4,972 research outputs found

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    A modified Alamouti scheme for frequency selective channels incorporating turbo equalization

    Get PDF

    The Error-Pattern-Correcting Turbo Equalizer

    Full text link
    The error-pattern correcting code (EPCC) is incorporated in the design of a turbo equalizer (TE) with aim to correct dominant error events of the inter-symbol interference (ISI) channel at the output of its matching Viterbi detector. By targeting the low Hamming-weight interleaved errors of the outer convolutional code, which are responsible for low Euclidean-weight errors in the Viterbi trellis, the turbo equalizer with an error-pattern correcting code (TE-EPCC) exhibits a much lower bit-error rate (BER) floor compared to the conventional non-precoded TE, especially for high rate applications. A maximum-likelihood upper bound is developed on the BER floor of the TE-EPCC for a generalized two-tap ISI channel, in order to study TE-EPCC's signal-to-noise ratio (SNR) gain for various channel conditions and design parameters. In addition, the SNR gain of the TE-EPCC relative to an existing precoded TE is compared to demonstrate the present TE's superiority for short interleaver lengths and high coding rates.Comment: This work has been submitted to the special issue of the IEEE Transactions on Information Theory titled: "Facets of Coding Theory: from Algorithms to Networks". This work was supported in part by the NSF Theoretical Foundation Grant 0728676

    Matching Tree-Level Matrix Elements with Interleaved Showers

    Get PDF
    We present an implementation of the so-called CKKW-L merging scheme for combining multi-jet tree-level matrix elements with parton showers. The implementation uses the transverse-momentum-ordered shower with interleaved multiple interactions as implemented in PYTHIA8. We validate our procedure using e+e--annihilation into jets and vector boson production in hadronic collisions, with special attention to details in the algorithm which are formally sub-leading in character, but may have visible effects in some observables. We find substantial merging scale dependencies induced by the enforced rapidity ordering in the default PYTHIA8 shower. If this rapidity ordering is removed the merging scale dependence is almost negligible. We then also find that the shower does a surprisingly good job of describing the hardness of multi-jet events, as long as the hardest couple of jets are given by the matrix elements. The effects of using interleaved multiple interactions as compared to more simplistic ways of adding underlying-event effects in vector boson production are shown to be negligible except in a few sensitive observables. To illustrate the generality of our implementation, we also give some example results from di-boson production and pure QCD jet production in hadronic collisions.Comment: 44 pages, 23 figures, as published in JHEP, including all changes recommended by the refere

    An efficient length- and rate-preserving concatenation of polar and repetition codes

    Full text link
    We improve the method in \cite{Seidl:10} for increasing the finite-lengh performance of polar codes by protecting specific, less reliable symbols with simple outer repetition codes. Decoding of the scheme integrates easily in the known successive decoding algorithms for polar codes. Overall rate and block length remain unchanged, the decoding complexity is at most doubled. A comparison to related methods for performance improvement of polar codes is drawn.Comment: to be presented at International Zurich Seminar (IZS) 201

    Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping

    Get PDF
    In this paper, we provide for the first time a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. As the blocklength decreases, however, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths and over the additive white Gaussian channel (AWGN), the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM), enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as energy-efficient shaping techniques. Numerical results show that MPDM and SpSh have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize the energy efficiency--is shown to have the minimum rate loss amongst all. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspective of latency, storage and computations.Comment: 18 pages, 10 figure

    Functional Dependencies Unleashed for Scalable Data Exchange

    Full text link
    We address the problem of efficiently evaluating target functional dependencies (fds) in the Data Exchange (DE) process. Target fds naturally occur in many DE scenarios, including the ones in Life Sciences in which multiple source relations need to be structured under a constrained target schema. However, despite their wide use, target fds' evaluation is still a bottleneck in the state-of-the-art DE engines. Systems relying on an all-SQL approach typically do not support target fds unless additional information is provided. Alternatively, DE engines that do include these dependencies typically pay the price of a significant drop in performance and scalability. In this paper, we present a novel chase-based algorithm that can efficiently handle arbitrary fds on the target. Our approach essentially relies on exploiting the interactions between source-to-target (s-t) tuple-generating dependencies (tgds) and target fds. This allows us to tame the size of the intermediate chase results, by playing on a careful ordering of chase steps interleaving fds and (chosen) tgds. As a direct consequence, we importantly diminish the fd application scope, often a central cause of the dramatic overhead induced by target fds. Moreover, reasoning on dependency interaction further leads us to interesting parallelization opportunities, yielding additional scalability gains. We provide a proof-of-concept implementation of our chase-based algorithm and an experimental study aiming at gauging its scalability with respect to a number of parameters, among which the size of source instances and the number of dependencies of each tested scenario. Finally, we empirically compare with the latest DE engines, and show that our algorithm outperforms them
    • …
    corecore