28 research outputs found

    Artimate: an articulatory animation framework for audiovisual speech synthesis

    Get PDF
    We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimensional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.Comment: Workshop on Innovation and Applications in Speech Technology (2012

    Force Feedback for Assembly of Aircraft Structures

    Get PDF
    Variability in composite manufacture and the limitations in positional accuracy of common industrial robots have hampered automation of assembly tasks within aircraft manufacturing. One way to handle geometry variations and robot compliancy is to use force control. Force control technology utilizes a sensor mounted on the robot to feedback force data to the controller system so instead of being position driven, i.e. programmed to achieve a certain position with the tool, the robot can be programmed to achieve a certain force. This paper presents an experimental case where a compliant rib is aligned to multiple surfaces using force feedback and an industrial robot system from ABB. Two types of ribs where used, one full size carbon fiber rib, and one smaller metal replica for evaluation purposes. The alignment sequence consisted of several iterative steps and a search procedure was implemented within the robot control system. The technology has the potential to lessen the need for dedicated tooling, reduce the need for traditional workspace calibration and can be used in several other applications, such as pin and socket type assemblies found in pylons or landing gear or 'part to part' assemblies such as leading edge ribs to spar

    Robust Execution of Contact-Rich Motion Plans by Hybrid Force-Velocity Control

    Full text link
    In hybrid force-velocity control, the robot can use velocity control in some directions to follow a trajectory, while performing force control in other directions to maintain contacts with the environment regardless of positional errors. We call this way of executing a trajectory hybrid servoing. We propose an algorithm to compute hybrid force-velocity control actions for hybrid servoing. We quantify the robustness of a control action and make trade-offs between different requirements by formulating the control synthesis as optimization problems. Our method can efficiently compute the dimensions, directions and magnitudes of force and velocity controls. We demonstrated by experiments the effectiveness of our method in several contact-rich manipulation tasks. Link to the video: https://youtu.be/KtSNmvwOenM.Comment: Proceedings of IEEE International Conference on Robotics and Automation (ICRA2019

    A Helping Hand: Industrial Robotics, Knowledge and User-Oriented Services

    Get PDF
    In this paper we discuss AI in industrial robotics. In automatic control, computer vision and optimization, ma- chine learning and data mining algorithms are widely used. However, cognition enabling mechanisms, such as high-level logic and symbolic reasoning, are still limited. This is not due to the lack of available algorithms, rather the bottleneck is knowledge representation, acquisition and transformation between different formalisms. In industrial robotics, cognition is not self-serving, AI tech- nologies are rather a tool to make the user interaction, the system configuration and the task execution as cost efficient as possible. Autonomy is a mean to minimize the human workload. In our approach, we use an online knowledge base that provides libraries with object models and task specifications, and offer services to support the user (and the robot) during programming, deployment and execution

    2D Contour Following with an Unmanned Aerial Manipulator:Towards Tactile-Based Aerial Navigation

    Get PDF

    Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task

    Get PDF
    Current approaches do not allow robots to execute a task and simultaneously convey emotions to users using their body motions. This paper explores the capabilities of the Jacobian null space of a humanoid robot to convey emotions. A task priority formulation has been implemented in a Pepper robot which allows the specification of a primary task (waving gesture, transportation of an object, etc.) and exploits the kinematic redundancy of the robot to convey emotions to humans as a lower priority task. The emotions, defined by Mehrabian as points in the pleasure–arousal–dominance space, generate intermediate motion features (jerkiness, activity and gaze) that carry the emotional information. A map from this features to the joints of the robot is presented. A user study has been conducted in which emotional motions have been shown to 30 participants. The results show that happiness and sadness are very well conveyed to the user, calm is moderately well conveyed, and fear is not well conveyed. An analysis on the dependencies between the motion features and the emotions perceived by the participants shows that activity correlates positively with arousal, jerkiness is not perceived by the user, and gaze conveys dominance when activity is low. The results indicate a strong influence of the most energetic motions of the emotional task and point out new directions for further research. Overall, the results show that the null space approach can be regarded as a promising mean to convey emotions as a lower priority task.Postprint (author's final draft

    Obstacle Avoidance in Formation Using Navigation-like Functions and Constraint Based Programming

    Get PDF
    Abstract-In this paper, we combine navigation functionlike potential fields and constraint based programming to achieve obstacle avoidance in formation. Constraint based programming was developed in robotic manipulation as a technique to take several constraints into account when controlling redundant manipulators. The approach has also been generalized, and applied to other control systems such as dual arm manipulators and unmanned aerial vehicles. Navigation functions are an elegant way to design controllers with provable properties for navigation problems. By combining these tools, we take advantage of the redundancy inherent in a multi-agent control problem and are able to concurrently address features such as formation maintenance and goal convergence, even in the presence of moving obstacles. We show how the user can decide a priority ordering of the objectives, as well as a clear way of seeing what objectives are currently addressed and what are postponed. We also analyze the theoretical properties of the proposed controller. Finally, we use a set of simulations to illustrate the approach
    corecore