710 research outputs found

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≤⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≤d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    Colouring steiner quadruple systems

    Get PDF
    AbstractA Steiner quadruple system of order ν (briefly SQS(ν)) is a pair (X, B), where |X| = ν and B is a collection of 4-subsets of X, called blocks, such that each 3-subset of X is contained in a unique block of B. A SQS(ν) exists iff ν ≡ 2, 4 (mod 6) or ν = 0, 1 (the admissible integers). The chromatic number of (X, B) is the smallest m for which there is a map ϕ: X → Zm such that |ϕ(β)| ⩾ 2 for all β ϵ B. In this paper it is shown that for each m ⩾ 6 there exists νm such that for all admissible ν ⩾ νm there exists an m-chromatic SQS(ν). For m = 4, 5 the same statement is proved for admissible ν with the restriction that ν ≢ 2 (mod 12)

    Switching for Small Strongly Regular Graphs

    Full text link
    We provide an abundance of strongly regular graphs (SRGs) for certain parameters (n,k,λ,μ)(n, k, \lambda, \mu) with n<100n < 100. For this we use Godsil-McKay (GM) switching with a partition of type 4,n−44,n-4 and Wang-Qiu-Hu (WQH) switching with a partition of type 32,n−63^2,n-6. In most cases, we start with a highly symmetric graph which belongs to a finite geometry. To our knowledge, most of the obtained graphs are new. For all graphs, we provide statistics about the size of the automorphism group. We also find the recently discovered Kr\v{c}adinac partial geometry, therefore finding a third method of constructing it.Comment: 15 page
    • …
    corecore