1,630 research outputs found

    Graph-based Semi-supervised Learning: Algorithms and Applications.

    Get PDF
    114 p.Graph-based semi-supervised learning have attracted large numbers of researchers and it is an important part of semi-supervised learning. Graph construction and semi-supervised embedding are two main steps in graph-based semi-supervised learning algorithms. In this thesis, we proposed two graph construction algorithms and two semi-supervised embedding algorithms. The main work of this thesis is summarized as follows:1. A new graph construction algorithm named Graph construction based on self-representativeness and Laplacian smoothness (SRLS) and several variants are proposed. Researches show that the coefficients obtained by data representation algorithms reflect the similarity between data samples and can be considered as a measurement of the similarity. This kind of measurement can be used for the weights of the edges between data samples in graph construction. Each column of the coefficient matrix obtained by data self-representation algorithms can be regarded as a new representation of original data. The new representations should have common features as the original data samples. Thus, if two data samples are close to each other in the original space, the corresponding representations should be highly similar. This constraint is called Laplacian smoothness.SRLS graph is based on l2-norm minimized data self-representation and Laplacian smoothness. Since the representation matrix obtained by l2 minimization is dense, a two phrase SRLS method (TPSRLS) is proposed to increase the sparsity of graph matrix. By extending the linear space to Hilbert space, two kernelized versions of SRLS are proposed. Besides, a direct solution to kernelized SRLS algorithm is also introduced.2. A new sparse graph construction algorithm named Sparse graph with Laplacian smoothness (SGLS) and several variants are proposed. SGLS graph algorithm is based on sparse representation and use Laplacian smoothness as a constraint (SGLS). A kernelized version of the SGLS algorithm and a direct solution to kernelized SGLS algorithm are also proposed. 3. SPP is a successful unsupervised learning method. To extend SPP to a semi-supervised embedding method, we introduce the idea of in-class constraints in CGE into SPP and propose a new semi-supervised method for data embedding named Constrained Sparsity Preserving Embedding (CSPE).4. The weakness of CSPE is that it cannot handle the new coming samples which means a cascade regression should be performed after the non-linear mapping is obtained by CSPE over the whole training samples. Inspired by FME, we add a regression term in the objective function to obtain an approximate linear projection simultaneously when non-linear embedding is estimated and proposed Flexible Constrained Sparsity Preserving Embedding (FCSPE).Extensive experiments on several datasets (including facial images, handwriting digits images and objects images) prove that the proposed algorithms can improve the state-of-the-art results

    Constructing a Non-Negative Low Rank and Sparse Graph with Data-Adaptive Features

    Full text link
    This paper aims at constructing a good graph for discovering intrinsic data structures in a semi-supervised learning setting. Firstly, we propose to build a non-negative low-rank and sparse (referred to as NNLRS) graph for the given data representation. Specifically, the weights of edges in the graph are obtained by seeking a nonnegative low-rank and sparse matrix that represents each data sample as a linear combination of others. The so-obtained NNLRS-graph can capture both the global mixture of subspaces structure (by the low rankness) and the locally linear structure (by the sparseness) of the data, hence is both generative and discriminative. Secondly, as good features are extremely important for constructing a good graph, we propose to learn the data embedding matrix and construct the graph jointly within one framework, which is termed as NNLRS with embedded features (referred to as NNLRS-EF). Extensive experiments on three publicly available datasets demonstrate that the proposed method outperforms the state-of-the-art graph construction method by a large margin for both semi-supervised classification and discriminative analysis, which verifies the effectiveness of our proposed method

    Graph-based Semi-supervised Learning: Algorithms and Applications.

    Get PDF
    114 p.Graph-based semi-supervised learning have attracted large numbers of researchers and it is an important part of semi-supervised learning. Graph construction and semi-supervised embedding are two main steps in graph-based semi-supervised learning algorithms. In this thesis, we proposed two graph construction algorithms and two semi-supervised embedding algorithms. The main work of this thesis is summarized as follows:1. A new graph construction algorithm named Graph construction based on self-representativeness and Laplacian smoothness (SRLS) and several variants are proposed. Researches show that the coefficients obtained by data representation algorithms reflect the similarity between data samples and can be considered as a measurement of the similarity. This kind of measurement can be used for the weights of the edges between data samples in graph construction. Each column of the coefficient matrix obtained by data self-representation algorithms can be regarded as a new representation of original data. The new representations should have common features as the original data samples. Thus, if two data samples are close to each other in the original space, the corresponding representations should be highly similar. This constraint is called Laplacian smoothness.SRLS graph is based on l2-norm minimized data self-representation and Laplacian smoothness. Since the representation matrix obtained by l2 minimization is dense, a two phrase SRLS method (TPSRLS) is proposed to increase the sparsity of graph matrix. By extending the linear space to Hilbert space, two kernelized versions of SRLS are proposed. Besides, a direct solution to kernelized SRLS algorithm is also introduced.2. A new sparse graph construction algorithm named Sparse graph with Laplacian smoothness (SGLS) and several variants are proposed. SGLS graph algorithm is based on sparse representation and use Laplacian smoothness as a constraint (SGLS). A kernelized version of the SGLS algorithm and a direct solution to kernelized SGLS algorithm are also proposed. 3. SPP is a successful unsupervised learning method. To extend SPP to a semi-supervised embedding method, we introduce the idea of in-class constraints in CGE into SPP and propose a new semi-supervised method for data embedding named Constrained Sparsity Preserving Embedding (CSPE).4. The weakness of CSPE is that it cannot handle the new coming samples which means a cascade regression should be performed after the non-linear mapping is obtained by CSPE over the whole training samples. Inspired by FME, we add a regression term in the objective function to obtain an approximate linear projection simultaneously when non-linear embedding is estimated and proposed Flexible Constrained Sparsity Preserving Embedding (FCSPE).Extensive experiments on several datasets (including facial images, handwriting digits images and objects images) prove that the proposed algorithms can improve the state-of-the-art results

    Contribution to Graph-based Manifold Learning with Application to Image Categorization.

    Get PDF
    122 pLos algoritmos de aprendizaje de variedades basados en grafos (Graph,based manifold) son técnicas que han demostrado ser potentes herramientas para la extracción de características y la reducción de la dimensionalidad en los campos de reconomiento de patrones, visión por computador y aprendizaje automático. Estos algoritmos utilizan información basada en las similitudes de pares de muestras y del grafo ponderado resultante para revelar la estructura geométrica intrínseca de la variedad
    corecore