We have Gy C I'(Gy). Suppose that G, C I'(Gy) for some k > 0. Since {k —
Lk k+1,k+2}=({k}Vv{k+1}) € (G, and

{k+2}={k-1}A{k}A{k+1}A{k - 1,k k+ 1,k + 2} € T'(Gy),
we have Gy C I'(Go). Thus, by induction, G, C I'(Gy) for all n > 0; and hence,

Gn C I'(Gy) for all n € Z, which implies that Lg is generated by G. a
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Definition 4.3.15. Let M be a subset of Z. We define a function sy : Lo — Zg by
0, X is finite and #( X N M) is even,
su(X) =< 1, X is finite and #X N M) is odd,

1® sy (X¢), X is co-finite.

Note that Af is no€ necessarily finite or co-finite. Also note that every ODL-
evaluation s on Lg is of the form sy where M = {n € Z : s({n})=1}.
Lemma 4.3.16. Let M, N CZ and let A, B € Ly. Then
(1) sm(AAB) = sy (A) @ sy (B), and
(1) spyan(A) = su(A) @ sn(A).
Proof (1) Since (AAB)N M = (AN M)A(BN M), we have sy (AAB) = sy (A) @
su(B).
(1) Since AN(MAN) = (ANM)A(ANN), we have spyanA = spu(A)@sn(A). O
Lemma 4.3.17. Let M be a subset of Z. The following statements are equivalent.
(1) The mapping sy s an ODL-evaluation on Ly.
(11) The mapping 3 1s a dispersion free state on the OML (Lg)supp-
(i) Forallme M, (1)ifn+1¢ M, then [n—3,n+2|NM={n—-1,n}; (2)if
n—1¢ M, then [n—2,n+3]NM={n,n+1}
(1) For each block B with atoms a, b, ¢, we have Spr(a) + Sar(b) + Sp(c) = 1.
Proof (1) = (u) This follows from Lemma 4.2.7.
(12) = (w1) Suppose that 3, is a dispersion free state on (Lg)supp. By Lemma
4.2 1, orthogonal atoms cannot evaluate one simultaneously. We may assume M ¢
{0,Z} and let n € M. We may assume n = 0. By symmetry, it is enough to show

that 1 ¢ M implies [—3,2] N M = {—1,0}. Assume that 1 ¢ M. Since {—1,0} and
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{0,1} are orthogonal atoms of Ky and 53,({0,1}) = 1, we have 5p,({—1,0}) =0, so

that —1 € M. Since {0} and {-2,~1,0,1} are orthogonal atoms and 55,({0}) = 1,

we have §p({-2,-1,0,1}) = 0, so that —2 ¢ M. By a similar argument, we have
that —3 ¢ M and 2 ¢ M. Therefore, [-3,2]N M = {-1,0}.

(11) = (w) Let B be a block of Ly with atoms a, b,c. Since sp(a) ® su(b) ®

su(c) = sp(Z) = 1, we have that either 5pr(a) + Sp(b) + Sm(c) = 1 or Sp(a) =
5p(b) = 5p(c) = 1. Assume on the contrary that Sy(a) = Sy (b) = Sm(c) = 1. We

inspect the five types of blocks. By symmetry, we select a specific block for each type;
we pick the list below:

Br = {{1,2},{2,3,} {1,3}%},

By = {{1,2},{0,1,2,3},{0,3}°},

Bs = {{2},{1,2,3,4},{1,3,4}},

By = {{2},{0,1,2,3},{0,1,3}°},

By = {{2},{0,4},{0,2,4}7}.
If B € {Bs, Bg, Bs}, then since sp({2}) = 1, we have 2 € M. By part (iu2), we have
sm({1,2,3,4}) = s ({0,1,2,3}) = sp({0,4}) = 0, a contradiction. We now assume
that B € { By, B2}, so that sp({1,2}) = 1. By symmetry, we may assume that 1 € M
and 2 ¢ M, so that 0 € M and 3 ¢ M. Hence, sp({2,3}) = si({0,1,2,3}) =0, a
contradiction.

(w) = (1) Note that the mapping sy satisfies parts (1) and (111) of Definition

4.2.4. We need only to verify part (12). Let z,y € Lo with x < y. We may assume

that x # yand z,y ¢ {0,Z}. Then z is an atom and y is a coatom. Note that z,y € B
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for some block B of Ly with atoms z,a,b and y = 2z Va = zAa. We may assume
sy(z) = 1. Then sp(a) = sp(b) = 0, so that sp(y) = spy(z) D sy(a) =100 =1,
which implies that sa(x) < sa(y). O
Lemma 4.3.18. Let F,G C Z be two non-empty finite subsets that are not orthogonal
wn Lo. If there 1s no ODL-evaluation t on Lo such that t(F) = ¢(G) = 1, then

(1) forall fe Fand g€ G, |f — g] <2,

(1) ifn € Zand #({n,n + 1} N F) = 1, then either {n,n+1} C G or {n,n+1}ING =

(i}

(112) if #F is odd, then #G is even.
Proof. (1) Assume on the contrary that there exist f € F and g € G such that
|f —g| > 3. We may assume f — g > 3. Let f; be the maximum in F and g; be the
minimum in G. Let t; := s{4 5,41}, t2 = S{g;,q1-1}, and 3 := S{f fi41,g1,91-1}- Oince
fi+1¢ Fand g1 — 1 ¢ G, we have t;(I') = t5(G) = 1, so that by the assumption,
t1(G) = t2(F) = 0, which implies that t3(F) = t;(F) @ () = 1 ® 0 = 1 and
t3(G) = t1(G) ® t2(G) = 0@ 1 = 1, contradicting the assumption.

(12) Since sgnn41}(I7) = 1, we have 8¢, n113(G) = 0, so that either {n,n+1} C C
or {n,n+1}NG=0.

(112) Since #F is odd, we have sz(F) = 1, so that sz(G) = 0, which implies that
#( is even. O
Lemma 4.3.19. If |G C Z are two non-empty finite subsets that are not orthogonal
wn Lo, then there exists an ODL-evaluation t on Lg such that t(F) = t(G) = 1.
Proof. Assume that there is no ODL-evaluation ¢ on Lg such that ¢(F) = t(G) = 1;

we prove that I and G are orthogonal in Ly. By Lemma 4.3.18 part (1), |f—g| < 2 for
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all f € Fand g € G. If F is a singleton, say F' = {0}, then § # & C {-2,-1,0,1,2},
so that by Lemma 4.3.18 part (i¢), either {—1,0,1} € G or {-1,0,1} NG = @; by
Lemma 4.3.18 part (i), #G is even, so that G = {~2,-1,0,1}, G = {-1,0,1,2}, or
G = {0, 4}, each of which is orthogonal to ' = {0} in L. Thus, we may assume that
#[ > 2 and #C > 2. By symmetry, we may assume that 0 € F is the minimum of
FUG, so that G C {0,1,2} and F C {0,1,2,3,4} since |f —g] < 2 for all f € F' and
g € G. Since #({—1,0} N F) =1 and ~1 ¢ G, by Lemma 4.3.18 part (i1), we have
0 ¢ G, so that G = {1,2} and therefore ' C {0,1,2,3}. Since #({0,1}NG) =1,
by Lemma 4.3.18 part (iz), we have 1 € F. Since #({2,3} NG) = 1, by Lemma
4.3.18 part (1), we have that either {2,3} C F or {2,3} N F' = 0, so that either
I'=1{0,1,2,3} or FF = {0, 1}, each of which is orthogonal to G. O
Lemma 4.3.20. Let F,CG € Ly with F £ G and F,G ¢ {0,Z}. Then F [ G,
F f FAG, and G° [ FCAG®.

Proof. Since F' £ G = G, we have ' L G°. We have I' Y FAG; otherwise,
F < FV(FAG) = FA(FAG) = G. We have G¢ [ F¢AG®; otherwise, G¢ <
GV (FCAG®) = GCA(FCAGe) = F€, so that ' < G. O
Lemma 4.3.21. The set of all ODL-evaluations on Ly is full.

Proof. Let F,C € Lo with ' £ G. We will prove that there exists an ODL-evaluation
t on Lg such that ¢(I') = 1 and ¢(G) = 0. We may assume that F,G ¢ {0,Z}, so
that by Lemma 4.3.20, F Y G¢, F L FAG, and G¢ } F¢AG*®. In case I is co-finite,
if G is finite, then sp(F) = 1 and sp(G) = 0; if G is co-finite, then G is finite, so
that ["*AG€ is finite; since G¢ Y FCAG®, by Lemma 4.3.19, there exists an ODL-

evaluation t3 on Lg such that t3(G¢) = t3(FCAG®) = 1, so that t3(F) = t3(["°) @ 1 =
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t3((FCAG)AGY) @ 1 = t3(FCAG®) @ t3(G°) @ 1 = 1 and t3(C) = 0. Thus, we may
assume that F' is finite. If G is finite, then FAG is finite and F Y FAG, so that by
Lemma 4.3.19, there exists an ODL-evaluation t; on Lg such that ¢, (F) = t1(FAG) =
1, which implies that ¢;(F) = 1 and ;(G) = 0. If G is co-finite, then G¢ is finite and
F Y G¢ so that by Lemma 4.3.19, there exists an ODL-evaluation ¢ on Lg such that
to( F) = t(G€) = 1, which implies that t5(F) = 1 and t2(G) = 0. 0
Theorem 4.3.22. SRODL s not locally finite.

Proof. By Lemma 4.3.21 and 4.2.8 , we have that Ly is an SRODL. By Lemma 4.3.14,
Lo is a 3-generated ODL. Hence, Lg is a 3-generated SRODL, so that SRODL is not

locally finite. O
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CHAPTER 5

GRAPH THEORY

5.1 Introduction of Graph Theory

In this chapter, we provide some basic graph theory notation and results. Unless
stated otherwise, we will follow the notation and terminology of West [35].

A graph G consists of a vertex set V(G) and an edge set E(G) where each edge
is wncident to two vertices (not necessarily distinct) called its endpoints. A graph is
a null graph if both of its vertex set and edge set are empty. If two distinct vertices
u and v are the endpoints of an edge e (denoted by e = wv), then we say that u
and v are adjacent, and u and e are incident. If two edges e and f share a common
endpoint, then we say that e and f are adjacent. An edge with identical endpoints
1s called a loop Edges that have the same pair of endpoints are called parallel edges
or multiple edges. If the two distinct endpoints of parallel edges have exactly £ > 2
common incident edges, then we call each edge a k-parallel-edge. An edge is simple if
it is neither a loop nor a parallel edge. A graph G is loopless if it does not contain a
loop. A graph G is ssmple if it is loopless and does not contain any parallel edges. The
degree of a vertex u, denoted by d(u), is the number of non-loop edges plus twice the
number of loops incident to u. A graph G is r-regular if every vertex of G is of degree

r. An wsomorphism from a graph G to a graph H is a bijection f: V(G) — V(H)

58
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such that f and f~! preserve the adjacency of vertices. We say that G is isomorphic
to H if there is an isomorphism from G to H. All graphs in this dissertation are

finite.

5.2 Connectivity

A path is a simple graph whose vertices can be ordered so that two vertices are
adjacent if and only if they are consecutive in the list of vertices. A cycle is a graph
with an equal number of vertices and edges whose vertices can be placed around a
circle so that two vertices are adjacent if and only if they appear consecutively along
the circle. Note that we consider a vertex with a loop to be a cycle. The girth of G
is the minimum size among all cycles in G. A graph G is connected if every pair of
vertices can be joined by a path in G, and is disconnected otherwise. A graph H is a
subgraph of a graph G, written as H C G, if both V(H) C V(G) and E(H) C E(G).
A component of a graph G is a maximal connected subgraph. A component (or a
graph) is trivial if it has no edges; otherwise it is non-trivial. To delete an edge e from
G, denoted by G\e, we remove e from E(G). To delete a vertex v from G, denoted
by G — v, we remove v from V(G) and remove the edges incident to v from E(G). To
contract an edge e from G, we replace the two endpoints of e by a single vertex whose
incident edges are the edges other than e that were incident to the two endpoints of
e. To contract a subgraph H of G means to contract all the edges in H.

Let G be a graph and let k be an integer. A cut-edge of C is an edge whose deletion
increases the number of components. Given S,T C V(G), we write [S, T for the set

of edges having one endpoint in S and the other in T. An edge-cut is an edge set of
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the form [S, S], where S is a nonempty proper subset of V(G) and S denotes V (G)\S.
We define mg(S, T) = |[S, T]| and mg(S) := |[S,S]|. When there is no ambiguity,
we write m(S,T) and m(S) instead of mg(S,T) and mc(S). A connected graph G
is k-edge-connected if G cannot be disconnected by deleting fewer than k edges. A
graph G is minwmally k-edge-connected if G is k-edge-connected and the result of any
edge deletion is not k-edge-connected. A graph G is essentially k-edge-connected if,
for any non-trivial partition [S,S], m(S) > k. We point out that contraction does
not decrease edge-connectivity.

Mader proved the following theorem in [21].

Theorem 5.2.1. Every mamimally k-edge-connected graph has a verter of degree k.

5.3 Edge-Block Tree

A graph with no cycle is acyclic. A tree is a connected acyclic graph. A leaf
is a vertex of degree one. In a connected graph, an edge-block is a maximal 2-edge-
connected subgraph. For a connected graph G, we define G5 to be the graph obtained
from G by contracting every edge-block in G. The following lemma shows that Gpg
is a tree and we call Gg the edge-block tree.
Lemma 5.3.1. Let G be a connected graph. Then Gpg 18 a tree.
Proof. It is clear that G is connected. Also, G has no cycle since every edge in G

is a cut-edge. Thus, Gp is a tree. O
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5.4 Immersion
We define the containment relationship of immersion between two graphs The
immersion relationship was first introduced by Nash-Wilhams [28, 29] and 1s weaker
than the minor or topological-minor relations As a matter of fact, this relation has
been studied for over forty years
A graph H 1s a munor of a graph G 1if a copy of A can be obtamned from G by

deleting or contracting the edges of G In a graph G, subdivision of an edge zy 1s
the operation of replacing zy with a path zzy through a vertex z not in G An H-
subdwvision (or subdwsion of H) 1s a graph obtaned from a graph H by successive
edge subdivisions A graph H'1s a pseudo-subdivision of a graph Hif V(H) C V(H')
and there exists a famuly {H,}.cpu) where each H, 1s a subgraph of H’ such that

(1) 1f e € E(H) jomns two distinct vertices z and y then H. 1s an zy-path and

V(H) NV (H) = (2,9},

(2) 1f e € E(H) jomns a vertex x to itself then H. 1s a cycle and V(H)NV (H) = {z},

(3) E(H;)NE(H}) = 0 for every pair e, f of distinct edges of H,

(4) V(H") = V(H) U U.cpan V(He), and

(5) B(H") = Uyepin EUHY)
Note that 1f we add the condition V(H;) N V(H};) C V(H) to (3), then H' 15 a
subdivision of H and H 1s a topological minor of a minor of H’ We say that a graph
H 1s immersed 1n a graph G or C contains H as an immersion, denoted by H < G if G
has a subgraph AH’, which 1s 1somorphic to a pseudo-subdivision of H We distinguish

vertices x 1n H' or mm G 1if x corresponds to a vertex in H In this case, we say that



62
x is from H. We also color all vertices and edges in G white if they do not belong to
H'. A component C is called white if all the edges and vertices in C are white. After
applying a graph operation to G, we say that the operation keeps H if the resulting

graph maintains H as an immersion.

5.5 Graph Operations
By splitting a degree-four vertex z in a graph G, we mean the operation illustrated
in Figure 5.1. Note that we allow the vertex z to have incident loops. If x has exactly
one incident loop, then to split z is equivalent to deleting the incident loop and
contracting an incident edge. If x has two incident loops, then to split z is equivalent

to delete x with the two incident loops.

N
VRS
Figure 5.1: Splitting a vertex

We use 5Ky, 3K¥, and K2 for the only 5-regular graphs on two vertices with
zero, two, and four loops, respectively. Let G be a graph and let H be a component
of G. We define the graph operation Oy(H) to mean deleting the component H in G.
A basic graph operation on an edge ¢ = zy in a 5-regular graph G is to delete e and
split z and y. We define Ok, k = 1,2,3,4, to mean the basic graph operation that
can be applied to a k-parallel-edge. These four basic graph operations are illustrated
by Figures 5.2 to 5.5. Note that O, Oy, Oz, Oy, and Oy(5K3) are all the possible

basic graph operations. We want to point out that Os is equivalent to contracting the
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three parallel edges to a vertex z and split . The graph operation O, is equivalent
to contracting the four parallel edges with an edge incident to them, so that O, does

not reduce edge-connectivity.

or

Lo~ ) L

Figure 5.2: Operation O,
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5.6 Generating and Splitter Theorems

A generating theorem for a class G of graphs tells us how to construct all the
members of G from a set of graphs by using a set of graph operations. Ideally, the
set of graphs and the set of graph operations are small.

Let k& and g be two integers with 1 < k < 5 and g > 0. Let ®,, be the class of
k-edge-connected 5-regular graphs of girth at least g. For example, ®, 5 is the class of
connected 5-regular loopless graphs. Let G, H € @ ,. We say that G can be reduced
to H within ®; , by a set O of graph operations if there is a sequence Gy, Gy, ..., G,
of graphs in @, such that Gy = G, G, = H, and each G; is obtained from G;_; by
applying a single graph operation in O. Moreover, G; < G;_1 holds for each i > 1.
Under this terminology, a splitter theorem is a result claiming the existence of a set
O of graph operations such that if G,H € &, and H < G then G can be reduced
within @, to H.

Steinitz and Rademacher [33] proved that the class G of 3-connected 3-regular
simple planar graphs can be generated from the tetrahedron by adding handles
(see Figure 5.6). Kanno [19] proved generating and splitter theorems for 3- and
4-regular graphs with various connectivities and girth. Ding, Kanno, and Su [7]
proved generating theorems for 5-regular planar graphs with certain restrictions for
edge-connectivity. In Chapter 6, we find generating theorems for 5-regular graphs
and 5-regular loopless graphs with different edge-connectivities. We also find splitter

theorems for 5-regular graphs with various edge-connectivities.
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Figure 5.6: Adding a handle
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CHAPTER 6

GENERATING AND SPLITTER THEOREMS

6.1 Generating Theorems for 5-Regular Graphs

In this section, we prove a sequence of theorems which state that if a 5-regular
graph G is k-edge-connected with girth at least g, then it can be reduced to one of
5Ky, 3K¥, or K2F within &, , by select graph operations from O;, Oy, O3, Oy, Os,
and Oy(5K3). To prove these results, it is sufficient to prove that G can be reduced
by one step.

In [7], we prove generating theorems for 5-regular planar graphs with certain re-
strictions for edge-connectivity. Note that generating theorems for 5-regular graphs
are inferred by the paper since planarity is not essential in the paper. In this disser-
tation, we do not require planarity, so that we can use fewer graph operations and
give simpler proofs for generating theorems.

A graph C is called an alternating path if it has vertices z1, o, ..., 29; With t > 1
such that there are three parallel edges from xq,_7 to zo, (1 = 1,2,...,t) and two
parallel edges from z9, to 29,41 (2 = 1,2,...,1 — 1). If we add two more edges from
Z1 to xo;, then the resulting graph is called an alternating cycle. Notice that an
alternating cycle is 5-regular, and an alternating path is “almost” 5-regular - other

than the two ends, all its vertices have degree five.

67
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Lemma 6.1.1. Let G be a 5-reqular connected graph. If G has no sumple edges, then
G 15 ether an alternating cycle or an alternating path with a loop at each of its ends
Proof Let H be the graph obtained from G by deleting all loops and then deleting
all but one edge from each parallel family. Clearly, H is connected. The maximum
degree of H 1s at most two and thus H 1s either a cycle or a path. If H has only two
vertices, then G 1s either the alternating path 3K¥ or the alternating cycle 5K,. If
H has more than two vertices, then G is an alternating cycle when H is a cycle and
G 1s an alternating path with two loops when H is a path. (W
Corollary 6.1.2. Let G be a 5-regular connected graph If G s not isomorphic to
5K, and has no stmple edges, then G contains a 3-parallel-edge
Lemma 6.1.3. Let G be a 5-reqular connected graph If O and Oz cannot be apphed
withan @g 1, then G 15 wsomorphic to 5Kj.
Proof Suppose that ¢ 1s not isomorphic to 5K3. Since O; cannot be applied in G,
there 1s no simple edges. By Corollary 6.1.2, O3 can be applied. O
Theorem 6.1.4. Every 5-regular graph can be reduced to 5Ko, 3K%, or K2L' within
D1 by Oy, O3, and Ou(5K3)
Proof 1t is clear that 5K5, 3K%, and K2 are the only possible 5-regular graphs with
no more than two vertices. Let &G be a 5-regular graph with more than two vertices.
If G contains 5K5, then Oy(5K3) can be applied; otherwise, by Lemma 6.1.3, O; or
O3 can be applied 1in a component in G d
Lemma 6.1.5. Let x be a degree-four vertex in a connected graph. Then at least
one splitting at x results in a connected graph, unless every edge incident to x 15 a

cut-edge
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Proof Since z 1s of degree four, 1t has four incident edges e, es, e3, and e4, where
e, = ¢, for 1 # j only 1if the edge e,e, 15 a loop Suppose that some e, say ey, 1s
not a cut-edge Then there 1s a cycle containing both e; and e, for some 7 #1 By
symmetry, we may assume 7 = 2 Then the splitting {e;, es}-{es, s} results in a
connected graph O
Lemma 6.1.6. Let G be a 5-reqular 2-edge-connected graph If O; and Oz cannot be
applied within ®1 1, then G 1s 1somorphic to 5K,
Proof 1f G has no simple edge, then by Lemma 6 1 1, either O3 can be applied within
®, 1, or C 18 1somorphic to 5K, Now assume that ' has a simple edge e = zy Note
that at most one of the four edges incident to x in G\e 1s a cut-edge in G\e Similarly,
at most one of the four edges incident to y in G\e 1s a cut-edge in G\e Note that
applying O; to e 1s equivalent to deleting the edge e and splitting the two degree-four
vertices By Lemma 6 15, O, can be applied within @, , Il
Lemma 6.1.7. Let G be a 5-regular connected graph and B be an edge-block in G
withm(B) =1 IfO; and O3 cannot be applied to B within @1 1, then B 1s 1somorphic
to 2L
Proof The proof 1s essentially the same as the proof of Lemma 6 1 6 O
We introduce a new graph operation Os, illustrated by Figure 6 1, which 1s needed

in the following Theorem
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TN

Figure 6 1 Operation Oy

Theorem 6.1.8. Every 5-reqular connected graph can be reduced to 5K,, 3KL, or
K3 wnthan @11 by Oq, Os, and Os

Proof Let G be a 5-regular connected graph with more than two vertices and suppose
that O; and O3 cannot be applied within ®;; If G 1s 2-edge connected, then by
Lemma 6 1 6, ¢ 1s 1somorphic to 5Ky Otherwise, by Lemma 6 1 7, every edge-block
B with m(B) = 1 hasto be 2L, 1e, every leaf in Gg 1s 2L 1n G In the tree Gp, pick
a vertex as a root and build a tree structure Pick a leaf & with longest path to the
root Let e = zy be the edge incident to this leaf Note that the children of y are
all leaves Since O; cannot be applied to e within ®; 1, by Lemma 6 1 5, y 1s a single
vertex 1n G and all the edges incident to y are cut-edges Thus, y has four children,
1e, y 1s incident to four 2L°s in G, so that Os can be applied within &4 ]
Lemma 6.1.9. Let G be a k-edge-connected graph with k € {2,3,4} Let z be a
verter of degree four in G Then there exists a k edge connected outcome by splitting
x

Proof Suppose that no outcome by splitting x 1s k-edge-connected If z 1s incident
to a loop, then the outcome 1s clearly k-edge-connected So we may assume that z is

not mcident to a loop
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Let zx1, %%y, zx3, 74 be the four edges incident to z. Consider the splitting
{zzy,zT2} — {ZT3, TZ4}. Since the resulting graph is not k-edge-connected, V(G\z)
has a partition [Xy2, X34] such that z1,2e € Xi2, 23,24 € X34, and m( Xz, X34) <
k—1. Similarly, the other two splitting give us the partitions [ X3, Xo4] and [X14, Xo3).
For simplicity, we define X,, := X,, in case 1+ < 7. For 1 € {1,2,3,4}, let X, :=
M, Xy and Yy := (4, ts, ;26 Xk Note that for ¢ € {1,2,3,4}, z, € X,, so that X,
is non-empty.

For convenient of notation, we define a,, := m(X,, X,), b, = m(X,,Y,), and
¢y = m(Y,,Y;). Observe that X3 = XU X, UY3U Y, and X34 = Y1 UY, U X3U Xy
Since m(X12, X34) < k — 1, we have
(a13+a1a+ag3+age)+ (bra+bo1 b3y +baz) + (011 4o +bss+bas) < m(Xio, Xag) < k-1
By symmetry, we will have two other similar inequalities about m(X;3, X24) and

m(X14, Xa3). Sum up the three inequalities, we have

Z Z (ayy + byy) +SZb”§3 ~1). (6.1)
1=1 3=1,7%#1
Since me\x(X1) > k — 1, we have

(CL12 + a13 + CL14) -+ b11 + (blz + b13 + b14) = mG\I(Xl) 2 k‘ — 1.
By symmetry, we will have three other similar inequalities about ma\z(X2), meve(X3),

and meg\z(X4). Sum up the four inequalities, we have

Z Z (ay, + by,) +Zb"24 ~1). (6.2)
1=1 y3=1,77%1
Compare the inequalities 6.1 and 6.2, we have 4(k — 1) < 3(k — 1), which implies

k < 1, contradicting that k € {2,3,4}. O
Theorem 6.1.10. FEvery 5-reqular 2-edge-connected graph can be reduced to 5K,y or

3KE within @y, by O1, Oy, O3, and O.
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Proof Let G be a 5-regular 2-edge-connected graph with more than two vertices. If
there exists a non-loop edge e such that G\e is 2-edge-connected, then by Lemma
6.1.9, one of O;, i = 1,2,3,4 can be applied within ®;;. Now assume that every
non-loop edge in G is contained in an edge-cut of size two. Let G; be the graph
obtained from G by deleting all the loops. Then G, is minimally 2-edge-connected.
By Lemma 5.2.1, there is a vertex x of degree two in G;. By the way we construct
G, from the 5-regular graph G, = has an odd degree, contradicting that z has degree
two. (W]
Lemma 6.1.11. Let G be a 5-regular essentially 4-edge-connected graph with more
than two vertices. Let e be a non-loop edge in G. Then one of O1, Oy, and O3 can
be applied to e within @3 ;.
Proof. Note that G\e is essentially 3-edge-connected. In G\e, if z is incident to a
loop, then we split x by contracting the loop and an edge incident to z. Similarly,
if y is incident to a loop, then we split y. Let H be the outcome. Note that H is
essentially 3-edge-connected and every vertex in H is of degree at least 3. Thus, H
is 3-edge-connected. By Lemma 6.1.9, we can split the degree-four vertices (if exist)
in H within ®3;. Therefore, G can be reduced within ®3;. O
Theorem 6.1.12. Every 5-regular 3-edge-connected graph can be reduced to 5Ky or
3K¥ within @31 by Oy and O,.
Proof. Let G be a 5-regular 3-edge-connected graph with more than two vertices. If
G is essentially 4-edge-connected, then by Lemma 6.1.11, pick a non-loop edge that
is not a 3-parallel-edge, then G can be reduced within ®3; by O; or Op. Otherwise,

there exists a non-trivial edge-cut of size three. Choose a non-trivial edge-cut of size
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three with a smallest component A (in the sense of number of vertices). Contract
the other component A to a vertex z and add a loop to this vertex. Let H be the
resulting graph. Note that H is essentially 4-edge-connected. Pick a non-loop edge e
in H that is not a 3-parallel-edge and not incident to z. By Lemma 6.1.11, H can be
reduced within ®3; by O; or O;. We do the same graph operation on e in G. Then
G is reduced within &3 ;. O
Theorem 6.1.13. Fvery 5-regular 4-edge-connected graph can be reduced to 5Ky
within @471 by O1, Oq, and Os.

Proof Let (G be a 5-regular 4-edge-connected graph with more than two vertices.
Note that G has no loop since G is 4-edge-connected. If there exists an edge e such
that G\e is 4-edge-connected, then by Lemma 6.1.9, one of O,, 1+ = 1,2,3 can be
applied within ®4,. Now assume that every edge in G is contained in an edge-cut of
size four. Then G is minimally 4-edge-connected. By Theorem 5.2.1, there is a vertex
x 1n G of degree four, contradicting that G is 5-regular. a
Lemma 6.1.14. Let G be a 5-reqular 5-edge-connected graph with more than two
vertices. If there 1s an edge e such that G\e 1s essentially 5-edge-connected, then G
can be reduced within 51 by O1 and O,.

Proof. Use exactly the same argument in 6.1.9 on the two degree-four vertices in
G\e. O
Theorem 6.1.15. Fuvery 5-regular 5-edge-connected graph can be reduced to 5K,
within @5, by O and Oy

Proof Let G be a 5-regular 5-edge-connected graph with more than two vertices.

If there is an edge e such that G\e is essentially 5-edge-connected, then by Lemma
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6.1.14, ¢ can be reduced within ®5;. Otherwise, there exists a non-trivial edge-cut
of size five, pick one with a smallest component (in the sense of number of vertices),
contract the other component to one vertex. The resulting graph has to be 5Kj,

contradicting the way we choose the edge-cut. O

6.2 Generating Theorems for 5-Regular Loopless Graphs

Let G be a 5-regular loopless k-edge-connected graph where k£ € {0,1,2,3}. We
replace each of the subgraphs in G that is isomorphic to one of L, Ly, and L3, shown
in Figure 6.2, by a vertex with an incident loop, replace each of the subgraphs in G
that is isomorphic to L4, shown in Figure 6.2, by a vertex with two incident loops,
and let (¢; be the outcome. Note that each replacement is equivalent to contracting
the subgraph to a vertex and attach enough loops to this vertex so that it has degree
five. Hence, the resulting graph Gy, is 5-regular k-edge-connected. We denote a vertex
with two incident loops by 2L. Notice that, each 2L in G, is a subgraph isomorphic
to one of Ly, Ls, and Lg in G. We say that an edge e in G is incident to a subgraph
S of G if, S is 1somorphic to L, for some + € {1,2,...,6}, and the corresponding edge
e n (G, is incident to the loop in G corresponding to S in G. An edge e in G is said
to be special associate with a subgraph S isomorphic to Ly if it is incident to S and is
incident to a 3-parallel-edge in .S; the corresponding edge e in G, is said to be special
associate with the loop in G, corresponding to S in . Note that, if a non-loop edge
e = zy in G, 1s not special and z is incident to a loop, then there is a splitting at z

in G'\e that does not create a loop and the resulting graph is k-edge-connected.
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= D> b

(a) Ly (b) Lo (c) Ls (d) L4
(e) Ls (f) Le

Figure 6 2 The “loop(s)” mn G,

We now present seven lemmas

Lemma 6.2.1. Let G be a 5-regular loopless graph If G contains no 2L’s, then G,
contains a non-loop edge that s not special

Proof Assume on the contrary that all non-loop edges in G, are special Suppose
that we have s special edges and [ loops Since every special edge 1s incident to a loop
i G, we have s <[ Since every non-loop edge 1s incident to at most two loops and
every loop 1s incident to exactly three edges, we have 3] < 2s Thus, 3s < 3l < 2s,
so that s = 0, a contradiction O
Lemma 6.2.2. Let G be a 5-reqular loopless graph If G, 1s not 1somorphic to 3K ¥
and contains no 2L’s, then G contains at least two non-loop edges that are not
special

Proof Assume on the contrary that (7 contains at most one non-loop edge that 1s
not special Suppose that we have e edges and [ loops Since every special edge

incident to a loop, we have e — 1 < [ Since every non-loop edge 1s incident to at
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most two loops and every loop is incident to exactly three edges, we have 3 < 2e.
Thus, 3(e — 1) < 3] < 2e, so that e < 3. Hence, Gy is isomorphic to 3K¥, a
contradiction. d
Lemma 6.2.3. Let G be a loopless graph and x be a vertex of degree four wn G. If
every splitting at x produces a loop, then x 1s incident to a 3- or 4-parallel-edge.
Proof Let xxy, xxy, xxs3, and zz4 be the four incident edges. Consider the splitting
{zz1, 220} — {223, 224}. By symmetry, we may assume that z;z; is a loop in the
resulting graph, i.e., z; = z2. Now consider the splitting {zxs, z23} — {224, 22:}. By
symmetry, we may assume that z,x3 is a loop in the resulting graph, i.e., zo = x3.
Hence, z is incident to x; which is a 3- or 4-parallel-edge. ]
Lemma 6.2.4. Let G be a 5-regular loopless graph such that Oz and O4 cannot be
applied wnthin @oo. If e 15 a 3- or 4-parallel-edge, then e 1s wn a subgraph 1somorphic
to one of Ly, Lo, and Ly.

Proof. If e is a 4-parallel-edge, then since O4 cannot be applied, e is in a subgraph
isomorphic to Ly;. We now assume that e is a 3-parallel-edge. Note that applying O;
to e is equivalent to contracting the three parallel edges to a vertex x and splitting x.
Let H be the outcome by contracting the three parallel edges to x. By Lemma 6.2.3,
x is incident to a 3- or 4-parallel-edge in H. Hence, e is in a subgraph isomorphic to
Lqor Ly. O
Lemma 6.2.5. Let G be a 5-regular loopless graph such that Oz and O4 cannot be
applied within ®oo. If e = zy 15 a simple edge in G such that every splitting at x n
G\e produces a loop, then e s either wn or incident to a subgraph isomorphic one of

Ll, L2, and L4.
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Proof. By Lemma 6.2.3, we may assume that x is incident to a 3- or 4-parallel-edge
f. By Lemma 6.2.4, f is in a subgraph S isomorphic to one of Ly, L, and L. Thus,
e is either in or incident to the subgraph S that is isomorphic to one of L, Ly, and
Ly. a
Lemma 6.2.6. Let G be a 5-regular loopless graph with more than two vertices. Let
e be an edge of CG. If no basic graph operations can be applied to e within ®g4, then
e 18 either a special edge or wn a subgraph isomorphic to one of Ly, Ly, L3, and Ly.
Proof. Let e be a k-parallel-edge with endpoints z and v in G where k € {1,2,3 4,5}
and suppose that e is not in a subgraph isomorphic to one of L;, Ly, and L4. Since
Oo(5K>,) cannot be applied within ®q9, k£ # 5. By Lemma 6.24, k # 3,4. If k = 1,
then by Lemma 6.2.5, e is incident to a subgraph isomorphic to one of Ly, Lo, and
Ly; since Op cannot be applied within @, e is a special edge. We now assume k = 2.
Note that applying Os to e can be viewed as contracting the two 2-parallel-edges to
a vertex z and splitting the degree-six vertex z, i.e., delete the vertex x and pairing
the six incident edges. By a similar argument to Lemma 6.2.3, we know that z is
incident to a 4-, 5-, or 6-parallel-edge. Hence, e is in Ly, L3, or Ly. (I
Lemma 6.2.7. Let G be a 5-reqular loopless connected graph with more than two
vertices If no basic graph operations can be apphed i G within ®go, then every
non-loop edge in G 1s special
Proof. Let e be a non-loop edge in G. Then e in G is not in a subgraph isomorphic

to one of Ly, Lo, L3, and Ly. By Lemma 6.2.6, e is special. 1
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Here we introduce two graph operations illustrated in Figures 6.3 and 6.4, which

are needed in the following theorem.

__.> ?0r> (or>

Figure 6.3: Operation Og

—)

Figure 6.4: Operation Oy

Theorem 6.2.8. Every 5-regular loopless graph can be reduced to 5Ky within ®q o by
O1, Oy, O3, O4, Op(5K,), O, and Oy.

Proof. Let G be a 5-regular loopless graph with more than two vertices. Suppose that
no basic graph operation can be applied in G within ®4,. By Lemma 6.2.7, every
non-loop edge in G, is special. Let e be an edge in G. If e is special associate with
one loop, then Uy can be applied within @, in G. If e is special associate with two

loops, then O7 can be applied within ®¢4 in G. O

Lemma 6.2.9. Let G be a 5-reqular loopless connected graph and B be an edge-block
m Gp with m(B) = 1. If no basic graph operations can be applied to an edge in B

within ®, 5, then B s 1somorphac to 2L in G.

Proof. Let B’ be a disjoint copy of B and connect B and B’ by the cut-edge. Let H
be the outcome. By Lemma 6.2.2, H is isomorphic to 3K¥ or K2L. Since H has a

cut-edge, it has to be isomorphic to K2L, so that B is isomorphic to 2L in Gp. O
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Here we introduce the graph operations Og, Og, and Oiq illustrated in Figures
6.5, 6.6, and 6.7, respectively. For a graph operation O, we use O(L) to mean the
graph operation obtained from O by replacing each of the 2L’s by one of L4, Ls, and

Lg, and each of the single loop by one of L, Ly, and Ls.

C

— or Cor

~

Figure 6.5: Operation Og

—

Figure 6.6: Operation Oq

—

Figure 6.7: Operation Oyq

Theorem 6.2.10. Every 5-regular loopless connected graph can be reduced to 5K,
within @12 by Oy, Oy, O3, Oy, Os(L), Os(L), Og(L), and O14(L).

Proof. Let G be a 5-regular loopless connected graph with more than two vertices.
Suppose that no basic graph operations can be applied within &, ;. In the edge-block

tree (Gr)p, we choose a longest path and let z be a leaf in this path. Let e = zy
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be the edge mncident to x If v 1s a single vertex in G, then since O; cannot be
applied within @, 5, by Lemma 6 1 5, all the edges incident to v are cut-edges, thus,
y 1s mcident to at least four leaves in (G )p, 1€, v 1s incident to at least four 2L’s 1n
G, so that Os(L) can be applied within ®;, We may assume that y 1s not a single
vertex If e 1s not mcident to a 3-parallel-edge in G, then Og can be applied within
®,, Now assume that e 1s incident to 3-parallel-edges in G If e 1s a special edge,
then Og can be applied within &5 Otherwise, v in (Gp)p 1s the three 3-parallel-
edges in G and at least three edges incident to y are cut-edges Hence, O1o(L) can
be applied within &, 5 0
Lemma 6.2.11. Let G be a k-edge-connected graph with k € {0,1,2,3,4} Let x be
a vertex of degree four in G If there exists a splitting at x producing a new loop and
the outcome 1s k-edge-connected, then every splitting at x 1s k-edge-connected
Proof Since a splitting at z producing a new loop, there are two parallel edges e;
and e, having common endpoints  and y Change the pairing of the split and notice
that the new outcome can be obtained from contracting e; and e; Hence, the new
outcome 1s also k-edge-connected O
Lemma 6.2.12. Let G be a 5-regular loopless k-edge-connected graph with more than
two vertices where k € {2,3} If no basic graph operations can be applied in G within
o, then every non-loop edge in G 1s either a special edge or in an edge-cut of size
kwm Gy
Proof Suppose that e = zy 1n G 1s a non-loop edge that 1s not 1n an edge-cut of
size k Then Gp\e 1s k-edge-connected, so that by Lemma 6 1 5, there exists a basic

graph operation that can be apphed in G within ®,; Since O cannot be applied in G



81
within @y o, there exists a outcome containing a loop, so that by Lema 6.2.11, every
outcome contains a loop, i.e., O cannot be applied within ®5. By Lemma 6.2.6, ¢
has to be a special edge. O
Theorem 6.2.13. Fuvery 5-regular loopless 2-edge-connected graph can be reduced to
5Ky within $q4 by O, O,, O3, Oy, and Os.

Proof. Let G be a 5-regular loopless 2-edge-connected graph with more than two
vertices and suppose that no basic graph operations can be applied within ®9,. If
G is 3-edge-connected, then by Lemma 6.2.12, every edge in (G is special. This
contradicts Lemma 6.2.1. Suppose that G, is not 3-edge-connected, so that it contains
an edge-cut of size two. Choose an edge-cut {fi, fo} with a smallest component (in
the sense of number of vertices). We replace the edge-cut {f1, f2} in this component
by an edge e and let H be the outcome. Then H is 3-edge-connected. By Lemma
6.2.12, every edge in H other than e is special. By Lemma 6.2.2, H is isomorphic to
3K£. Replace the non-loop edge that is not special by the 2-edge-cut set and one can
verify that Og can be applied within &, in G in this case. O

We introduce the graph operations Oy, and O, illustrated in Figures 6.8 and 6.9,

respectively. These two operations are needed in the following theorem.

— (/or ( or
DG D)

Figure 6.8: Operation Oy,
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e

Figure 6.9: Operation O,

Theorem 6.2.14. Fvery 5-regular loopless 3-edge-connected graph can be reduced to
5K, within ®32 by Oy, Oy, O3, O11(L), and O15(L).
Proof. Let G be a 5-regular loopless 3-edge-connected graph with more than two
vertices and assume on the contrary that none of O, Oy, and O; can be applied
within ®3,. If there is no non-trivial edge-cut of size three in G, then Oy or Oy,
can be applied within @3, in G. Otherwise, we choose a non-trivial edge-cut F' of
size three such that G\F has a smallest component H (in the sense of number of
vertices). Note that each edge in H is in a trivial edge-cut of size three, so that is
incident to loop(s). Hence, Oy; or Oy5 can be applied within @35 in G. O
Notice that, a 5-regular 4-edge-connected graph is loopless. Thus, the following
two corollaries are implied by Theorem 6.1.13 and Theorem 6.1.15.
Corollary 6.2.15. Every 5-regular 4-edge-connected graph can be reduced to 5K,
within @45 by O1, Oq, and Oj.
Corollary 6.2.16. Every 5-regular 5-edge-connected graph can be reduced to 5K;

within @54 by Oy and O,.
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6.3 Splitter Theorems for 5-Regular Graphs

In this section, we find splitter theorems of 5-regular graphs for different edge-
connectivities. We denote by @ 4(H) the class of k-edge-connected 5-regular graphs
of girth at least g that contains H as an immersion.
Theorem 6.3.1. If G, H € &g, and H < G, then G can be reduced to H within $g;
by Oy, Oy, O3, Oy, or Op(5K3).
Proof Suppose G # H. We only need to show that G can be reduced one step in
@ 1(H). Choose an arbitrary white edge e in G. If e is in a component isomorphic to
5K, then apply Oy(5K3). Otherwise, apply one of Oy, Oy, O3, and Oy by deleting e
and splitting the two degree-four vertices. |
Lemma 6.3.2. Let G,H € ®;, and H < G. Let e be a white cut-edge in G and C
be a white component with more than one vertices in G\e. Then one of Oy, Os, and
Os can be applied within ©11(H).
Proof Make a copy C’ of C and connect C' and C’ by the edge e. Denote this graph
by G’. By Theorem 6.1.8, one of Oy, O3, and Os can be applied to G’ without
disconnecting the graph. Note that, the operation cannot be applied to the edge e¢;
otherwise, the resulting graph would be disconnected. Thus, the operation could be
applied to either C or C’. By symmetry, we may assume that it is applied to C.
Apply the same operation to the corresponding edge(s) in G. Since C is white, the
resulting graph is in @ 1(H). O
Theorem 6.3.3. If G, H € 11 and H < G, then G can be reduced to H wnthin @, ,

by 017 02; 037 04; or 05'
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Proof. We only need to show that G can be reduced in ®,;(H) for one step.

Note that, if e is a white cut-edge in G and C is a white component in G\e is a
white component with one vertex, then C' is a vertex with two incident loops.

(i) Suppose that there exists a white cut-edge e = zy in G and C is a white
component in G\e. If C' has more than one vertices, then by Lemma 6.3.2, G can be
reduced by O, O3, or Os. We may assume that y is incident to 2L and splitting x
disconnects the graph. Since we have a white component in the resulting graph, we
can change the pairing for the splitting. By Lemma 6.1.5, we may assume that z has
four incident cut-edges in G\e. Then at least three of them are white cut-edges. By
a similar argument, we may assume that each of the three white cut-edges incident
to a 2L, so that Os can be applied within & ,(H).

(1) Suppose that there is no white cut-edge. Let e = zy be a white edge. Then
H < G\e. If a splitting at x disconnects the graph, then we can change the pairing
for the splitting since we have a white component in the resulting graph, so that by
Lemma 6.1.5, we can split z to obtain a connected outcome. Suppose that splitting
x gives us a connected outcome (7. Assume that splitting y at Gy disconnects the
graph. Similarly, we can change the pairing, so that by Lemma 6.1.5, we can split y
to obtain a connected outcome since y does not have four incident cut-edges. O
Lemma 6.3.4. Let G, H € &y, and H < G. Let {e1, e2} be an edge-cut {ey, ez} with
e1 as a white edge. Then one of O1, Oy, Oz, and Oy can be applied within &5 1(H).
Proof. Note that both e; and e, are white, so that there exists a white component
C in G\{ey,es}. Make a copy C’ of C' and connect with C' through e;,es. Let G’ be

the outcome. By Theorem 6.1.10, one of Oy, O,, O3, and O4 can be applied within
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®, ;. Apply the same operation to the corresponding edge(s) in G. Then G is reduced
within @4, (H). O
Theorem 6.3.5. IfG,H € ®3; and H < G, then G can be reduced to H within ®q
by O1, Oy, O3, or Oy.

Proof. Let e = zy be a white edge. By Lemma 6.3.4, we may assume that G\e
is 2-edge-connected. If splitting  in G\e reduces the edge-connectivity, then the
outcome has a white component, so that we can change the pairing and keep the edge-
connectivity by Lemma 6.1.9. Similarly, if splitting y reduces the edge-connectivity,
then the outcome has a white component, so that we can change the pairing and keep
the edge-connectivity. Thus, G can be reduced within & ;(H). a
Lemma 6.3.6. Let {e1, ez, e3} be an edge-cut and C be a white component with more
than one vertices in G\{ey, ez, es}. Then one of Oy, Oy, and O3 can be applied within
;54 (H).

Proof. Make a copy C’ of C and connect with C through ey, es,e3. Let G’ be the
outcome. By Theorem 6.1.12, one of O;, O,, and O3 can be applied within @3 ;.
Apply the same operation to the corresponding edge(s) in G. Then G is reduced
within ®3,(H). 0
Theorem 6.3.7. If G, H € ®3; and H < G, then G can be reduced to H within @34
by Oy, Oy, or Os.

Proof. Let e = zy be a white edge. If G'\e is not 3-edge-connected, then there is a
white component C' in G\e. If C has more than one vertices, then by Lemma 6.3.6, G
can be reduced within ®3,(H). Otherwise, we can apply graph operation to e within

@3)1(H).
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Now suppose that G\e is 3-edge-connected. If splitting z reduces the edge-
connectivity, then the outcome has a white component, so that we can change the
pairing and keep the edge-connectivity by Lemma 6.1.9. Similarly, if splitting y re-
duces the edge-connectivity, then the outcome has a white component, so that we can
change the pairing and keep the edge-connectivity. Thus, G can be reduced within
®5,(H). O
Lemma 6.3.8. Let {ey,eq,€3,e4} be an edge-cut and C is a white component in
G\{e1, €2, €3,e4}. Then one of O1, Oy, and O3 can be applied within $41(H).
Proof. Make a copy C’ of C and connect with C through e, ez, e3,e4. Let G’ be the
outcome. By Theorem 6.1.13, one of Oy, Oy, and O3 can be applied within @4 ;.
Apply the same operation to the corresponding edge(s) in G. Then G is reduced
within ®44(H). O
Theorem 6.3.9. If G, H € &4, and H < G, then G can be reduced to H within @4,
by O, O, or Os.
Proof. Let e = zy be a white edge. By Lemma 6.3.8, we may assume that G\e is
4-edge-connected. If splitting = reduces the edge-connectivity, then the outcome has
a white component, so that we can change the pairing and keep the edge-connectivity
by Lemma 6.1.9. Similarly, if splitting y reduces the edge-connectivity, then we have
a white component, so that we can change the pairing and keep the edge-connectivity.
Thus, G can be reduced within ®,,(H). O
Theorem 6.3.10. [f G,H € ®5; and H < G, then G can be reduced to H within

@571 by 01 or 02.



87
Proof. Let e = xy be a white edge. If splitting x results an edge-cut of size four that
do not incident to y, then we have a white component, so that we can change the
pairing and apply Lemma 6.1.14. Similarly, if splitting y results an edge-cut of size
four, then we have a white component, so that we can change the pairing and obtain

a 5-regular outcome. Thus, G can be reduced within ®5,(H). O



CHAPTER 7

CONCLUSIONS AND FUTURE WORK FOR PART I AND PART II

This dissertation consists of two parts: lattice theory and graph theory.

In the lattice theory part, we define and characterize five m-versions of distribu-
tivity via exclusion systems. A possible extension for future research is to find the
m-versions of modularity and characterize them via exclusion systems. In this disser-
tation, we restrict the distributivity conditions on 3-elements antichains. A natural
extension is to find similar results restricting to n-element antichains for n > 4 or for
infinite antichains.

We also introduce a labeling method and use this method to construct an infinite
3-generated SRODL, a consequence of which is that ODL is not locally finite. We
know that not every OML can be embedded into an ODL. It is natural to ask which
OMLs can be embedded into ODLs. We know that the class of all SRODLs is a
variety. But it remains open to us that whether or not the class of all OMLs that can
be embedded into ODLs is a variety.

In the graph theory part, we find generating and splitter theorems for 5-regular
graphs of various edge-connectivities. We also find generating theorems for 5-regular
loopless graphs of various edge-connectivities. A natural direction for future work

is to find generating theorems and splitter theorems with other restrictions of girth
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and edge-connectivity. Another possible direction is to find generating and splitter
theorems for planar graphs or other surfaces, e.g., the projective plane and the klein

bottle.
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