
Conditions, constraints and contracts: On the
use of annotations for policy modeling

Paolo Bottoni1, Roberto Navigli1, and Francesco Parisi Presicce1

Università di Roma “Sapienza” (Italy)
(bottoni,navigli,parisi)@di.uniroma1.it

Abstract. Organisational policies express constraints on generation and
processing of resources. However, application domains rely on transfor-
mation processes, which are in principle orthogonal to policy specifica-
tions and domain rules and policies may evolve in a non-synchronised
way. In previous papers, we have proposed annotations as a flexible way
to model aspects of some policy, and showed how they could be used to
impose constraints on domain configurations, how to derive application
conditions on transformations, and how to annotate complex patterns.
We extend the approach by: allowing domain model elements to be an-
notated with collections of elements, which can be collectively applied
to individual resources or collections thereof; proposing an original con-
struction to solve the problem of annotations remaining orphan, when
annotated resources are consumed; introducing a notion of contract, by
which a policy imposes additional pre-conditions and post-conditions on
rules for deriving new resources. We discuss a concrete case study of lin-
guistic resources, annotated with information on the licenses under which
they can be used. The annotation framework allows forms of reasoning
such as identifying conflicts among licenses, enforcing the presence of
licenses, or ruling out some modifications of a licence configuration.

1 Introduction

Organisational policies express constraints on generation and processing of re-
sources which are accepted by agents subject to, or anyway acknowledging, the
authority of such organisations. However, agents retain the ability to operate on
such resources according to their own strategies, as long as the results of these
operations conform to the policy, or are used in areas not subject to it.

A typical example is that of licenses, which define ways in which software
resources can be manipulated and made available for usage by third parties.
The diffusion of open data [2] and of public repositories allows a dissemination
of resources which can be employed in different ways, ranging from their simple
replication for integration in local pools, to the creation of sophisticated services.
While non proprietary resources can usually be accessed without restrictions,
access to the results of resource manipulations could be subject to restrictions
related to the safeguard of intellectual property. However, it is usually the case
that the usage of certain resources in the construction of the service prevents

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54523972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the possibility of imposing such restrictions, or forces specific forms of access
compatible with those for the used resource.

In [5, 6] we proposed the usage of annotations as a flexible way to indicate
the aspects for which domain model elements can fall under some policy, and
showed how annotations could be used to impose constraints on configurations of
domain resources, how to derive application conditions on their transformations,
and how to annotate complex patterns. In particular, this allows the manage-
ment of situations in which policies of access change, or different policies have to
be simultaneously applied. Annotations are indeed a way of flexibly associating
elements of different domains, and a number of techniques have been developed
to express the constraints which are imposed on transformations modeling the
evolution of elements in an application domain, when they are subject to con-
straints depending on annotations with elements of a contextual domain.

In this paper we extend the notion of annotation in four directions: first
we propose an original construction for transformations of annotated models,
which solves the problem of orphan annotations, which remain dangling when
annotated resources are consumed. Second, we allow domain model elements to
be annotated with collections of elements from the annotations domain, which
can be collectively applied to individual elements or collections thereof. Third, we
consider violations of constraints induced by the creation of elements for which
an annotation must be provided and define constraint repair actions to solve
such situations. Finally, we introduce a notion of contract, by which a policy
imposes additional pre- and post-conditions on rules for deriving new resources.
Again, the use of contracts leads to an original notion of transformation under
contracts. In all the considered cases, the definition of transformations relies on
the specific features of annotations and classical categorial constructions.

Paper organisation. After discussing related work in Section 2 and recalling
fundamental notions in Section 3, we provide a construction for avoiding orphan
annotations in Section 4 and introduce a motivational case study concerning
linguistic resources annotated with licenses in Section 5. The model for rewriting
under annotation constraints and contracts, illustrated via the case study, is
presented in Section 6. Section 7 concludes the paper.

2 Related Work

A number of approaches have considered the management of inconsistencies in
the field of graph transformations. In particular, mechanisms for ensuring that
invariants are maintained throughout transformations have lead to the identifi-
cation of mechanisms for the generation of pre- or post-application conditions to
be associated with rules, or for manipulation of the left-hand or right-hand side
of a rule. This topic was started in [12] and extensively explored in [13]. In [5,
6], we have shown how the separation of the application and contextual domains
allows some simplified constructions for such a generation.

Another line of research involves the identification of inconsistencies of a
model with respect to some desired (or undesired) property established at the

metamodel level. For example, conformance to a pattern can be imposed by com-
pleting the missing required parts of the pattern by a co-limit construction [4],
required ordering for refactorings can be established by analysis of their con-
flicts [16], explicit transformations can be associated with guidelines to repair
violations [1]. In this paper we consider only inconsistencies involving annota-
tions, again leveraging domain separation.

Contracts were introduced in the form of pairs of graphs indicating pre- and
post-conditions of operations [14]. In this way they define rule schemes which
are typically instantiated by setting some parameters [8]. Based on this, one
can consider satisfaction of conditions for service composition [17] or generate
tests against these schemes to check correctness of model evolutions [22]. Our
usage of contracts allows the definition of multiple contracts for a single rule
and provides a basis for enforcing correctness on a local basis, as opposed to
corrections required by violations of global constraints.

The need for a formalisation of licenses has been addressed for services, where
service composition has to take into account that different services may run un-
der different licenses, as part of service level agreement, focusing mostly on
service behaviour [10]. As for data, work on the definition of ontologies for the
management of digital rights have been conducted by Garcia et al. [11] and
Rodŕıguez-Doncel et al. [20]. Graph transformations have been employed in the
closely related field of access control, where techniques similar to the ones em-
ployed here were used (see e.g. [15]).

3 Preliminaries

Graphs and morphisms. We introduce classical notions from graph transfor-
mation theory (see [7]).

Definition 1. A graph is a tuple G = (VG, EG, s, t), where VG is a set of nodes,
EG is a set of edges, s : EG → VG and t : EG → VG are the source and target
functions, i.e. graphs are considered to be directed.

Definition 2. Given two graphs G1 and G2 a morphism µ : G1 → G2 is a
pair of functions µV : VG1 → VG2 , µE : EG1 → EG2 such that µE preserves the
images of sources and targets, i.e. for e ∈ E we have: s2(µE(e)) = µV (s1(e))
and t2(µE(e)) = µV (t1(e)).

We use morphisms for a number of purposes, some of which exemplified
through Figure 1.

Typing. For G1 a graph, and GT a type graph, µ : G1 → GT is a typing morphism
if µ is total. Typed graphs are extended to attributed typed graphs defining
specific sets of attributes for them. A node of a certain type will be associated
with a value for each of the attributes defined by the type.

Transformation rule. One (as in the Single Pushout Approach, SPO, see Fig-
ure 1 (c)) or two (as in the Double Pushout Approach, DPO, see Figure 1 (a))

G1

m

��
PO

G5
loo r //

��
PO

G2

m∗

��

G2

µ4

,,

=

G1
µoo

µ3

��

G8

µ5
//

=

G7
µ1oo

µ4

,,

=

G1
µ2 //µ3oo

m

��
PO

G2

m′

��
G3 G6
oo // G4 G3 G3

// G4

(a) (b) (c)

Fig. 1. (a) DPO Derivation, (b) satisfaction of constraint, (c) SPO derivation with AC.

type-preserving morphisms are used to define rules. Regardless of the form, a
rule p identifies a graph G1 and the applicability of p to a graph G3 depends
on the existence of a total type-preserving morphism m : G1 → G3. If a rule
p is applied to a graph G3 to produce graph G4, we write (G3, G4) ∈=⇒p.

Constraint. µ : G1 → G2 defines a constraint together with a satisfaction rela-
tion, |=: for any graph G3, G3 |= µ iff for each morphism µ3 : G1 → G3, there
exist a morphism µ4 : G2 → G3 such that the triangle of Figure 1(b) com-
mutes1. A negative constraint, denoted by ¬µ : G1 → G2, is satisfied by G3 if
no such morphism µ4 exists for some µ3. The particular case ¬µ : G1 → G1,
defines a forbidden graph and is represented by the single graph G1.

Application condition. Given a (DPO or SPO) rule p with identified graph G1,
µ1 : G7 → G8 is an application condition (AC) for p if it restricts the rela-
tion =⇒p to pairs (G3, G4) for which there exist morphisms µ3 : G1 → G7,
µ4 : G7 → G3 and µ5 : G8 → G3 such that the triangles in the diagram of
Figure 1(c) commute (in the SPO approach the square in it is a pushout,
analogously for the two squares in Figure 1(a)). The requirement that no
such µ4 exist is called a negative application condition (NAC).

All of the above is naturally extended to sets of rules and to attributed type
graphs, so that constraints and application conditions can refer to prescribed
values that attributes of the matched nodes must have. Rules can require updates
on the values associated with preserved nodes, or assignment of values for the
created nodes. In all these cases,we follow the approach of symbolic attributed
graphs [19], using constraint satisfaction to evaluate conditions and attributes.

Annotations. Annotations of nodes of a domain D1 with nodes of a domain
D2 are defined via nodes of types derived from AnnotationNodeType. We call A
the domain of such annotation nodes. Each annotation node a ∈ A participates
in exactly one instance of the pattern πa = x

e1←− a
e2−→ y, where x ∈ D1,

y ∈ D2, e1 is an edge of an application-dependent type and e2 is an edge of type
annotatesWith. We work on type graphs TG resulting from the disjoint union
of the type graphs defining D1 (TG1) and D2 (TG2), together with the relevant
annotation node and edge types, and we consider two types of constraints related
to annotations, assuming that all the constraints on the application domain are

1 G1 is also called P , from premise, and G2 is also called C, from conclusion.

preserved by the domain rules. Constraints of the first type are derived from πa

and are of the form µ : A → X
e1←− A e2−→ Y , for X some node type in TG1, Y

some node type in TG2, A an annotation node type and e1 and e2 as described
before, with possible restrictions on the association of X and Y . Well-formedness
results from conformance with the disjunction of all such constraints. Given a
type graph TG we call Lπa(TG) the language of all the graphs in TG which are
well-formed with respect to the individual domains and the annotation pattern.
The second type of constraints expresses specific policies via morphisms of the
form µ : G1 ⇀ G2 where G1 is typed on the TG1 component of TG, G2 is typed
on TG with well-formed annotations, and its projection on TG1 is isomorphic
to G1. We call these annotation constraints. In Section 6 we will also introduce
contracts based on morphisms involving two graphs typed on TG. All the rules in
the paper are typed on TG1, and all the constraints are annotation constraints.

4 Annotations and collections

Definition 3 from [6] extend graphs and morphisms to include the notion of box.

Definition 3. A (directed) graph with boxes (or B-graph) is a tuple G =
(V,E,B, s, t, cnt), where: (1) V and E are as in Definition 1; (2) B is a set
of boxes, such that B ∩ (V ∪ E) = ∅; (3) s and t extend their codomains to
V ∪B; (4) cnt : B → ℘(V ∪B) is a function associating a box with its content2

with the property that if x ∈ cnt(b1) and b1 ∈ cnt(b2), then x ∈ cnt(b2).

A type B-graph includes a set of box types BT which are sources or targets
for edge types. Moreover, a function cntT : BT → ℘(V T ∪ BT) associates each
type of box with the set of types of elements it can contain. Similarly, a (total)
morphism on B-graphs was defined in [6] by adding a component µB , preserving
the content function, i.e. for all x ∈ V ∪B, b ∈ B, one has x ∈ cnt1(b) =⇒
µV ∪B(x) ∈ cnt2(µB(b)), with µV ∪B the (disjoint) union of µV and µB . In [6]
total morphisms allowed DPO transformations of B-graphs.

Based on these notions, annotation nodes can be used not just with reference
to individual nodes in TG1 and values in TG2, but also to collections in either
domain, i.e. a collection of annotation values can be used in an atomic way to
annotate some resource or collection thereof. However, in the original formula-
tion of rewriting with boxes in [6], removing an annotated element from a model
G′ ∈ Lπa(TG) would create dangling annotation edges, forbidding rule applica-
tion in the DPO form. Nor can deletion in the SPO form be employed. Even if
in this case the annotation edges would be removed, we would be left with or-
phan annotations, i.e. annotation nodes to which no annotation edge is attached,
resulting in a graph not in Lπa(TG). Hence, we devise an original mechanism,
based on Construction 1, to complement a transformation performed according
to the DPO appproach in TG1 so that well-formedness is preserved.

Construction 1. With reference to Figure 2, let its top two rows depict the usual
DPO application of a rule L← K → R to a graph G obtained by applying to G′

2 Here and elsewhere ℘ denotes the powerset.

L

m
�� PO

K

��

loo r //

PO

R

m∗��
G_�

�� PB

Doo //

�� PO

H

hπ��
G′

f1

>>

D′
g′oo h′ // H ′

Fig. 2. Avoiding orphan
annotations.

the morphism f1 induced by the forgetful functor given
by the restriction of TG to TG1. The unique mor-
phism induced by the immersion of the image of f1(G′)
into G′ is also derived. Then D′ is the unique (up
to isomorphisms) graph in Lπa(TG), i.e. with well-
formed annotations, which is maximal with respect
to the occurrences of the annotation pattern and for
which the left square at the bottom of the diagram
in Figure 2 is a pullback (hence its restriction to the
elements typed on TG1 is isomorphic to D). Finally,
H ′ is given by the pushout of H and D′ along D.

Figure 3 illustrates Construction 1 with a model example where teams in
an organisation temporarily gather members for specific tasks [6]. G′ describes a
configuration where frank - a member, together with paul, of the softEng team
- is also the only member of the security team. For both frank and security,
time annotations indicate that they can operate within the organisation only at
daytime. The DPO rule at the top, removing a team with only one member,
is applied to G, the projection according to f1 of G′, by identifying security

and frank with 1:Team and 2:Member in L, respectively. As a consequence, the
annotation on security and the edges touching it are removed, updating the
cnt function accordingly, while the one for paul is preserved.

2 : Team

1 : Member

L

1 : Member

K

1 : Member

R

2 : Team

1 : Member

NAC

3 : Member

security : Team

frank: Member

G '

paul : Member

D' H'

: TimeAnn

dayTime: Period

1 cnt(2)
3 cnt(2)

frank cnt(security)
security cnt(softEng)
frank cnt(softEng)
paul cnt(softEng)

security: Team

paul : Member

G

paul : Member

D

paul : Member

H

softEng : Team
softEng : Team

softEng: Team
softEng : Team softEng : Team

f1

ta : TimeAnn

dayTime: Period

ta : TimeAnn

paul : Member

softEng : Team

dayTime: Period

ta : TimeAnn

2 security
1 frank

1 cnt(2)

paul: Member

frank : Member frank : Member

frank : Member

frank : Member

frank : Member

Fig. 3. An example of Construction 1 for the removal of an annotated team.

Note that Construction 1 applies to removal of the application domain ele-
ments, not of contextual ones. Actually, we assume here that contextual domains
are fixed. The correctness of Construction 1 is expressed by Proposition 1.

Proposition 1. For G′ ∈ Lπa(TG) and a rule L ← K → R, the graph H ′

generated as in Construction 1 is in Lπa(TG). Moreover, Ann(H ′) ⊆ Ann(G′),
where Ann(X) denotes the set of annotation nodes in a graph X.

Proof. We first observe that Ann(H ′) = Ann(D′), so that Ann(H ′) ⊆ Ann(G′),
since H, which is typed on TG1, does not present any new annotation. Since D′

is well-formed, none of its annotation nodes is an orphan.

5 Case study: licenses

A license specifies admissible forms of access, usage and redistribution of re-
sources and of the results of manipulating them. While individual resources can
be associated with specific licenses, the licenses connected to a resource usually
depend on some policy associated with the repository from which it is extracted.
Moreover, such repositories often publish resources under a number of licenses,
which must be all simultaneously respected, and which are normally transferred
to the extracted resources. As this imposes some form of compatibility among li-
censes, deciding whether a certain usage is admitted may become complex. As an
example, elements published under a Creative Commons, CC, scheme can be as-
sociated with combinations of the following licenses: NC for NonCommercial (the
resource cannot be used for commercial purposes), BY for Attribution (credit
to the author is acknowledged), SA for ShareAlike (derived resources must be
redistributed preserving the original licenses), and ND for NoDerivatives (remix-
ing, transforming, or building upon the resource may not grant redistribution).
Each element is considered to be of PublicDomain (PD).

BabelNet3 [18] is a multilingual semantic network containing millions of con-
cepts (e.g. the apple fruit concept) and named entities (e.g. the Apple Inc.
entity), interlinked via semantic relations. A single node in the network is called
a Babel synset and contains a set of synonyms which express a given concept
or named entity in different languages. For instance, the apple fruit concept is
represented by the synset {apple EN, pomme FR, mela IT, . . . , manzana ES}.
A word occurring in a synset is called sense (e.g., apple EN in the above synset
is the fruit sense of the ambiguous word apple).

BabelNet itself is obtained as the result of the automatic mapping (which is in
turn considered a kind of resource unique to BabelNet) and integration of several,
publicly available, knowledge repositories. However, each repository provides re-
sources (e.g. synsets and senses) under different licenses. For example, WordNet
[9], Wikidata4 and parts of the OMWN project [3] are released under a permissive
license, which allows any use, either commercial or non-commercial, of the data;

3 http://babelnet.org
4 http://wikidata.org

Wikipedia and Wiktionary are released with a CC-BY-SA license; OmegaWiki
and other wordnets in OMWN are released under CC-BY; the Basque wordnet in
OMWN is released under CC-BY-NC-SA and so is the BabelNet mapping between
all these resources. Unfortunately, not all of the licenses are compatible with one
another, as shown in the compability chart for CC licenses in Table 1, where X
indicates compatibility, × incompatibility, and ! that usage is not recommended.
For instance, Wikipedia, whose license is CC-BY-SA, cannot be merged with data
from the Basque wordnet or the BabelNet mapping. Interestingly, some mergings
can be done in one direction only, e.g. from a resource in a CC-BY repository, such
as OmegaWiki, one can derive a new resource with a more restrictive CC-BY-SA

license, thereby making it compatible with, e.g., Wikipedia.

Table 1. The compatibility chart for Creative Commons licenses.

Compatibility chart
Terms that may be used for a derivative work or adaptation

BY BY-NC BY-NC-ND BY-NC-SA BY-ND BY-SA PD

Status of
original work

PD √ √ √ √ √ √ √

BY √ √ √ √ √ √ !

BY-NC ! √ √ √ ! ! !

BY-NC-ND × × × × × × ×

BY-NC-SA × × × √ × × ×

BY-ND × × × × × × ×

BY-SA × × × × × √ ×

However, the opposite is not possible, as no-one can modify a SA license. As
a result, some licenses, such as CC-BY-NC-SA and CC-BY-SA, are inherently and
mutually incompatible. To solve this problem, BabelNet is viewed as a collection
of knowledge resources with heterogeneous licenses. For instance, it is possible to
consider a subset of resources which can be used commercially, e.g. Wikipedia,
WordNet and others. However, the resources with NC license (e.g. the Basque
wordnet and the BabelNet mapping) cannot be used commercially. As the map-
ping is the enabling technology for interconnecting the various resources into a
whole unified, multilingual network, any commercial use is subject to obtaining
a commercial license from the BabelNet’s authors.

5.1 A model of linguistic services and licenses

To represent the management of licenses and languages in BabelNet, we model
synsets, senses, etc. as nodes (or boxes) of specific types from a domain, R,
of Resources. Similarly, licenses are modeled as nodes of type License, from
the domain of Licenses, L, with an attribute name ranging over strings iden-
tifying the different kinds of license, and languages are modeled as nodes of
type Language, from the domain of Languages, K, with name ranging over the
available languages. We consider R as the application domain, and L and K as

contextual domains, typing the annotation edges accordingly. Thus, for xxx a
type in R, edges of types xxxLicAnnotation and xxxLangAnnotation allow
its annotation with elements of L and K, through edges of type annotatesWith.

Figure 4 presents the type graph TG for BabelNet. Stereotypes indicate
whether an element is of the Node or Box sort, and if it comes from the domain
R, L or K, or is an AnnotationTypeNode. In the domain R, a Sense is charac-
terised by an attribute content, with values in the sort of strings. Moreover, the
three types of box, Synset, Collection and LicenseBundle, can contain only
elements of suitable types, namely Sense, Synset and License, respectively.
The attribute concept for Synset indicates the concept represented by that
collection of senses. The type LicenseBundleAnn, of the Node sort and derived
from AnnotationTypeNode, can be used to relate resources with LicenseBundle.
However, as it inherits from LicenseAnn, one can annotate any element in the
resource domain with single licenses or with license bundles. A Request to obtain
a Collection can be annotated with both license and language information (not
indicated to avoid cluttering) and activates a Service producing the collection.

-concept : string

<<Box>>
<<Resources>>

Synset

<<Node>>
<<Annotation>>

LicenseAnn

<<Node>>
<<Annotation>>
LanguageAnn

-name : string

<<Node>>
<<Licenses>>

License

-name : string

<<Node>>
<<Languages>>

Language

<<Node>>
<<Annotation>>

LicenseBundleAnn

<<Box>>
<<Licenses>>

LicenseBundle

<<Node>>
<<Resources>>

Repository
-content : string
-id : Identifier

<<Node>>
<<Resources>>

Sense

<<Node>>
<<Resources>>

Mapping

<<Node>>
<<Resources>>

Service

<<Box>>
<<Resources>>

Collection

-concepts : string[]

<<Node>>
<<Resources>>

Request

annotatesWith

senseLangAnnotation

synsetLicAnnotation

annotatesWith

annotatesWith

reposLicAnnotation

in

origin

collLicAnnotation
produces

puts

activates obtains

servLicAnnotation

Fig. 4. The type graph for modeling the running example

We first model the basic working of BabelNet services via increasing rules
in the Resources domain. Rule createCollection in Figure 5 (top) creates an
initially empty collection for the synsets to be served in response to a query to
define the concepts in a set Z. Two rules allow the inclusion in the collection of a
synset for a concept in the request. Rule addSynset in Figure 5 (middle) is used
to add an already available synset in the collection if it is not already there, as
indicated by the NAC. The other one, not shown, creates and adds a synset for
a concept, if it does not exist already. Rule createMapping in Figure 5 (bottom)
is used to populate synsets with senses representing the concept, according to a
mapping, with a NAC to avoid including a sense twice.

1 : Service
name = "MAP"

3 : Request
concepts = Z

4 : Repository
name = "BABELNET"

5: offers

 6 : Collection

: produces

2: activates 1 : Service
name = "MAP"

3 : Request
concepts = Z

4 : Repository
name = "BABELNET"

5: offers

2: activates

cnt(6)=

L=H R

 6 : Synset
concept = Y

1 : Service
name = MAP

3 : Request
concept = Z

5 : Collection

4 : produces

2: activates cnt(5) {6}

NAC

1 : Service
name = MAP

 6 : Synset
concept = Y

3 : Request
concepts = Z

1 : Service
name = MAP

3 : Request
concepts = W

5 : Collection

cnt(5)= H{6}, W=Z\{Y}

2: activates
4 : produces

5 : Collection

4 : produces
2: activates

cnt(5) = H, YZ

 6 : Synset
concept = Y

L=H R

2 : Sense
content = X

: Mapping

: in

: puts

isRepr(Y,X),
cnt(5)=H

2 : Sense
content = X

 5 : Synset
concept = Y

 5 : Synset
concept = Y

cnt(5)=H{2} : Mapping

: in

: puts
2 : Sense

content = X

 5 : Synset
concept = Y

NAC L=H R

Fig. 5. Rule createCollection prepares a container for serving a request (top). Rule
createSynset sets up a synset for a requested concept (middle). Rule createMapping

relates a sense to a synset (bottom). Vertical lines separate NACs from rule morphisms.

In all these cases, the bundle of licenses associated with the invoked ser-
vice must be associated with the produced collection, as will be discussed in
Section 6.2. Moreover, requests can be further characterised, for example by
annotating them with particular licenses or languages, so that only senses an-
notated with those licenses or languages are included in the obtained collection,
as per suitable application conditions, following the constructions in [5].

6 Maintaining consistency with constraints and contracts

While the result of applying a rule is guaranteed to produce a correctly typed
graph, it might be the case that such a graph does not conform to further
conditions imposed on the model at hand. We identify two dimensions along
which conditions can be distinguished: one pertaining to the identification of the
domain for which the condition is defined (whether the application domain or the
domain resulting from the annotation process) and one relative to the scope of
the condition (whether global to the domain or local to specific transformations).

Concerning the latter dimension, we use constraints, as introduced in Sec-
tion 3, to impose well-formedness conditions for a domain. We assume that the
host graph to which a rule is applied is well-formed, and we identify mechanisms
to ensure that the transformation process produces another well-formed graph.

In [6], we have presented some constructions to derive application conditions
for rules from annotation constraints. By leaving the rule morphism alone, we
maintain a form of separation of concerns, making rule reuse simpler when dif-
ferent forms of annotation are involved. Intuitively, those constructions work
when a rule adds elements related to elements matched by the left-hand side,
but the annotation constraint imposes these relations to exist only between el-
ements annotated in specific ways. An application condition ensures that such
an annotation context already exists in the host graph when the rule is applied.

In this section we focus on situations in which the addition of application
conditions is not sufficient, since the required context cannot already exist, in
particular if a newly created element must be annotated in specific ways. This
would require the right-hand side of a rule to be enriched with the appropriate
annotation, but then the rule would no longer be defined only on the application
domain. To approach this problem, we consider separately situations violating
global constraints, and situations violating conditions on specific rules, that we
model as contracts. Since we are interested in rules which add new elements, i.e.
L = K for a DPO rule, we present them as simple morphisms.

6.1 Management of constraints

As shown in Table 1, licenses can require or forbid the presence of one another.
While the first case can be modelled by a positive constraint5, we model the
second via forbidden graphs. Figure 6 (left) shows the forbidden graph expressing
that no resource can be annotated with both licenses SA and ND. An analogous
graph will forbid the presence of both licenses in the same bundle. The constraint
on the right requires that each resource be PD, where we use the generic type
name Resource to refer to any of the types from the Resource domain.

: Resource

: LicenseAnnotation

: License
name="SA"

: License
name="ND"

: LicenseAnnotation

FG

1 : Resource

1 : Resource

: LicenseAnn

: License
name="PD"

: resLicAnnotation

: annotatesWith

P

C

Fig. 6. A graph forbidding the simultaneous presence of licenses SA and ND (left) and
a positive constraint assessing that each resource is PD.

The application of a rule may disrupt a constraint, typically by not creating
the proper annotations. Hence, given a constraint µ, constraint repair actions
are automatically inferred and applied, which modify the derivation relation so
that the result satisfies µ.

5 This would be a constraint with annotations both in P and C, not considered here.

Definition 4 (Constraint repair action). Let µ1 : G1 → G2 be a rule and
µ2 : G3 → G4 an annotation constraint. We define the relation =⇒µ1,µ2

with
reference to Figure 7. For any two graphs G5 and G6 such that (G5, G6) ∈=⇒µ1

as witnessed by the leftmost square, and G6 6|= µ2 (i.e. there exists a morphism
µi5 : G3 → G6 but no morphism µ6 : G4 → G6 for which the triangle formed by
µ2, µi5 and µ6 commutes), we have (G5, G7) ∈=⇒µ1,µ2

, where G7 is constructed
as the colimit of all the diagrams constructed by taking the pushout of µi5 and µ2

along G3 for each µi5 via the morphisms µi7 : G4 → Gi7 and µi4 : G4 → Gi7. The
set of all the µi4 is called a constraint repair action.

G1
µ1 //

m

��
PO

G2

m∗

��

G3

µi5

~~}}}}}}}}

µ2 //

PO

G4

µ6

S�

µi7
��

=

G5
α // G6

µi4 // Gi7
CL // G7

Fig. 7. Direct Derivation Diagram for a rule with constraint repair action.

Following Proposition 2 a repair action produces a graph compliant with µ2.

Proposition 2. Given G7 and µ2 as in Definition 4 we have G7 |= µ2.

Proof. We know that G3 has a match in G5, so that the constraint is violated by
the presence of some element without proper annotation, which is added in each
Gi7 as an effect of the pushout. Since we only deal with annotation constraints,
each Gi7 does not present violations of µ2 which were not in G4, but actually
presents one less violation. By taking the colimit, no violation appears in G7.

Proposition 3 allows the cumulative application of repair actions.

Proposition 3. Let G6 be as in Definition 4 and M2 = {µj2 : Gj3 → Gj4 | G6 6|=
µj2}. Then, let G′7 the colimit of all the graphs G7 constructed as in Definition 4

for each µj2 ∈M2. Then G′7 |= µj2 for each µj2 ∈M2.

Proof. Since the premise of each µj2 does not contain annotation elements, no G7

constructed for one constraint can add new violations of any other constraint.
The result then follows by the associativity of colimits.

6.2 Contracts

Contracts define situations in which the application of a rule requires the produc-
tion of some annotation, but only in situations in which elements in its left-hand
side are associated with specific annotations.

Definition 5 (Contract). Given a rule µ2 : G3 → G4, a contract on µ2, γ,
is given by a morphism µ1 : G1 → G2 (G1 and G2 typed on TG) together with

spans G1
µ3← G5

µ4→ G3, G4
µ5← G6

µ6→ G2 (formed by total injective morphisms)
and a morphism µ7 : G5 → G6, (G5 and G6 typed on TG1), such that all the
closed paths in the upper part of Figure 8 commute.

G1

µ1

((

µ10
//

G5
? _µ3oo � �

µ4 //
µ7

**

=

G3 µ2 //

m

��
PO

G4

m∗

��

G6
? _µ5oo � �

µ6 //

PO

G2

µ8
m m m m

vvm m m m µ9

��
G7 α // G8 µ11 // G9

Fig. 8. Direct Derivation Diagram for a rule with contract enforcement action.

As an example, the top contract in Figure 9 describes the overall policy
for license assignment: each collection is generated with the same collection of
licenses of the generating service. Here, numbers are used to identify the nodes
common to the rule and the contract, and letters for identifying elements related
by the contract morphism.

 6 : Collection

7 : produces 1 : Service 3 : Request
2: activates

b : LicenseBundleAnn
 f : servLicAnnotation g : annotatesWith

 a: LicenseBundle

1 : Service 3 : Request
2: activates

b : LicenseBundleAnn f : servLicAnnotation

g : annotatesWith

 a: LicenseBundle

 : LicenseBundleAnn
 : collLicAnnotation

 : annotatesWith

 : Resource

 e: LicenseBundle

1 : Resource

b : LicenseBundleAnn

d: License
name="SA"

c : License
name=X

 f : resLicAnnotation

 a: LicenseBundle

g : annotatesWith

dcnta),
ccnt(a)

1 : Resource

b : LicenseBundleAnn

d: License
name="SA"

c : License
name=X

 f : collLicAnnotation

 a: LicenseBundle

g : annotatesWith

dcnt(e),
ccnt(e)

 : LicenseBundleAnn

: annotatesWith

 : collLicAnnotation

Fig. 9. A contract stating that each collection comes with the license of the service
which generated it (top) and a contract specifically modeling the SA licence (bottom).

We can now model the asymmetry in license extension described in Section 5
with reference to the contract in Figure 9 (bottom): if a copy of a resource
annotated with a bundle including the SA license is generated, the bundle anno-
tating the new resource must preserve all the original licenses. This forbids the
possibility of contracts which remove some license when SA is present, while it
allows adding more licenses to the bundle, if not in contrast with others already
present. Analogous contracts can be devised for multiple annotations with single

licenses, rather than with a bundle of licenses. It is important to note that the
directionality inherent to this contract would not be expressible via constraints,
which would either impose or forbid the presence of annotations in the bundles
both before and after rule application.

The application of a domain rule creating new elements typically violates
contracts requiring that they be annotated in certain ways. Hence, actions must
be taken, as specified in Definition 6

Definition 6 (Contract enforcement action). Let µ2 : G3 → G4 and γ be
as in Definition 5. A derivation (G7, G8) ∈=⇒µ1 fulfills the contract γ iff for
each morphism µ10 : G1 → G7 such that the leftmost square in the diagram of
Figure 8 commutes, and for each morphism µ5i : G6 → G4 there exists at least
one morphism µ8i : G2 → G8 so that the triangle m∗ ◦ µ5i ◦ µ7 : G5 → G8,
µ1 ◦ µ3 : G5 → G2 and µ8i : G2 → G8 commutes.

If the above does not hold, the pair (G7, G8) is said to breach the contract µ1.
A breach can be repaired by a contract enforcement action µ11 for µ1, µ2 on G7

by constructing G8
µ11→ G9

µ9← G2 as the pushout of the span G8

m∗◦µ5i← G6
µ11→ G2.

We denote the derivation thus obtained by (G7, G9) ∈=⇒µ2,µ1
. Note that if no

µ10 exists, then (G7, G8) also fulfills the contract.

Whenever multiple contracts apply to µ2, the final graph to be obtained for
its application is represented by the colimit of all the diagrams thus formed,
noting that in all such diagrams the pushout formed by G7 ← G3 → G4 and
G7 → G8 ← G4 remains the same. Notice also that by a straightforward appli-
cation of the associativity and commutativity of colimits, the same result can be
obtained by successively applying the above construction to individual contracts,
regardless of the order. The proof of Proposition 4 is then straightforward.

Proposition 4. For a rule µ2 and a contract µ1 on it, each derivation in
=⇒µ2,µ1 fulfills µ1.

Theorem 1 states that applying the enforcement action is equivalent to ap-
plying a rule resulting from the composition of µ2 and µ1.

Theorem 1. Given a rule µ2 : G3 → G4 and a contract µ1 : G1 → G2 on
µ2, there exists a rule µ′2 such that for each pair (G7, G9) ∈=⇒µ2,µ1

, we have
(G7, G9) ∈=⇒µ′2

.

Proof (Sketch.). Referring back to the diagram in Figure 8, the new left-hand

side is constructed as the pushout of the span G1
µ3← G5

µ4→ G3, while the right-

hand side as the colimit of the collection of spans G4
µ5i← G6

µ6→ G2. Shown in
Figure 10 are the induced matching morphism G′3 → G7, the new rule µ′2 : G′3 →
G′4, and the result G9 of applying µ′2 to G′7 via the induced matching. Since G′4
already ”contains” G2, there is no need for a subsequent enforcement action.

We can also define negative contracts, indicated as µ1 : G1
¬→ G2 such that

(G5, G6) ∈=⇒µ1,µ2
only if G6 6|= µ2. This prevents the application, to the same

µ1, of other contracts of the form µ′1 : G′1→G′2 with G′1 ↪→ G1 and G2 ↪→ G′2.

G1

µ1

((

µ10

((

µ13

 BBBBBBBB G5
? _

µ3

oo � �

µ4

//

µ7

**

PO

G3 µ2

//

m

��

µ14

~~||||||||
G4

m∗

��

µ15 BBBBBBBB G6
? _

µ5i

oo � �

µ6

//

PO

G2

µ9

��

µ16

~~||||||||

G′
3

∃!

µ′2(∃!) // G′
4

∃!

G7

α // G8
µ11 // G9

Fig. 10. Direct Derivation Diagram for composition of rule and contract.

The constructions above can be adapted to general, i.e. not only increasing,
DPO rules G3 ← G10 → G4 by considering contracts in the form of spans G1 ←
G11 → G2 and identifying the spans G5 ← G12 → G6 and G10 ← G13 → G11.

In all these cases, we consider morphisms which are injective in the restric-
tions to D1 of the involved graphs, as well as in the immersion of D1 into D,
while they can be non-injective in the restriction to D2.

7 Conclusions and Future Work

We have extended the theory of annotation from [5, 6] by considering the prob-
lem of orphan annotations, left when annotated elements are deleted, and in-
troducing contracts, relating pre- and post-conditions on the usage of annotated
elements. We have used annotations to model the role of licenses in the open data
environment defining the approved usages for resources. In this context, license
bundles have been seen as a technique to manage sets of resources homogeneous
with respect to the applicable licenses.

With respect to the theory, future research will involve considering con-
straints with annotations also in the premise, and to study dependencies and
conflicts [21] within sets of contracts and within compositions of rules and con-
tracts. Also, we want to generalise the notion of contract to that of contract
schemes, allowing the customised generation of contracts for different rules.

As concerns the application domain considered in the paper, we plan to
extend this work towards a generic framework for managing licenses, taking into
consideration also other licensing schemes, by which declarative specifications
of resource usages could be checked for verification of conformance to licenses.
Moreover, the mentioned analysis tools in the field of graph transformations can
be applied to verify the internal consistency of license bundles.

References

1. C. Amelunxen, E. Legros, A. Schürr, and I. Stürmer. Checking and enforcement of
modeling guidelines with graph transformations. In Proc. AGTIVE 2007, volume
5088 of LNCS, pages 313–328. Springer, 2008.

2. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia:
A nucleus for a web of open data. In The Semantic Web, volume 4825 of LNCS,
pages 722–735. Springer, 2007.

3. F. Bond and K. Paik. A survey of wordnets and their licenses. In Proc. GWC
2012, pages 64–71, 2012.

4. P. Bottoni, E. Guerra, and J. de Lara. A language-independent and formal ap-
proach to pattern-based modelling with support for composition and analysis. In-
formation & Software Technology, 52(8):821–844, 2010.

5. P. Bottoni and F. Parisi Presicce. Annotation processes for flexible management
of contextual information. JVLC, 24(6):421–440, 2013.

6. P. Bottoni and F. Parisi-Presicce. Annotations on complex patterns. ECEASST,
58, 2013.

7. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

8. G. Engels, M. Lohmann, S. Sauer, and R. Heckel. Model-driven monitoring: An
application of graph transformation for design by contract. In Proc. ICGT 2006,
volume 4178 of LNCS, pages 336–350. Springer, 2006.

9. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
10. G. Gangadharan and V. DAndrea. Service licensing: conceptualization, formaliza-

tion, and expression. Serv. Orient. Comp. and Appl., 5(1):37–59, 2011.
11. R. Garca, R. Gil, and J. Delgado. A web ontologies framework for digital rights

management. Artificial Intelligence and Law, 15(2):137–154, 2007.
12. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application

conditions. Fundam. Inform., 26(3/4):287–313, 1996.
13. A. Habel and K.-H. Pennemann. Correctness of high-level transformation systems

relative to nested conditions. MSCS, 19(2):245–296, 2009.
14. J. H. Hausmann, R. Heckel, and M. Lohmann. Model-based development of web

services descriptions enabling a precise matching concept. Int. J. Web Service Res.,
2(2):67–84, 2005.

15. M. Koch and F. Parisi Presicce. UML specification of access control policies and
their formal verification. Software and System Modeling, 5(4):429–447, 2006.

16. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using
graph transformation. Software and System Modeling, 6(3):269–285, 2007.

17. M. Naeem, R. Heckel, F. Orejas, and F. Hermann. Incremental service composition
based on partial matching of visual contracts. In Proc. FASE 2010, volume 6013
of LNCS, pages 123–138. Springer, 2010.

18. R. Navigli and S. P. Ponzetto. BabelNet: The automatic construction, evalua-
tion and application of a wide-coverage multilingual semantic network. Artificial
Intelligence, 193:217–250, 2012.

19. F. Orejas and L. Lambers. Symbolic attributed graphs for attributed graph trans-
formation. ECEASST, 30, 2010.

20. V. Rodŕıguez-Doncel, S. Villata, and A. Gómez-Pérez. A dataset of RDF licenses.
In Proc. (JURIX) 2014, pages 187–189. IOS Press, 2014.

21. O. Runge, C. Ermel, and G. Taentzer. AGG 2.0 - new features for specifying and
analyzing algebraic graph transformations. In Proc. AGTIVE 2011, volume 7233
of LNCS, pages 81–88. Springer, 2012.

22. O. Runge, T. A. Khan, and R. Heckel. Test case generation using visual contracts.
ECEASST, 58, 2013.

