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A Steiner quadruple system of order v (briefly SQS(v)) is a pair  (X, ~) ,  where 
IXr = v and .~ is a collection of  4-subsets of  X, called blocks, such that each 3-subset 
of X is contained in a unique block of N. A SQS(v) exists iff v-=2, 4 (mud 6) or 
v = 0, 1 (the admissible integers). The chromatic number of (X, N)  is the smallest m 
for which there is a map ~0: %--, Z,,, such that I cp(fl)] ~> 2 for all fl ~ ~ .  In  this paper 
it is shown that for each m 1> 6 there exists v,, 7 such that for all admissible v ~> v,, 
there exists an m-chromatic SQS(v). For m = 4, 5 the same statement is proved for 
admissible v with the restriction that v ~ 2 (mud 12). © 1995 Academic Press, Inc. 

1. INTRODUCTION 

Should the reader wish a more comprehensive introduction to the topic 
of colourings of block designs there is an excellent survey article on the 
subject by A. Rosa and C. J. Colbourn [4] .  

Let X [ ~ ] = { y : y c _ X  and ]y] = k } ;  for a finite set K e N  the notation 
S(t, K, v) denotes a pair (X, -~), where ]X] = v, ~ _~ Uk~KX E~], and for all 
T ~ X  It] there is a unique f l ~ N  such that T~f l .  The elements of N are 
called blocks'. A Steiner quadruple system of order v (a SQS(v)) is then a 
S(3, {4}, v) and a Steiner triple system (briefly STS(v)) is any S(2, {3}, v). 
These systems are special hypergraphs, that is, pairs (X, ~ )  with N c ~ (X) ,  
where N(X) is the power set of X. A SQS(v) exists if and only if v - 2  or 
4 (mud6),  v > 0 ,  or v = 0 ,  1 [8]  (the admissible integers), and a STS(v) 
exists if and only if v =-1 or 3 (mud 6), v > 0 (see [7]) .  

An m-colouring of a hypergraph (X, ~ )  is any mapping cp: X--, C, where 
[C] = m, the elements of C are called colours. The colouring ~o is proper if 
[(p(fl)[ ~>2 for all f l ~ ,  where ~o(fl)= {(p(x):x~fl}.  The system (X, .~) 
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is m-chromatic if it has a proper m-colouring but no proper ( m - 1 ) -  
colouring. 

Regarding chromatic numbers of quadruple systems the problem of 
constructing 2-chromatic systems has received the most attention. Indeed, 
2-chromatic systems are known to exist for v = 4 , 8  (modl2)  [5],  
v=2.5~13b17 ~, a + b + c > O  [13] and v = 2 2  [12]. There are not many 
statements about higher chromatic numbers in the literature. By contrast, 
for Steiner triple systems it is known [2] that there are no non-trivial 
2-chromatic systems and that for each m >~ 3 there exists Vm such that for 
each v >/vm with v -  1, 3 (mod 6) there exists an m-chromatic STS(v). In 
this paper a similar result for quadruple systems is proved. 

THEOREM. For each m >~ 6 and admissible integer v >~ v m = 
128 (4m2+ 10m + 6) 4 -  10 there exists an m-chromatic SQS(v). For m = 4  
or 5 the same statement is true for  admissible v ~ 2  (rood 12) and 

128 (4m 2 Vm= W- + 2 m + 1 ) 4 - - 1 0 .  

A key ingredient in the proof is an infinite class of quadruple systems 
whose chromatic numbers tend to infinity with the order of the system. As 
will be demonstrated later, such a class is furnished by the affine spaces, 
AG(2, n). In brief if N is the collection of all 2-dimensional affine planes in 
F~ then (F], N) is a SQS(2n). It is worth pointing out that the existence of 
this nice class of quadruple systems makes it possible to avoid probabilistic 
methods in the proof of the above theorem (for comparison, see [ 2]). 

2. NOTATION AND TERMINOLOGY 

A SQS(v), (X, N), contains the SQS(w), (Y, cg), as a subdesign if Yc  X 
and cgcN.  A G-design o f  order v is a S(3, {4,6},v), where 6Iv and 
contains precisely v/6 disjoint blocks of size 6; it is abbreviated GD(v). The 
notion of a subdesign for G-designs is defined similarly. The admissible 
integers are denoted A s ,  while the admissible integers for a GD(v) are 
AG= {v>~0:v=--0 (mod6)}. The proposition that a SQS(v) exists is 
denoted S(v), while the proposition that a GD(v) exists is denoted G(v) 
(see [ 11 ] for an existence proof). 

The notation X =  A1 [ A2 I " "  ] A,  means that X is partitioned by the Ai. 
If P is a partition (colouring) of X and P contains precisely ai subsets of 
sizeg~, l~<i<~r, then P h a s  type al ~2 g l g 2  ..g~r. Note that if q): X ~  C is a 
colouring then {~o-l(e): c e C} is a partition of X, the partition into colour 
classes. In the sequel cp is identified with the partition of X that it induces. 
If the sizes of the colour classes differ by at most 1 then the colouring is 
equitable. An m-chromatic system that admits a proper, equitable 
m-colouring is said to be equitably m-chromatic. A subset S ~ X is strongly 
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cp-coloured if cp assigns a different colour to each point of S, equivalently 
the type of 9, on S is 1 jSl 

The pair (X, ~ )  is called a transverse quadruple system of type n ~, or for 
short a TRQS(nr), if there is a partition of X into n-sets G1, G2, ..., G,., 
called groups, such that (1)tflc~Gi] ~<1 for each i and each f le .~ ,  and 
(2) for each T f f •  [3] with ITc~G~[ ~< 1 for each i there is a unique / ? ~  
such that T_~ ft. 

The notations SQS(v)m and SQS(v)* denote an m-chromatic SQS(v) 
and an equitably m-chromatic SQS(v), respectively. The notation 
SQS(v)m+ (SQS(v)m-) denotes a SQS(v) with chromatic number at least 
(at most) m. Similarly the propositions S(v)~, S(v)*, S(v)m+_, G(v)m, 
G(v)m,, all have the obvious meanings. The proposition S(v)E~,b], a < b  
means that S(v)m holds for each integer value m e [a, b]. 

When constructing designs on point sets of the form A x B the abbrevia- 
tions ab = (a, b ) e A  x B and A b = A × {b} will be made. The shorthand ~B 
will be used for {a} x B. The symbol c~;q is the Kronecker delta: c~;o= 1 if 
p = q and c~pq = 0 otherwise. As usual Z,~ denotes the group of integers 
under addition modulo m. 

3. PRELIMINARIES 

We now prove a series of technical lemmas which will be used in the next 
section to obtain certain recursive constructions. 

LEMMA 3.1. Let ( X, ~ u H) be a G-design where N c X [4] and H is the 
parallel class of  blocks" of  size 6. I f  1-[' c X E 4] is such that for each 7 ~ H 
there is y' ~ H' such that 7' c 7 then x(X, ~ u H') >~X(X, ~ u H). 

Proof The proof is clear since any proper colouring of (X, ~ u H ' )  is 
also a proper colouring of (X, N u H). | 

LFMMA 3.2. Let (X,N)  be such that ~,@cflk r[4] and let S e X .  I f  
then 

X( X, ~)  <<,Z( X\S,  ~s) + I I@I. 

Proof Properly colour (J(\S, '~s) with the minimum number of colours 
and partition S into [-IS[/37 disjoint sets each of size at most 3. This gives 
a proper colouring of (X,.~) with Z(X\S,  Ns)+FISI/3-] colours. The 
lemma follows. I 

582a/70/1-4 
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The next lemma says that modifying the blocks incident with a "small" 
number of points in a quadruple system cannot increase the chromatic 
number by more than 1. 

LEMMA 3.3. Let ( X , ~ )  be a SQS(v) and let S ~ X ,  IS1<~3. I f  
F:..@--+X "[4] satisfies f l ~ S = ( 2 5 ~  F( f l )= f l  and f l n S C ( 2 5 ~  F(fl) n 
S ~  ~ then z(X,  F ( ~ ) )  <<.z(X, N)  + 1. 

Proof  By Lemma 3.2, 

z(X,  F ( ~ ) )  <~ z ( X \ S ,  F ( ~ ) s )  + [ ~ }  

~z(x,  ~1+ L ! 

LEMMA 3.4. Let cg~, cg,s~ ~ ( X ) ,  s = 0 ,  1, ..., n, and for  each s let ~s = 
{U;=oCg})w(U~=~+l~). I f  z ( X , ~ o ) < ~ m < ~ z ( X , ~ , )  and z ( X , ~ + , ) < ~  
z( X, ~ )  + 1 holds for each s then z( X, ~r) = m for some 0 <~ r ~ n. 

Proof  Clearly, somewhere along the way an m-chromatic system will 
be encountered. | 

LEMMA 3.5. Let ( X , ~ )  be a SQS(v) with a SQS(10), (y ,  c~), as a sub- 
design. I f  ( Y, ~ ' )  is another SQS(10) then z(X,  ~ - cg u cg,) <~z(X, ~ )  + 1. 

Proof  Let (p properly colour (X, ~ )  with the minimum number of 
colours. Since a SQS(10) has no independent set of size 6 [5]  the type of 
cp on Y takes one of the forms ~, 0~.4, ~ . 4  2, 1 . 4 . 5 ,  or 5 2 , where 
c~ = g~gZ22.., g~ is a type with each gi less than 4. Any subset of size 4 or 5 
in Y can contain at most one block of (g'. The lemma is now clear because 
in the worst case of all cases one new colour suffices to eliminate all the 
monochromatic blocks in cg, without introducing any new monochromatic 
blocks. | 

LZMMA 3.6. Let (X, ~ )  be a SQS(v) and let Y c  X. I f ( Y ,  ~)  and (Y, cg,) 
are two TRQS(n 4) designs with n <<. 3 and cg c ~ ,  then x( X, ~ - ~¢ w cg') <<. 
z(x, * )  + 1. 

Proof Let G'i, i-- 0, 1, 2, 3, be the groups of ( Y, cg,) and let q~ be a 
proper colouring of (X, ~ )  with the minimum number of colours. If 
(X, ~ -  <g w ~ ' )  has no ~o-monochromatic blocks there is nothing to prove; 
otherwise paint Gg with a new colour to get a proper colouring with 
Z(X, ~ )  + 1 colours. | 
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4. CONSTRUCTIONS 

In the first theorem the range of chromatic numbers in [ 2, m ] is realized 
by blending together the two doubling constructions of [ 5 ]. 

T~mom~M 4.1. S(v)m ~ S(2v)[2, m]. 

Proof Let ( X , ~ )  be a SQS(v)m and let ?(t"=-)iZxZ2. For each 
f l=[x,y,  z w ] s ~  and each e = 0 ,  1 let cg}={[xi, yj, z~,wl ] " i + j + k +  
l =  e (rood 2)}, so that cg} is the block set of a TRQS(24) with groups "Z2, 
a~fl. Let Cg°o=@o={[xo, Yo, x l , y l ] ' { x , y  } ~X~21}. Let t31,~2, ...,flq(v) 
be the blocks in N and write cg; for cg, ,~,, s= 1, 2 ..... q(v). Now, in the 
notation of Lemma 3.4 (read cg~ for cg,) each (X, .~,) is a SQS(2v) and 
x(X, ~0)=  2 while Z(X, ~q(~)>~m, since (X, ~q~)) contains two copies of 
the m-chromatic system (X, N). The result now follows from Lemma 3.4 
and Lemma 3.6. | 

THEOREM 4.2. S(v)m ~ S(3v-  2)m+. 

Proof This is an immediate consequence of the well-known tripling 
construction given in [8] (see also [6]). One simply carries out the con- 
struction in such a way that the resulting SQS(3v-  2) contains a copy of 
the original SQS(v)m. | 

TI~Om~M 4.3. S(v)m, ~ S ( 3 v - 2 ) t 3 .  m 3, m~>4. 

Proof First construct a SQS(3v-  2)3 from the SQS(v),~ by 
appropriately modifying the construction given in [8]; full details are in 
[10]. A brief summary of the construction goes as follows. Start with 
a SQS(v)m, ( { A } u X ,  N), and let X'={oo}w(XxZ3)  have proper 
3-colouring X ' =  {oo} w X  o ] X1 ] X2. For each [A, x,y, z] ~ a SQS(10) 
is constructed on the point set {oc}w({x ,y , z}xZ3)  and for each 
fl = Ix, y, z, w] e N not containing the point A a certain TRQS(34) design 
is constructed on the point set f ix  Z3 with groups aZ3, a eft. 

On the other hand, one may triple ({A} • X, N) as in Theorem 4.2 to 
get a SQS(3v - 2)m. It now follows from Lemmata 3.5, 3.6, and 3.4 that by 
replacing SQS(10)'s and TRQS(34)'s one at a time that a sequence of 
SQS(3v-2)  is produced, among which are systems with chromatic 
numbers from 3 to m. | 

TI-IEOREM 4.4. G(v)m ~ S(3v-  2)m+. 

Proof The tripling construction that will be used here is described in 
[9, Proposit ion8].  Let ({A}wX,  N) be a GD(v)m; for each f l ~ N  
construct a block set, C~, as follows: 
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(i) [/71=4 and Asfl. Write f l=[A,x ,y , z]  and let gp be the 
block set of a SQS(10) constructed on {oo}w({x ,y , z}xZ3)  so that 
[~,Xo, Yo,Zo], [O%Xo, Xl,X2], [oO, yo, yl,Y21, and [oe, Zo, Zl,Z2] are 
blocks of the design. 

(ii) I/?[=4 and A¢/?. Write f l=[x,y ,z ,  wl and let g~= 
{[x~,yj, zk, wl]: i+j+k+l=-O (mod3)}, so that ( f lxZ3,  gb) is a 
TRQS(34) design with groups ~Z3, a e/? and [Xo, Y0, zo, Wo] ¢ g/~. 

(iii) Jill=6 and Aeft.  Write /?= [A, x, y, z, t, ul and let 
(Z4xZ4, 9) be the 3-chromatic SQS(16) constructed in [101. Construct 
the block set g~ on { oo} w ({x, y, z, t, u} x Z3) by making the identification 

23 31 

Oo 03 01 

22 33 

12 lo 21 Xo Yo Zo to Uo 

13 3o 11 ~ oc x~ y~ zl tl ua 

02 2o 32 X2 Y2 Z2 t2 b/2 

and copying the blocks from 9.  Note that [0% Xo, Yo, to] e gp and also 
that [ o% ao, aa, a2] ~ Cp, for each a Efl\{A}. What is important here is the 
observation that if the elements 01 and 31 (in boldface type) are inter- 
changed on the left-hand side then the identification used in the construc- 
tion G(v) ~ S(3v - 2)3 is obtained (see [ 101). 

(iv) ]i l l=6 and A¢/?. Write f l=[x,y ,z , t ,  ulv] and construct a 
TRQS(36) design (/?xZ3, gp) with groups ~Z3, aefl, by copying the 
blocks of the TRQS(36) constructed in [ 11 ] via the map 0~ : 16 x Z 3 
flx Z3, where 

0p(1, 8) =xa,  0~(4, 8) = ta 1, 

0p(2, 8) =Ya+ 1, 0a(5, 8) = ua, 

O/~(3,8)=za, Op(6,8)=va+l. 

Note that [Y0, Zo, to, u01 ~g~, since [(2, 2), (3, 0), (4, 1), (5, 0)] is a block 
of the original design on /6 × Z3. It is important to observe that if 0p is 
modified by setting 0~(4, 8) = ta+l, instead of 0(4, 8) = ta_ 1, then the iden- 
tification map used in the construction G(v)~ S(3v-2)3 is obtained 
(again, see [ 10]). 

Now set ~ ' =  0 p ~ g p ,  then (X ' ,~ ' )  is a SQS(3v-2)  (see [9]). For 
each block [A,x ,y ,  zl or [ x , y , z , w ] ~  the copies [O%Xo, Yo, Zo] 
and [Xo, Yo, Zo, Wo]~{oe}WXo are retained, while for each block 
f l=[x ,y , z ,w, t ,u]  (resp. [ A, x, y, z, t, ul) there is 7 ~ '  with ]71=4 
and Y~flo (resp. 7=[oO, xo,Yo, Zo, to]). Thus, if ~ " = { f l E ~ ' : f l c  
(X o w { oo})} then Lemma 3.1 gives Z(Xo w { oe}, ~") ~ z ( X w  {A}, ~ )  
and, hence, z(X', ~')  >>. m. | 
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THEOP~M 4.5. G(V),~,~ S(3v-- 2)[3, m ~. 

Proof It is enough to check that the SQS(16) and TRQS(36) used in 
the construction G(v)m ~ S (3v -  2)3 may be replaced by their analogues in 
Theorem 4.4 without increasing the chromatic number by more than 1 each 
time, since Lemmata 3.5 and 3.6 ensure this for a SQS(10) or a TRQS(34). 
For each kind of replacement Lemma 3.3 may be applied. For example, 
interchanging 01 and 31 in the identification 0o, 23, 31, 12, 10, 21, 03, 01, 
13, 30, 11, 22, 33, 02, 2o, 32"-->oc, xo,Yo .... ,u2 for a single block 
[A, x, y, z, t, u] has the effect of applying a mapping F, where F satisfies 
the hypotheses of Lemma3.3 for S={Yo,YI} .  Similarly, if a single 
TRQS(36) is being replaced, one takes S =  { to, tl, t3} in the application of 
Lemma 3.3. I 

TI-IEOeCaM 4.6. S(V)m or G(v)m -,  S(6v - 10)6-. 

Proof The hextupling construction described in [6]  will be used. Let 
({A, B} w X, ~ )  be a SQS(v) if v is admissable and a GD(v) if 6]v, with A 
and B in the same block of size 6 in the latter case. Let 
J ( ' = { o o  o , o o l } ~ ( Z 6 x X ) .  On the set X'={OOo, OO~}w(Z6xZ3) con- 
struct the two block sets DFA(2) and DFB(2) as follows: 

DFA(2), 

[ai, (a + 2)~, ( a +  3 b +  1)j+l, ( a +  3 b +  1)i+2 ] : aEZ6,  ieZ3,  b~ {0, 1} 

[a~,(a+ 2)~,(a+ 3)i+k,(a+ 5)~_k] :a~Z6,  i ~ Z 3 , k ~ { 1 , 2 }  

[ai, (a + 2)/, ai+l, ( a + 2 ) i + l ]  : a~Z6 ,  i~Z3 

[ooj, ao, bl,  c2] : a + b + c = 3 j ( m o d  6), a, b, c 6 Z 6 , j e  {0, 1} 

[ai, (a + 3)i, (a+3-}-b) i+ 1 , ( a + 3  + b)~+l] : affZ6,  i~Z3,  bff {0, 1, 2}; 

DFB( 2 ), 

[ai, (a+ 1)i, hi+l, Ci+2]  : a + b +  c - 2 i  (mod 6), i~Z3,  a, b, c E Z  6. 

Let q): J(' ~ Z 6 be given by N(ooj) = 1 - j ,  j e  {0, 1}, q~(xi) = i, x i~X× Z6. 
Construct a set of blocks, gp, for each fl e N as follows (as usual small let- 
ters denote elements different from A or B): 

(i) f i = [ A , B , x , y ] .  Let C~ be the set of blocks of a SQS(14) 
constructed on the point set {OOo, O O l } U { x , y } x Z  6 so that 
[oo o, ~ l , x o ,  Yo]eN/~ and all blocks are properly cp-coloured. This is 
possible since any SQS(14) is a SQS(14)* [10]. 
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(ii) fl= [A, B,x,y,z, w]. Let gp be the block set of a SQS(26) 
constructed on the point set. {OOo, ool} u{x,y ,z ,w} x Z6 so that 
[ OOo, ooi, x0, Yo] ~ ~/~ and all blocks in gp are properly (p-coloured. One 
may use for this construction a SQS(26)* (see [ 10]) or even the SQS(26)z 
of [ 3 ] as both of these systems admit a proper, equitable 6-colouring. 

(iii) f l=  [A, x,y,z]. Take for gp the set of blocks obtained by 
making the idenfication OOo, ool, xi, yi, z~ ~ oo0, ool, 0~, 1~, 2~, i e Z6, and 
copying the blocks from DFA(2). 

(iv) f i=  [B, x,y, z]. Form d°p by sequentially identifying xi, y~,z~ 
with 0~, 1~, 2i, i~Z6 ,  and copy the blocks from DFB(2). 

(v) f i= [x,y ,z ,w].  Let ~ = {[xi, yi, zk, w t ] : i - - j + k - - l = l  
(rood 6)} so that (flx Z6, e~p) is a TRQS(64) with groups aZ6, a eft. 

(vi) fi = [x, y, z, t, u, v]. Let ( II, cg) be any TRQS(36) design with 
groups G~, 1 ~< i~<6. On Yx Z2 construct a 2-chromatic TRQS(66) with 
groups G~xZ2 by taking [xi, yj, zk, wl] to be a block whenever 
[x, y, z, w|  E cg and i + j  + k + l = 1 (rood 2). Construct a copy, (f lx Z6, gp), 
of this TRQS(66) on ~ x Z6 so that the color classes are f lx  2Z 6 and 
fl × (1 +2Z6). (This transverse quadruple system certainly admits ,co as a 
proper coloring.) 

Setting N' = t . ) ~ e  g~ gives a SQS(6v-  10), (X', ~ ' ) ,  which admits cp as 
a proper 6-colouring. | 

THEOREM 4.7. S(v)m or G(v)m ~ S(6v-- 10)(m_l)+. 

Proof Keep the notation of Theorem 4.6, as well as cases (i)-(iv), but 
modify the transverse quadruple systems in (v) and (vi) as follows: 

(v)' For each g~ in (v) choose a block [xo,Yo,Zo, wl] eg/~ and then 
interchange w o and wl throughout, thus obtaining a new TRQS(64), 
(fi × Z6, ~ ) ,  with [x0, Y0, Zo, Wo] ~ g~. 

(vi)' For each d°z in (vi) choose a block [Xo, Yo,Zo, tl] e gp, then 
l ~ 0 and ~} is obtained by interchanging to and tl in each block of gp con- 
taining either one of these points. Note that (f lx Z6, ~}) is a TRQS(66) 
design with [Xo, Yo, Zo, to] e g~. 

Now form N" by replacing gp by g} in (v) and (vi) of Theorem 4.6, 
so that (X ' ,N")  is a new SQS(6v-10) .  Let @={[ool,xo, Yo, Zo]: 
[B, x, y, z |  ~ ~ ,  x, y, z va A}, then Lemma 3.1 implies that z(X', ~"  w @) ~> m 
(examine {OOo, ool} wXo,) so Lemma 3.2 gives z(X'~, (Y)" w@)oo~)>~ 
m -  1. However, (~"  w f f ) ~  = N"~, and clearly z(X', ~") >~z(X'~, ~"~), 
so Z(X',N")>~m-1, as desired. | 

THEOREM 4.8. S (v )m  or G(v)m "--+ S ( 6 v  -- 10)[6, m--1]" 

Proof The result follows from Theorems 4.6 and 4.7 and Lemmata 3.3 
and 3.4. | 
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5. PROOF OF THE MAIN THEOREM 

The following lemma gives a class of quadruple systems whose chromatic 
numbers tend to oo with the order of the system. 

LEMMA 5.1. z (AG(2 ' n))~>2n+l(1 +(2, ,+3_7)1/2) 1 

Proof  Let X = F  2 , . ~ = { [ x , y , z , w ] e X  E 4 1 : x + y + z + w = O } ,  so that 
(X, ~ )  is a SQS(2n). Let S c X  be an independent set with IS| = s  and 
suppose that S~ 0 (if not translate S by one of its elements). Since S is 
independent and contains 0 the mapping (S\{0}){2J---,X given by 
{ x , y }  --->x+y has its range in X \ S  and is l - l ,  hence (~~1) ~<2"-s .  This 
gives the bound s ~< ½ (1 + (2 "+3 - 7 ) 1 / 2 ) ;  the lemma follows. 

The next lemma shows how to embed a quadruple system in a G-design. 

LEMMA 5.2. S(v)m-+ G(6v)m+. 

Proof  Let (X, N) be an SQS(v)m, X' = X x  Z6, and let F 1, F 2, ..., F 5 be 
a 1-factorization of the complete graph on Z6. Take for N'  the union of the 
systems 

H =  {xz6 :x~X}, 

~ 1 =  U {[xi ,  yJ, zk, w l ] : i + j + k + l - O ( m ° d 6 ) } ,  
[x ,y ,z ,w]~ 

~2 = U {[x i ,  xj,  Yk, Y l ] : ( i , J ) , ( k , l ) e F s ,  s=O, 1 ..... 5}. 
x~-y 

Then (X', ~ ' )  is a GD(6v) with H a parallel class of blocks of size 6. The 
new design contains two copies of the original SQS(v), one on each of the 
sets Xo and X3, and so it has chromatic number at least m. | 

As in [6]  if w e A s  let Sw be the smallest integer with the property that 
if v e A s  and v >~sw then there exists a SQS(v) with a subsystem of order 
w. Similarly, if w e A c  let gw be minimal with the property that if y e A  G 
and v >>-gw then there is a GD(v) with a GD(w) as a subsystem. The finite- 
ness of the numbers Sw, gw for each w is proved in [6] .  

THEOREM 5.3 (Granville and Hartman [6]) .  (a) For all w ~ A  s the 
inequality s w <~ 64 55 (w-I- 1) 4 holds; 

(b) for  all w e A 6  the inequality gw<<,max{8654+w/6, (1.21/2) 
(w/6)2 +46(w/6)}  holds. | 

Now the main theorem can be proved. 
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THEOREM 5.4. For each m >~ 6 and admissible integer v ~ v m = 

128 (4m2+ 10m + 6) 4 -  10 there exists an m-chromatic SQS(v). For m = 4  T 

or 5 the same statement is true for  admissible v ~ 2  (mod l2 )  and 
v>~k~ (4m2 + 2m + 1) 4 -  10. 

Proof  Fix m~>6 and let v o be such that for each v s ( A s w A a )  c~ 
[Vo, m) there exists a SQS(V)(m+I)+ or a G(v)(m+l)+ for Y e A s  or v e A G  
respectively. Put Vm=6V o -  10, the following cases show that for each 
v e A s m  [Vm, 00) there exists a SQS(v)m: 

(a) If v = 4 ,  8 (rood 12) put w = v/ 2 ,  then w is in A s ~  [Vo, oo), so 
there exists a SQS(w)m+ , and hence a SQS(v)m exists by Theorem 4.1. 

(b) If v - 1 0  (mod 12) put w = ( v + 2 ) / 3 ,  then w is in ( A s w A G )  c~ 
[Vo, oo). If w is in A s  apply Theorem 4.3 starting with a SQS(w)m+ to get 
a SQS(v)m ; if w eAG apply Theorem 4.5 to a GD(w)m+ to get a SQS(v)m. 

(c) If v = 2  (rood 12) put w = ( v + l O ) / 6 ,  then w is in ( A s w A a ) <  
[Vo, oo). Apply Theorem 4.8 to a SQS(w)(m+I)+ or a G(w)(m+ 1)+ to obtain 
a SQS(v)m. 

Note that only the last case requires a SQS(w)(m+I)+, (GD(w)(m+I)+); 
the other cases require only a SQS(v)m+ (GD(w)m+). For  m = 4 and m = 5 
the above reasoning carries over verbatim except that Theorem 4.8 cannot 
be applied, so case (c) is omitted and, hence, the gap at v - 2 (mod 12) in 
the statement of the theorem and the smaller value of v~. 

It remains to produce v 0. Fix m~>4, the inequality 2n+1(1+ 
(2n+3 __ 7)I/2)-1/> m holds if 2 ~ ~> ½ [m(2m + 1) + m((2m + 1) 2 - -  8)1/2], SO 
Lemma 5.1 implies that z(AG(2,  n)) >~ m whenever 2" >~ m(2m + 1). Let n o 
be minimal with 2 n ° > m ( 2 m +  1), then 2 " ° < 2 m ( 2 m +  1), so it follows 
from Theorem5.3, par t (a) ,  that there exists a SQS(v)m+ whenever 

64 { A -  2 v >~ ~7 ~ m  + 2m + 1) 4, V ~ A s. Also, from Lemma 5.2 and Theorem 5.3, 
par t (b) ,  it follows that a GO(v)m+ exists for v ) 2 . 4 2 m Z ( 2 m + 1 ) 2 +  
552m(2m+ 1), v~AG.  Combining these estimates shows that a SQS(v)m+ 

64 r , ,  2 exists whenever v/> 57 t ~rm + 2m + 1 )4, v e A s w A G. Replacing m by m + 1 
now gives the required value for Vo. | 

6. O P E N  P R O B L E M S  

For Z = 2 the congruence classes _+ 2 (mod 12) are open for the construc- 
tion of SQS(v)2 except for the values v=2x5a13b17  c, a + b + c > O [ 1 3 ]  
and v = 22 [ 12] quoted in the introduction. For  Z = 3 the class 2 (mod 12) 
is open for the construction of SQS(v)3, except for the values 
v = 6 x 5 a 1 3 b 1 7 c - 2 ,  a + b + c > O ,  and v = 1 4 , 6 2  [10].  For both Z = 4 , 5  
the class 2 (rood 12) is open. 
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For v~As let Spec*(v)= {m: S(V)m }, the chromatic spectrum of v, and 
let 2(v)=maxSpec*(v).  Is it true that Spec*(v)=  {2,3 .... ,2(v)}  for 
admissible v ¢ 14? The exception v = 14 occurs because Spec*(14)= {3}; a 
similar conjecture has already been made for Steiner triple systems [4] .  

One would also like to know the order of ;~(v). A straightforward 
application of the Lovasz local lemma [1 ]  gives ;~(v)~<(e/3) 1/3 
(2v 2 -  15v + 31)1/3 while examination of the affine planes AG(2, n) suggests 
2(v) is at least 2v(1 + (8V-- 7)1/2) -1 ~ (V/2) 1/2. 

Finally, given v and m, one would like to construct (if possible) a 
SQS(v)m in polynomial time. The methods given here fall short of this, 
since they require showing that a given SQS(v) is not m-chromatic prior to 
concluding that it is (m + 1)-chromatic. 
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