3,663 research outputs found

    Composite Differential Evolution for Constrained Evolutionary Optimization

    Get PDF
    When solving constrained optimization problems (COPs) by evolutionary algorithms, the search algorithm plays a crucial role. In general, we expect that the search algorithm has the capability to balance not only diversity and convergence but also constraints and objective function during the evolution. For this purpose, this paper proposes a composite differential evolution (DE) for constrained optimization, which includes three different trial vector generation strategies with distinct advantages. In order to strike a balance between diversity and convergence, one of these three trial vector generation strategies is able to increase diversity, and the other two exhibit the property of convergence. In addition, to accomplish the tradeoff between constraints and objective function, one of the two trial vector generation strategies for convergence is guided by the individual with the least degree of constraint violation in the population, and the other is guided by the individual with the best objective function value in the population. After producing offspring by the proposed composite DE, the feasibility rule and the ϵ constrained method are combined elaborately for selection in this paper. Moreover, a restart scheme is proposed to help the population jump out of a local optimum in the infeasible region for some extremely complicated COPs. By assembling the above techniques together, a constrained composite DE is proposed. The experiments on two sets of benchmark test functions with various features, i.e., 24 test functions from IEEE CEC2006 and 18 test functions with 10 dimensions and 30 dimensions from IEEE CEC2010, have demonstrated that the proposed method shows better or at least competitive performance against other state-of-the-art methods

    On controllability of neuronal networks with constraints on the average of control gains

    Get PDF
    Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently

    Optimal Biocompatible Solvent Design by Mixed-integer Hybrid Differential Evolution

    Get PDF
    In this study, a flexible optimization approach is introduced to design an optimal biocompatible solvent for an extractive fermentation process with cell-recycling. The optimal process/solvent design problem is formulated as a mixed-integer nonlinear programming model in which performance requirements of the compounds are reflected in the objectives and the constraints. A flexible or fuzzy optimization approach is applied to soften the rigid requirement for maximization of the production rate, extraction efficiency and to consider the solvent utilization rate as the softened inequality constraint to the process/solvent design problem. Such a trade-off problem is then converted to the goal attainment problem, which is described as the constrained mixed-integer nonlinear programming (MINLP) problem. Mixed-integer hybrid differential evolution with multiplier updating method is introduced to solve the constrained MINLP problem. The adaptive penalty updating scheme is more efficient to achieve a global design

    Fuzzy Differential Evolution Algorithm

    Get PDF
    The Differential Evolution (DE) algorithm is a powerful search technique for solving global optimization problems over continuous space. The search initialization for this algorithm does not adequately capture vague preliminary knowledge from the problem domain. This thesis proposes a novel Fuzzy Differential Evolution (FDE) algorithm, as an alternative approach, where the vague information of the search space can be represented and used to deliver a more efficient search. The proposed FDE algorithm utilizes fuzzy set theory concepts to modify the traditional DE algorithm search initialization and mutation components. FDE, alongside other key DE features, is implemented in a convenient decision support system software package. Four benchmark functions are used to demonstrate performance of the new FDE and its practical utility. Additionally, the application of the algorithm is illustrated through a water management case study problem. The new algorithm shows faster convergence for most of the benchmark functions
    • …
    corecore