12 research outputs found

    FFRob: An Efficient Heuristic for Task and Motion Planning

    Get PDF
    Manipulation problemsinvolvingmany objects present substantial challenges for motion planning algorithms due to the high dimensionality and multi-modality of the search space. Symbolic task planners can efficiently construct plans involving many entities but cannot incorporate the constraints from geometry and kinematics. In this paper, we show how to extend the heuristic ideas from one of the most successful symbolic planners in recent years, the FastForward (FF) planner, to motion planning, and to compute it efficiently. We use a multi-query roadmap structure that can be conditionalized to model different placements of movable objects. The resulting tightly integrated planner is simple and performs efficiently in a collection of tasks involving manipulation of many objects.National Science Foundation (U.S.) (Grant No. 019868)United States. Office of Naval Research. Multidisciplinary University Research Initiative (grant N00014-09-1-1051)United States. Air Force. Office of Scientific Research (grant AOARD-104135)Singapore. Ministry of Educatio

    Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

    Full text link
    In this paper, we propose a deep convolutional recurrent neural network that predicts action sequences for task and motion planning (TAMP) from an initial scene image. Typical TAMP problems are formalized by combining reasoning on a symbolic, discrete level (e.g. first-order logic) with continuous motion planning such as nonlinear trajectory optimization. Due to the great combinatorial complexity of possible discrete action sequences, a large number of optimization/motion planning problems have to be solved to find a solution, which limits the scalability of these approaches. To circumvent this combinatorial complexity, we develop a neural network which, based on an initial image of the scene, directly predicts promising discrete action sequences such that ideally only one motion planning problem has to be solved to find a solution to the overall TAMP problem. A key aspect is that our method generalizes to scenes with many and varying number of objects, although being trained on only two objects at a time. This is possible by encoding the objects of the scene in images as input to the neural network, instead of a fixed feature vector. Results show runtime improvements of several magnitudes. Video: https://youtu.be/i8yyEbbvoEkComment: Robotics: Science and Systems (R:SS) 202

    An AI formalization of Betty the Crow's sequential geometric tool use

    Get PDF
    Betty The Crow was a new caledonian crow that, in the lab of Alex Kacelnik, demonstrated surprising skill in sequentially using tools to reach for other tools to reach for a reward. The goal of this work is to find an AI formalization of such behaviour that combines reasoning over a sequence of first-order logic decision variables as well as over the geometric path to execute the reaching and tool use motions. For that, we first consider the general area of Task And Motion Planning problems; we use an approach of decomposing the problem into smaller ones solvable by (existing, blackbox) modules; we test a simple implementation of the resulting method on some small problem instances.Betty die Krähe war eine Neukaledonienkrähe, die in Versuchen Alex Kacelniks erstaunliche Fähigkeiten zeigte, sequenziell Werkzeuge zu benutzen, um an andere Werkzeuge heranzukommen, um eine Belohnung zu erreichen. Das Ziel dieser Arbeit ist es, eine KI Formalisierung solchen Verhaltens zu finden, die Überlegungen über eine Sequenz von prädikatenlogischen Entscheidungsvariablen sowie über den geometrischen Pfad um die Greifund Werkzeugnutzungsbewegungen auszuführen kombiniert. Dazu betrachten wir zunächst das allgemeine Gebiet von Task And Motion Planning Problemen; wir benutzen einen Ansatz, das Problem in kleinere, von (existierenden, Blackbox) Modulen lösbare, zu zerlegen; und wir testen eine einfache Implementierung des resultierenden Verfahrens an einigen kleinen Probleminstanzen

    PMK : a knowledge processing framework for autonomous robotics perception and manipulation

    Get PDF
    Autonomous indoor service robots are supposed to accomplish tasks, like serve a cup, which involve manipulation actions. Particularly, for complex manipulation tasks which are subject to geometric constraints, spatial information and a rich semantic knowledge about objects, types, and functionality are required, together with the way in which these objects can be manipulated. In this line, this paper presents an ontological-based reasoning framework called Perception and Manipulation Knowledge (PMK) that includes: (1) the modeling of the environment in a standardized way to provide common vocabularies for information exchange in human-robot or robot-robot collaboration, (2) a sensory module to perceive the objects in the environment and assert the ontological knowledge, (3) an evaluation-based analysis of the situation of the objects in the environment, in order to enhance the planning of manipulation tasks. The paper describes the concepts and the implementation of PMK, and presents an example demonstrating the range of information the framework can provide for autonomous robots.Peer ReviewedPostprint (published version

    Knowledge-oriented task and motion planning for multiple mobile robots

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of experimental and theoretical artificial intelligence, published online: 30 Nov 2018 available online: https://www.tandfonline.com/doi/abs/10.1080/0952813X.2018.1544280Robotic systems composed of several mobile robots moving in human environments pose several problems at perception, planning and control levels. In these environments, there may be obstacles obstructing the paths, which robots can remove by pushing or pulling them. At planning level, therefore, an efficient combination of task and motion planning is required. Even more if we assume a cooperative system in which robots can collaborate with each other by e.g. pushing together a heavy obstacle or by one robot clearing the way to another one. In this paper, we cope with this problem by proposing Âż-TMP, a smart combination of an heuristic task planner based on the Fast Forward method, a physics-based motion planner, and reasoning processes over the ontologies that code the knowledge on the problem. The significance of the proposal relies on how geometric and physics information is used within the computation of the heuristics in order to guide the symbolic search, i.e. how an artificial intelligence planning method is combined with low-level motion planning to achieve a feasible sequence of actions (composed of collision-free motions plus physically-feasible push/pull actions). The proposal has been validated with several simulated scenarios (using up to five robots that need to collaborate with each other to reach the goal state), showing how the method is able to solve challenging situations and also find an efficient solution in terms of power.Peer ReviewedPostprint (author's final draft

    Combined heuristic task and motion planning for bi-manual robots

    Get PDF
    Planning efficiently at task and motion levels allows the setting of new challenges for robotic manipulation problems, like for instance constrained table-top problems for bi-manual robots. In this scope, the appropriate combination of task and motion planning levels plays an important role. Accordingly, a heuristic-based task and motion planning approach is proposed, in which the computation of the heuristic addresses a geometrically relaxed problem, i.e., it only reasons upon objects placements, grasp poses, and inverse kinematics solutions. Motion paths are evaluated lazily, i.e., only after an action has been selected by the heuristic. This reduces the number of calls to the motion planner, while backtracking is reduced because the heuristic captures most of the geometric constraints. The approach has been validated in simulation and on a real robot, with different classes of table-top manipulation problems. Empirical comparison with recent approaches solving similar problems is also reported, showing that the proposed approach results in significant improvement both in terms of planing time and success rate.Peer ReviewedPostprint (author's final draft

    Sampling-Based Methods for Factored Task and Motion Planning

    Full text link
    This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constraints that only affect several variables at a time and therefore exhibit large amounts of factoring. We develop a theoretical framework for solving factored transition systems with sampling-based algorithms. The framework characterizes conditions on the submanifold in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that can be composed to produce values on this submanifold. We present two domain-independent, probabilistically complete planning algorithms that take, as input, a set of conditional samplers. We demonstrate the empirical efficiency of these algorithms on a set of challenging task and motion planning problems involving picking, placing, and pushing
    corecore