20 research outputs found

    On Geometric Spanners of Euclidean and Unit Disk Graphs

    Get PDF
    We consider the problem of constructing bounded-degree planar geometric spanners of Euclidean and unit-disk graphs. It is well known that the Delaunay subgraph is a planar geometric spanner with stretch factor C_{del\approx 2.42; however, its degree may not be bounded. Our first result is a very simple linear time algorithm for constructing a subgraph of the Delaunay graph with stretch factor \rho =1+2\pi(k\cos{\frac{\pi{k)^{-1 and degree bounded by kk, for any integer parameter k14k\geq 14. This result immediately implies an algorithm for constructing a planar geometric spanner of a Euclidean graph with stretch factor \rho \cdot C_{del and degree bounded by kk, for any integer parameter k14k\geq 14. Moreover, the resulting spanner contains a Euclidean Minimum Spanning Tree (EMST) as a subgraph. Our second contribution lies in developing the structural results necessary to transfer our analysis and algorithm from Euclidean graphs to unit disk graphs, the usual model for wireless ad-hoc networks. We obtain a very simple distributed, {\em strictly-localized algorithm that, given a unit disk graph embedded in the plane, constructs a geometric spanner with the above stretch factor and degree bound, and also containing an EMST as a subgraph. The obtained results dramatically improve the previous results in all aspects, as shown in the paper

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(55)/2=2.1755\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    On the Stretch Factor of Polygonal Chains

    Full text link
    Let P=(p1,p2,,pn)P=(p_1, p_2, \dots, p_n) be a polygonal chain. The stretch factor of PP is the ratio between the total length of PP and the distance of its endpoints, i=1n1pipi+1/p1pn\sum_{i = 1}^{n-1} |p_i p_{i+1}|/|p_1 p_n|. For a parameter c1c \geq 1, we call PP a cc-chain if pipj+pjpkcpipk|p_ip_j|+|p_jp_k| \leq c|p_ip_k|, for every triple (i,j,k)(i,j,k), 1i<j<kn1 \leq i<j<k \leq n. The stretch factor is a global property: it measures how close PP is to a straight line, and it involves all the vertices of PP; being a cc-chain, on the other hand, is a fingerprint-property: it only depends on subsets of O(1)O(1) vertices of the chain. We investigate how the cc-chain property influences the stretch factor in the plane: (i) we show that for every ε>0\varepsilon > 0, there is a noncrossing cc-chain that has stretch factor Ω(n1/2ε)\Omega(n^{1/2-\varepsilon}), for sufficiently large constant c=c(ε)c=c(\varepsilon); (ii) on the other hand, the stretch factor of a cc-chain PP is O(n1/2)O\left(n^{1/2}\right), for every constant c1c\geq 1, regardless of whether PP is crossing or noncrossing; and (iii) we give a randomized algorithm that can determine, for a polygonal chain PP in R2\mathbb{R}^2 with nn vertices, the minimum c1c\geq 1 for which PP is a cc-chain in O(n2.5 polylog n)O\left(n^{2.5}\ {\rm polylog}\ n\right) expected time and O(nlogn)O(n\log n) space.Comment: 16 pages, 11 figure

    Robust Geometric Spanners

    Full text link
    Highly connected and yet sparse graphs (such as expanders or graphs of high treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We initiate the study of such highly connected graphs that are, in addition, geometric spanners. We define a property of spanners called robustness. Informally, when one removes a few vertices from a robust spanner, this harms only a small number of other vertices. We show that robust spanners must have a superlinear number of edges, even in one dimension. On the positive side, we give constructions, for any dimension, of robust spanners with a near-linear number of edges.Comment: 18 pages, 8 figure
    corecore