Configurations and colouring problems in block designs

Abstract

A Steiner triple system of order v (STS(v)) is called x-chromatic if x is the smallest number of colours needed to avoid monochromatic blocks. Amongst our results on colour class structures we show that every STS (19) is 3- or 4-chromatic, that every 3-chromatic STS(19) has an equitable 3-colouring (meaning that the colours are as uniformly distributed as possible), and that for all admissible v > 25 there exists a 3-chromatic STS(v) which does not admit an equitable 3-colouring. We obtain a formula for the number of independent sets in an STS(v) and use it to show that an STS(21) must contain eight independent points. This leads to a simple proof that every STS(21) is 3- or 4-chromatic. Substantially extending existing tabulations, we provide an enumeration of STS trades of up to 12 blocks, and as an application we show that any pair of STS(15)s must be 3-1-isomorphic. We prove a general theorem that enables us to obtain formulae for the frequencies of occurrence of configurations in triple systems. Some of these are used in our proof that for v > 25 no STS(u) has a 3-existentially closed block intersection graph. Of specific interest in connection with a conjecture of Erdos are 6-sparse and perfect Steiner triple systems, characterized by the avoidance of specific configurations. We describe two direct constructions that produce 6-sparse STS(v)s and we give a recursive construction that preserves 6-sparseness. Also we settle an old question concerning the occurrence of perfect block transitive Steiner triple systems. Finally, we consider Steiner 5(2,4, v) designs that are built from collections of Steiner triple systems. We solve a longstanding problem by constructing such systems with v = 61 (Zoeโ€™s design) and v = 100 (the design of the century)

    Similar works