10,033 research outputs found

    Strict General Setting for Building Decision Procedures into Theorem Provers

    Get PDF
    The efficient and flexible incorporating of decision procedures into theorem provers is very important for their successful use. There are several approaches for combining and augmenting of decision procedures; some of them support handling uninterpreted functions, congruence closure, lemma invoking etc. In this paper we present a variant of one general setting for building decision procedures into theorem provers (gs framework [18]). That setting is based on macro inference rules motivated by techniques used in different approaches. The general setting enables a simple describing of different combination/augmentation schemes. In this paper, we further develop and extend this setting by an imposed ordering on the macro inference rules. That ordering leads to a ”strict setting”. It makes implementing and using variants of well-known or new schemes within this framework a very easy task even for a non-expert user. Also, this setting enables easy comparison of different combination/augmentation schemes and combination of their ideas

    A General Setting for Flexibly Combining and Augmenting Decision Procedures

    Get PDF

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs

    Conditions, constraints and contracts: on the use of annotations for policy modeling.

    Get PDF
    Organisational policies express constraints on generation and processing of resources. However, application domains rely on transformation processes, which are in principle orthogonal to policy specifications and domain rules and policies may evolve in a non-synchronised way. In previous papers, we have proposed annotations as a flexible way to model aspects of some policy, and showed how they could be used to impose constraints on domain configurations, how to derive application conditions on transformations, and how to annotate complex patterns. We extend the approach by: allowing domain model elements to be annotated with collections of elements, which can be collectively applied to individual resources or collections thereof; proposing an original construction to solve the problem of annotations remaining orphan , when annotated resources are consumed; introducing a notion of contract, by which a policy imposes additional pre-conditions and post-conditions on rules for deriving new resources. We discuss a concrete case study of linguistic resources, annotated with information on the licenses under which they can be used. The annotation framework allows forms of reasoning such as identifying conflicts among licenses, enforcing the presence of licenses, or ruling out some modifications of a licence configuration

    From treebank resources to LFG F-structures

    Get PDF
    We present two methods for automatically annotating treebank resources with functional structures. Both methods define systematic patterns of correspondence between partial PS configurations and functional structures. These are applied to PS rules extracted from treebanks, or directly to constraint set encodings of treebank PS trees

    Quantitative Analysis of Probabilistic Models of Software Product Lines with Statistical Model Checking

    Get PDF
    We investigate the suitability of statistical model checking techniques for analysing quantitative properties of software product line models with probabilistic aspects. For this purpose, we enrich the feature-oriented language FLan with action rates, which specify the likelihood of exhibiting particular behaviour or of installing features at a specific moment or in a specific order. The enriched language (called PFLan) allows us to specify models of software product lines with probabilistic configurations and behaviour, e.g. by considering a PFLan semantics based on discrete-time Markov chains. The Maude implementation of PFLan is combined with the distributed statistical model checker MultiVeStA to perform quantitative analyses of a simple product line case study. The presented analyses include the likelihood of certain behaviour of interest (e.g. product malfunctioning) and the expected average cost of products.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin
    • 

    corecore