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Abstract 

The Differential Evolution (DE) algorithm is a powerful search technique for solving global 

optimization problems over continuous space.  The search initialization for this algorithm 

does not adequately capture vague preliminary knowledge from the problem domain. This 

thesis proposes a novel Fuzzy Differential Evolution (FDE) algorithm, as an alternative 

approach, where the vague information of the search space can be represented and used to 

deliver a more efficient search.  The proposed FDE algorithm utilizes fuzzy set theory 

concepts to modify the traditional DE algorithm search initialization and mutation 

components. FDE, alongside other key DE features, is implemented in a convenient decision 

support system software package. Four benchmark functions are used to demonstrate 

performance of the new FDE and its practical utility. Additionally, the application of the 

algorithm is illustrated through a water management case study problem. The new algorithm 

shows faster convergence for most of the benchmark functions. 

 

Keywords 

Fuzzy numbers, Genetic algorithms, Differential Evolution Algorithms, Fuzzy random 

variables, Fuzzy Set Theory, Optimization, Water Resource Management 
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Chapter 1  

1 Introduction 

Water resources systems provide water for agricultural, industrial, household, 

recreational and environmental activities. Beside sustaining life, water has a high social, 

economic, cultural and aesthetic value for humans.  However, water can also become a 

potential threat, such as in the event of flooding caused by a sudden abundance of water. 

Therefore it is no surprise that there is a great need for water resource systems 

management. Through the management activities we can appropriately allocate the water 

resources, increasing economic benefits while actively assuring the health and safety of 

humans and related environment.  

Water-related problems can be addressed through structural measures (dikes, dams, 

sewers, etc.), but also through policy and operation decisions. However, before 

implementation of these aforementioned measures can take place, utilization of an 

approach such as system analysis is required. System analysis is defined as a set of 

mathematical planning and design techniques; its introduction has been viewed as the 

most important advance in the field of water management in the last century (Hall and 

Dracup, 1970; Loucks et al., 1981; Friedman et al., 1984; Yeh, 1985; Rogers and Fiering, 

1986; Loucks and da Costa, 1991; Wurbs, 1998; Simonovic, 2009). Systems analysis is 

particularly promising when scarce resources must be used effectively. Resource 

allocation problems are very common in the field of water management, and affect both 

developed and developing countries, which today face increasing pressure to make 

efficient use of their resources (Simonovic, 2009).  

System analysis techniques, often called operations research, management science and 

cybernetics, include simulation and optimization techniques that are used to analyze the 

quantitative and qualitative aspects of watershed runoff and stream flow processes, 

reservoir system operations, groundwater development and protection, water distribution 
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systems, water use and various other hydrological processes and management activities 

(Simonovic, 2009). The latter technique, optimization, is the focus of this thesis. 

Optimization is a procedure defined as the selection of a set of decision variables falling 

within the feasible region that maximizes/minimizes the objective function (Simonovic, 

2009). Optimization is very desirable as it improves efficiency, performance and revenue 

which finds application in a broad spectrum of fields, most commonly economics, 

engineering and operations research (including water management). 

Optimization problems, once formulated through the creation of the objective function 

(and sometimes including constraints), may be solved using a wide variety of 

computational techniques. Most water resources allocation problems are addressed using 

linear programming (LP) solvers introduced in the 1950s (Dantzig, 1963). The objective 

function in the context of water management is usually to find the economically efficient 

water allocation (water supply, hydropower generation, irrigation, etc.) within a given 

time period in complex water systems (Simonovic, 2009). However, neither objective 

functions nor constraints are in a linear form in most practical water management 

applications. Many modifications have been used in real applications in order to convert 

nonlinear problems for the use of LP solvers. Examples include different schemes for the 

linearization of nonlinear relationships and constraints, and the use of successive 

approximations.  

Nonlinear programming is an optimization approach used to solve problems when the 

objective function and the constraints are not all in linear form (Bazaraa et al., 2006). In 

general, the solution to a nonlinear problem is a vector of decision variables which 

optimizes a nonlinear objective function subject to a set of nonlinear constraints. No 

single universally applicable algorithm exists, that would solve every specific problem 

fitting this description. However, substantial progress has been made for some important 

special cases by making various assumptions about these functions. Successful 

applications are available for special classes of nonlinear programming problems such as 

unconstrained problems, linearly constrained problems, quadratic problems, convex 

problems, separable problems, non-convex problems and geometric problems. 
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The main limitation in applying nonlinear programming to water management problems 

lies in the fact that nonlinear programming algorithms generally are unable to distinguish 

between local optimum and global optimum (except by finding another better local 

optimum) (Simonovic, 2009). Therefore, where a global optimum solution is required, 

nonlinear programming may prove to be very inefficient due to the duration of 

computation.  

Dynamic programming (DP) offers advantages over other optimization tools because the 

shape of the objective function and constraints do not affect it; hence, it has been used 

frequently in water management (Simonovic, 2009; Sniedovich, 2011). DP requires 

discretization of the problem into a finite set of stages. At every stage a number of 

possible conditions of the system states are identified and an optimal solution is identified 

at each individual stage, given that the optimal solution for the next stage is available. An 

increase in the number of discretizations and/or state variables would increase the number 

of evaluations of the objective function, as well as the core memory requirement per 

stage. This problem of rapid growth of computer time and memory requirement 

associated with multiple-state-variable DP problems is known as “the curse of 

dimensionality” (Sniedovich, 2011). This expression refers to the exponential growth of 

the search space volume as a function of dimensionality. 

In the very recent past, most optimization practitioners and researchers have been looking 

for new approaches that combine efficiency and ability to find the global optimum. One 

group of such optimization algorithms, known as evolutionary algorithms (EA) has 

received praise for its efficiency and ability to find the global optimum for complex non-

linear systems (Back, 1996; Simonovic, 2009). Evolutionary algorithms are based on the 

biological evolutionary process and are therefore inherently stochastic in nature. In this 

concept, a population of individuals, each representing a search point in the space of 

feasible solutions, is exposed to a collective learning process, which proceeds from 

generation to generation. The population is arbitrarily initialized and subjected to the 

process of selection, recombination/crossover and mutation through stages known as 

generations, such that newly created generations evolve towards more favorable regions 

of the search space. The algorithm resembles the Darwinian concept known as “the 
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survival of the fittest”. This group of algorithms includes, among others, evolution 

strategies (ES) (Back, 1996), differential evolution (DE) (Storn and Price, 1995), 

evolutionary programming (EP) (Fogel et al, 1966; Fogel, 2005), genetic algorithms 

(GA) (Holland, 1975), and simulated annealing (Kirkpatrick et al, 1983; Lockwood and 

Moore, 1993). 

Evolutionary algorithms have significant advantages over the other optimization methods 

discussed.  Unlike LP, they are able to deal with complex nonlinear problems. Also, they 

are very likely to generate several solutions that are very close to the global optimum, as 

opposed to nonlinear programming, and, although not immune from the “curse of 

dimensionality”, they do not suffer from it to the extent of DP (Yu and Gen, 2010). In 

addition, evolutionary algorithms do not need an initial solution, and are able to produce 

acceptable results over longer time horizons (Simonovic, 2009). However, despite its 

ability to deal with unconstrained optimization problems very efficiently, EA suffers 

limitations like most traditional optimization techniques when dealing with constrained 

optimization problems. Most commonly, these limitations have been addressed by 

integrating additional algorithms with EA, such as the penalty function method, in order 

to transform a constrained optimization problem into an unconstrained one (Gen and 

Chen, 1997).  

One of the above mentioned evolutionary algorithms, the differential evolution (DE) 

(Storn and Price, 1995; Storn and Price, 1997; Lampinen et al., 2005), is the main focus 

of this thesis. It has gained increasing popularity for solving optimization problems due to 

its robustness, simplicity, easy implementation and fast convergence.  DE has been 

successfully applied to water resource management, mechanical engineering, sensor 

networks, scheduling and other domains (Arunachalam, 2008; Ilonen et al, 2003; Joshi 

and Sanderson, 1999; Onwubolu, 2008; Pan et al, 2009; Rogalsky et al, 1999; Storn, 

1996).  

DE utilizes a parallel direct search method for generating population vectors for each 

generation G from NP, D-dimensioned parameter vectors, where NP is the number of 

members in a population which is fixed throughout the optimization process and D is the 
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number of optimization parameters known as individuals. The population vector is given 

as: 

                 
(1.1)  

 

Initialization of the algorithm occurs once the initial vector population is chosen at 

random from an assumed parameter range (i.e. a range of integers from -10 to 10). 

Alternatively, if the preliminary solution is known, the population vector is populated 

using a normally distributed random deviation to the nominal solution, Xnom,0.  The 

initially generated population (Xi,0) is perturbed using mutation and crossover, leading to 

the evolution of a new trial population. A selection process takes place to determine the 

fittest population of the two. The fittest population is selected as the initial population for 

the subsequent generation.  This process continues iteratively until a termination 

condition is met. Fig 1.1 summarizes the main components of the algorithm. 

 

Iterations  

Initialize DE population 

Calculate the fitness of 

all populations 

Mutation 

Crossover 

Selection 

Termination Condition 

Met? 

Figure 1.1. DE algorithm schematic. 
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The initialization strategies currently used with the DE address two specific scenarios: 

certainty or uncertainty. When preliminary information is available with certainty, the 

algorithm may be initialized using the nominal solution as discussed (Lampinen et al., 

2005). Otherwise, if preliminary information is not available, the initialization will have 

to rely on a range of possible solutions (Lampinen et al., 2005). 

However, when vague preliminary knowledge of the problem domain is available, neither 

method for initialization is ideal. Using such vague information to assume a nominal 

solution incorrectly implies more certainty than available. Alternatively assuming a range 

of solutions accounts for the uncertainty but may not utilize all available information to 

represent it correctly. The more knowledge one includes, the less uncertain will be the 

initialization and, consequently, the optimization. 

The fuzzy set theory (Zadeh, 1965) offers a means to address the quantification of 

uncertainty from the available vague information. A brief overview of the main concepts 

of this theory is given in Appendix A.  The fuzzy set theory offers unique possibilities for 

modifications of the traditional fundamentally stochastic DE algorithm. Some fuzzy 

practitioners have been already involved with evolutionary optimization.  Some have 

utilized the existing algorithm to develop fuzzy models, like Kisi (2004) who found the 

parameters of membership functions for daily suspended sediment modeling.  Others 

have joined the ongoing research that has resulted in modifications of the classic DE 

algorithm, such as Liu and Lampinen (2004). They proposed a fuzzy adaptive parameter 

control algorithm, based on feedback from the search behavior, to address the sensitivity 

of the DE to control parameter settings. 

The objective of this thesis is to create a new DE initialization strategy that will be able to 

take advantage of the existing knowledge in the problem domain. The more knowledge is 

included, the more likely it becomes for the optimization to converge more efficiently. In 

conjunction with the new initialization technique, the mutation scheme will require 

modification in order to properly offer valuable guidance to the DE algorithm towards a 
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more efficient search strategy. For convenience, the novel algorithm is implemented into 

optimization decision support system software. 

1.1 Organization of the Thesis 

This thesis is organized into four additional chapters. Chapter Two gives an overview of 

the methodological background of the classic differential evolution algorithm strategy, as 

well as of several other selected strategies. An illustrative numerical example of the 

classic differential evolution algorithm is also presented here. The chapter also contains 

guidelines for setting the DE control parameters based on empirical evidence; in addition, 

the fuzzy adaptive differential evolution methodology is detailed. Constraint handling 

methodologies are also overviewed, including the random and bounce-back 

reinitialization approach for dealing with search space constraints and the penalty 

function method for dealing with feasible space constraints. Lastly, the methodology for 

the novel fuzzy differential evolution (FDE) algorithm for initialization and mutation is 

proposed. This approach uses prior knowledge of the problem domain for guiding the 

search towards the optimal solution. A numerical example of the fuzzy differential 

algorithm is also presented for illustrative purposes. 

Chapter Three outlines the optimization decision support system software package 

developed by integrating all the features discussed in the methodology. An illustrative 

example is used to demonstrate the decision support system and a typical procedure 

required to find the optimal solution. Chapter Four details two applications of the novel 

fuzzy differential evolution algorithm. Included is the application of a set of standard 

benchmark functions, used to compare the performance of the classical DE algorithm (in 

terms of convergence speed) with the proposed FDE algorithm. The second example is a 

practical application of the proposed algorithm using a reservoir operation case study. 

The final Chapter Five is a summary of key contributions/findings with a view into 

possible directions for future research aimed at expanding the FDE concept.  
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Chapter 2  

2 Methodology 

In the following sections of this chapter an overview of the original differential evolution 

algorithm is presented, alongside several other common variants. Presented is also an 

overview of control parameter selection strategies. Additionally, the approach for 

handling constraints is detailed. Lastly, the contribution of this thesis, the novel fuzzy 

differential evolution algorithm methodological background is detailed.  

2.1 Differential Evolution Algorithm 

The DE algorithm after initialization has three main operations:  (I) mutation, (II) 

crossover and (III) selection before finishing due to a termination condition. The 

fundamental idea behind DE is a specific way of generation of trial parameter vectors. 

This is achieved using mutation and crossover to generate new trial parameter vectors.  

Selection then determines which of the vectors will survive to be used in the next 

generation. Through repeated cycles of mutation, crossover and selection, DE is able to 

guide the search towards the vicinity of the global optimum.   

The original DE algorithm scheme proposed by Storn and Price (1995) gave the working 

principles of DE. Subsequently, contributions of other variants or strategies have been 

made and continue to be made. Different DE strategies can be adopted in the DE 

algorithm depending upon the type of problem to which DE is applied. The strategies can 

vary based on the vector to be perturbed, the number of difference vectors considered for 

perturbation and the type of crossover used. 

In order to differentiate the family of various available strategies for DE, a general 

notation convention used is DE/x/y/z (Price and Storn, 1997). DE stands for Differential 

Evolution, it distinguishes that the notation presented follows the differential evolution 

algorithm principles. The x variable represents a string (rand:random;best), denoting how 

the vector is to be perturbed either using the best vector of the previous generation or 
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using any randomly chosen vector. The y variable is the number of difference vectors 

considered for the perturbation of x. Hence if it is a single vector difference, three distinct 

randomly chosen vectors are required, because the weighted differential of two vectors is 

added to the third one.  Lastly, z stands for the type of crossover used: either exponential 

(exp) or binomial (bin). If exponential crossover is chosen, the crossover is performed on 

the D variables in one loop until it is within a given bound represented by the control 

parameter CR (crossover rate). The first time a randomly picked number between 0 and 1 

exceeds the CR value, crossover is halted and the remaining D variables are left intact. If 

the crossover is binomial, it is performed on each of the D variables whenever a 

randomly picked number between 0 and 1 is within the CR value. Therefore for high 

values of CR, the exponential and binomial crossover methods yield similar results. In 

practice, the binomial crossover approach is used more frequently. 

The performance of the various DE variants is highly dependent on the given problems, 

so that a suitable one for any particular problem may not be as suitable for another. This 

assertion is reinforced by the no free lunch theorem (NFL) which states that no single 

search algorithm exists that can solve all problems efficiently (Wolpert and Macready, 

1997). With that in mind, the importance and amount of research into strategies and 

control parameters for the best convergence efficiency is hardly surprising. The strategy 

and control parameter selection with best performance for a given problem is typically 

unknown, though some guidance exists. The usual approach is trial-and-error. However, 

the original DE algorithm strategy, under the notation DE/rand/1/bin by Storn and Price 

(1995), appears to be the most successful and the most widely used. The following 

presentation is based on the original/classic DE scheme. 

2.1.1  DE Population Initialization 

A common starting point with implementing any evolutionary algorithm is the 

initialization of the population. Initialization has two main issues that need to be decided 

upon: (a) “How to initialize each gene of the individual?” and (b) “How many genes 

should be used in the population?” (Iba and Noman, 2012). Discussed here is only the 
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first issue. The latter, which is related to population size, a critical parameter of DE, will 

be focused on in Section 2.3. 

As stated in earlier sections, each gene of each individual is initialized using a uniform 

random generator within the search ranges. This concept is the same for all evolutionary 

algorithms and DE is no exception. Let us assume that we are working in a D-

dimensional problem. Then each individual of the DE population, PG, would be a D-

dimensional vector which can be initialized as follows: 

     
                   

(2.1)  

Such that     
    denotes the tth gene (t =1,2,…,D) of the ith individual (i =1,2,…, NP) in 

generation G =1. Randt(a,b) denotes the uniform random number generator that returns a 

uniformly distributed random number from [a, b]. The subscript in Randt is used to 

clarify that a separate random number is drawn for each gene in each individual.  LBt and 

UBt denote the lower and upper limits of the search ranges for gene j, respectively. It is 

critical that the bounds are set sufficiently high enough, so that the initial bounding box 

contains the optimum solution. In many cases the existence of natural physical limits or 

logical constraints makes prescribing bounds for each parameter straightforward. In 

circumstances where the bounds for a specific parameter are not known this may be 

particularly difficult.  
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A population vector with its gene and individual components is presented in Table 2.1 for 

clarity.  

Table 2.1. Population vector matrix for each generation 

Gene         

   Individual 

1 2 D 

1 X1,1 X1,2 X1,D 

2 X2,1 X2,2 X2,D 

NP XNP,1 XNP,2 XNP,D 

2.1.2 Mutation 

DE derived its name from the mutation operator it applies to mutate its individual. 

Mutation is the first of two main operators (the other being crossover) required to alter 

the “genetic code” of current individuals to improve diversity of a population. A 

mechanism for evolving the population of vectors is essential. There is the possibility that 

re-selection of vectors already chosen can occur along with other vectors being omitted 

from the search. Vectors that are not chosen are deprived of passing on potential diversity 

to the next generation. Re-selection of vectors causes the potential to lose diversity in the 

next generation due to over sampling of the same vector. DE ensures that this does not 

happen by comparing vectors from competing populations by their index.  

The mutation operator is called “differential mutation” and generates the mutated 

individual (also known as mutated vector) mi,G+1,for the principal parent (also known as 

target vector) xi,G according to the following equation (Storn and Price, 1997): 

 

               (           )            
(2.2)  
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where F ϵ [0, 2] is a real number that controls the amplification of the difference vector 

(xr2, G-xr3, G), while r1, r2, r3 ϵ [1, NP] represent randomly chosen indexes, where r1 

corresponds to the base vector. The indexes have to be different from each other and from 

the running index i. That way, a parent pool of four individuals is required to breed an 

offspring. 

2.1.3 Crossover 

To complement the differential mutation search strategy, DE then uses a crossover 

operation, in which the mutated individual is mated with the principal parent and 

generates the offspring or “trial individual”. This crossover operation for classic DE as 

reviewed here is known as binomial crossover. 

The target vector xi,G is mixed with the mutated vector, mi,G, using the following scheme, 

to yield the trial vector (Storn and Price, 1997) 

                                       
(2.3)  

 

where 

 
       {

                                    
                                           

 

(2.4)  

 

CR is the crossover constant ϵ [0, 1] (to be specified by the user), t =1, 2,…, D and  randt 

is the tth evaluation of a uniform random generator number ϵ [0, 1]. Lastly, to guarantee 

that a new altered population vector is produced, a randomly chosen index rni ϵ 

[1,2,…,D] is used, ensuring that ui,G+1 gets at least one element from mi,G+1.  

 



13 

 

2.1.4 Selection  

DE uses a selection mechanism to ensure that the individuals promoted to the next 

generation are strictly those with the best fitness values in the population. A knockout 

competition is played between each individual (target vector)      and its offspring (trial 

vector)       . The survival criteria can be described as follows (Storn and Price, 1997): 

 
       {

           (      )   (    ) 

                                          
 

(2.5)  

 

where       indicates the objective function that is being optimized (minimized here). 

This one-to-one selection mechanism ensures that the selected individuals are strictly 

those with the best fitness values in the population. That is to say, the trial vector ui,G+1  

must yield a better fitness value than xi,G, for xi,G+1 to be set to ui,G+1; otherwise, the old 

value xi,G is retained. Practicing this one-to-one selection mechanism thus enables DE to 

exercise elitism on its population. Due to its positional elitism strategy it discards an 

offspring which is better than most of the current population but worse than its parent. 

However, such rejected individuals could be useful to accelerate the search for the global 

optimum (Iba and Noman, 2012). 

 

2.1.5 Termination 

Termination of the algorithm ideally takes place after the global optimum is achieved, but 

this may not always be the case. Frequently, termination of the algorithm is a user-

defined input and the user can limit the number of iterations of the algorithm. This is a 

trial-and-error approach, in that a sufficient number of iterations are required to ensure 

the best known results are returned. Another method for termination is when the objective 

has been met. In some objective functions, the optimal value can already be known. For 

example, some functions such as benchmark functions may have a known minimum 

value, meaning as soon as the search algorithm reaches this known minimum value it will 
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terminate. Additionally, feedback provided by the objective function can determine that 

no further optimization is possible. For example, if the optimization stalls and thus many 

subsequent objective function values are the same, the algorithm may be terminated. 

Also, human monitoring can determine when optimization is over.  

2.1.6 Illustrative Example of Classic DE Algorithm 

A simple numerical example adopted from Arunachalam (2008) is presented to illustrate 

the classic DE algorithm. Let us consider the following objective function for 

optimization: 

                        
(2.6)  

The initial population is chosen randomly between the bounds of decision variables, in 

this case x1, x2 and x3 ϵ [0, 1]. The population along with its respective objective function 

values is shown in Table 2.2. The first member of the population, “Individual 1”, is set as 

the target vector. 

In order to generate the mutated vector, three individuals (“Individual 2”, “Individual 4” 

and “Individual 6”) from the population size are selected randomly (ignoring “Individual 

1”, since it is set as the target vector). The weighted difference between “Individual 2” 

and “Individual 4” is added to the third randomly chosen vector “Individual 6” to 

generate the mutated vector. The weighting factor F is chosen as 0.80 and the weighted 

difference vector is obtained in Table 2.3 and the mutated vector in Table 2.4. 
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Table 2.2. An illustrative example 

Population Size NP=6 (user defined), D=3 

 Individual 

1 

Individual 

2 

Individual 

3 

Individual 

4 

Individual 

5 

Individual 

6 

x1 0.68 0.92 0.22 0.12 0.40 0.94 

x2 0.89 0.92 0.14 0.09 0.81 0.63 

x3 0.04 0.33 0.40 0.05 0.83 0.13 

f(x) 1.61 2.17 0.76 0.26 2.04 1.70 

 

 

Table 2.3. Calculation of the weighted difference vector for the illustrative example 

 Individual 

2 

 

 

Individual 

4 

Difference 

Vector 

 Weighted 

Difference 

Vector 

x1 0.92  0.12 = 0.80  = 0.64 

x2 0.92 - 0.09 = 0.83 x F 

(F= 0.80) 

= 0.66 

x3 0.33  0.05 = 0.28  = 0.22 
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Table 2.4. Calculation of the mutated vector for the illustrative example 

 Weighted 

Difference 

Vector 

 Individual 

6 

Mutated 

 Vector 

x1 0.64  0.94 = 1.58 

x2 0.66 + 0.63 = 1.29 

x3 0.22  0.13 = 0.35 

The mutated vector does a crossover with the target vector to generate the trial vector, as 

shown in Table 2.5. This is carried out by (1) generating random numbers equal to the 

dimension of the problem (2) for each of the dimensions: if random number > CR; copy 

the value from the target vector, else copy the value from the mutated vector into the trial 

vector. In this example, the crossover constant CR is chosen as 0.50. 

Table 2.5. Generation of the trial vector for the illustrative example 

 Target Vector  Mutated Vector Trial Vector 

x1 0.68  1.58 = 1.58 

x2 0.89 Crossover  1.29 = 0.89 

x3 0.04 (CR= 0.50) 0.35 = 0.04 

f(x) 1.61  3.22 2.51 

The objective function of the trial vector is compared with that of the target vector and 

the vector with the lowest value of the two (minimization problem) becomes “Individual 

1” for the next generation. To evolve “Individual 2” for the next generation, the second 

member of the population is set as target vector (see Table 2.6) and the above process is 

repeated. This process is repeated NP times until the new population set array is filled, 
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which completes one generation. Once the termination criterion is met, the algorithm 

ends. 

Table 2.6. New population for the next generation in the illustrative example 

 New Population for the Next Generation 

 Individual 

1 

Individual 

2 

Individual 

3 

Individual 

4 

Individual 

5 

Individual 

6 

x1 0.68      

x2 0.89      

x3 0.04      

f(x) 1.61      

 

2.2 Selected Differential Evolution Algorithm Variants 

In addition to the classical DE strategy DE/rand/1/bin, there are many derivative 

strategies for perturbation of the population vectors. The motivation to develop such 

strategies has come from the fact that no single perturbation method has turned out to be 

best for all problems (Chakraborty, 2008). Discussed here is DE/best/1/bin and 

DE/current(local)-to-best/1/bin, two very popular mutation strategies for addressing 

optimization problems that the original strategy may not perform adequately. These two 

strategies benefit in faster convergence by incorporating the best solution information in 

the evolutionary search. However the best solution information may also cause problems 

such as premature convergence due to the resultant decreased population diversity. 

2.2.1 DE/best/1/bin 

The strategy DE/best/1/bin is very popular. It was proposed after the initial formulation 

of the DE algorithm (Price, 1996). The fundamental difference between the original DE 
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scheme and this variant is based on the perturbation of the vectors. In the DE/best/1/bin 

scheme only the mutation component of the algorithm is modified with respect to the 

original, incorporating information from the objective function. Instead of randomly 

populating the base vector from randomly chosen indexes in the current generation (as in 

the original scheme), in DE/best/1/bin the algorithm always selects the best-so-far vector 

(best) as the base vector, adds a single scaled vector difference to it, then creates a trial 

vector by uniformly crossing the resulting mutant with the target vector. Thus the base 

vector always has the best (fittest) objective function value in the current population. 

Compared to random base vector selection, using the best-so-far vector lowers the 

diversity of the pool of potential trial vectors (Lampinen et al., 2005).  

The above description is expressed in the formula below, where for each target vector 

xi,G, a mutation vector mi,G  is generated according to (Price, 1996) 

                 (           )         
(2.7)  

 

where F ϵ [0, 2] is a real number that controls the amplification of the difference vector 

(xr1, G-xr2, G) and r1, r2 ϵ [1, NP] represent randomly chosen indexes. The indexes have to 

be different from each other and from the running index i so that NP must be at least 

three. Xbest,G corresponds to the best vector from the best population solution in the 

current generation. 

2.2.2 DE/local-to-best/1/bin  

This DE variant computes the difference between the ith member (target vector) and the 

best-so-far member of the current population (Lampinen et al, 2005). This method 

attempts to balance robustness with fast convergence and is a popular choice in most 

studies of DE. 

              (            )   (           )         
(2.8)  
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2.3 Setting Control Parameters 

Control parameters have already been briefly mentioned, but due to their importance to 

the performance of DE algorithms a more detailed explanation is given here. The values 

of population size (NP), crossover constant (CR) and weighing factor or mutation scale 

factor (F) are fixed empirically, following certain heuristics. Proper tuning of these 

parameters is essential for the reliable performance of the algorithm. Trying to tune these 

three main control parameters and finding bounds for their values has been a topic of 

intensive research (Chakraborty, 2008). 

The mutation scale factor F controls the speed and robustness of the search. A lower 

value for F increases the convergence rate but it does so at the risk of getting stuck into a 

local optimum and therefore failing to find the true global solution. Parameters CR and 

NP have a similar effect on the convergence rate as F. High values of CR favor a higher 

mutated element crossover to current elements; as a result, the mutation factor F has a 

greater impact on the search. As well, an increased value of NP increases the diversity of 

the population and with it the potential to find the true optimal solution from the greater 

search space but at the cost of longer computation time. 

The control parameter selection is a difficult task due to their interdependence with each 

other and the fact that some objective functions are sensitive to proper settings (Liu and 

Lampinen, 2002). Traditionally, the control parameters have been held fixed during the 

whole execution of the algorithm. 

The rule-of-thumb values for the control parameters given by Storn and Price (1997) for 

F is usually between 0.5 and 1.0 and CR between 0.8 and 1.0. These authors have 

proposed that the population size NP should be between 5×D and 10×D and not less than 

4 to ensure that the mutation operation can be carried out. If mis-convergence occurs, NP 

should be increased; however, beyond a certain limit it is not useful to increase the 

population size any more (Iba and Noman, 2012). The suggestions by Storn and Price for 

the control parameters are valid for many practical purposes but still lack generality. This 

means that, in practice, many time-consuming trial runs are required to find optimal 
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parameters for each problem setting. As a result of the difficulty of setting appropriate 

control variables, research has focused on finding parameters such as F and CR settings 

automatically (Zhang and Sanderson, 2009).  

For example, Brest et al. (2006) proposed a self-adaptive version of DE that 

automatically adjusts its control parameters F and CR at an individual level. Likewise, a 

feedback update rule for F was proposed by Zaharie (2003), designed to maintain the 

population diversity at a given level, thereby reducing a premature convergence of the 

search. Fuzzy adaptive differential evolution (FADE), introduced by Liu and Lampinen 

(2004), is another example of methods that determine the control parameters 

automatically and is discussed in detail in the following section.  
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2.3.1 Fuzzy Adaptive Differential Evolution 

Fuzzy logic is a means of transforming linguistic knowledge into a mathematical model. 

It has been used extensively in the field of automatic control where it succeeded in the 

modeling and control of many systems that cannot be described using classical control 

techniques. Therefore fuzzy logic offers a means of rendering control parameters more 

adaptive to each optimization problem. The result of implementing fuzzy adaptive 

differential evolution (FADE) is a more efficient search (a lesser number of function 

evaluations) (Liu and Lampinen, 2004). 

FADE uses a fuzzy knowledge-based system to adapt dynamically the control parameters 

F and CR for the mutation and crossover operations. It uses a series of fuzzy rules 

developed based on existing empirical evidence to infer appropriate values of F and CR 

for each generation, based on parameter and objective function difference vector from 

subsequent generations. The adaptive parameters using FADE accelerate the convergence 

velocity of DE. 

FADE uses Mamdani’s inference method to establish the control parameter (Mamdani 

and Assilian, 1975). Mamdani’s fuzzy inference method is detailed in Appendix B.  

FADE establishes inputs for fuzzy inference by using the mean square root concerning 

the change between successive generations over the whole population during the 

optimization process: 
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(2.9)  
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and 

 

                                                             

                   

                      

                      

(2.10)  

where PC is called the parameter vector change in magnitude and is transformed into the 

range of [0,1] as d11 and the range of [0,2] as d21; FC is called the function value change 

and is transformed into [0,1] as d12 and [0,2] as d22;   
   

 is the ith component of the 

function value vector for the nth generation, i = 1,2,…,NP;     
   

 is the component in the 

ith row and jth column of the parameter matrix XNP×D for the nth generation, i = 

1,2,…,NP, j = 1,2,…,D; n is the generation index; NP and D represent the population size 

and dimensionality of the problem, respectively. 

Actual input values for the fuzzy inference are the numerical values as stated in Eq. 

(2.10); output variables are the parameter values for F and CR, whose ranges are sets of 

real numbers.  

Each of the variables (d11, d12, d21, d22, F, CR) has a corresponding fuzzy membership 

function with 3 fuzzy subsets, where S is “small”, M is “middle” and B is “big”. These 

membership functions are developed by Lampinen and Liu (2004), based on existing 

empirical knowledge. A Gaussian curve membership function, fg is used for every input 

and output and is defined in Table 2.7. 
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Table 2.7. Membership Functions 

Inputs, 

Outputs 

Membership Functions 

d11                           

                         

                         

d21                         

                        

                        

d12                          

                         

                         

d22                         

                        

                        

F                     

                    

                    

CR                        
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The values of F and CR are adapted based on d11, d12, d21, d22 and a series of fuzzy rules 

used to describe the characteristics of the system. There are a total of 18 rules for 

determining F and CR values, 9 each. Each rule has two inputs and one output which 

represent the mapping from the input space to the output space. The “9×2” rules are given 

in Table 2.8. 

Table 2.8. The Fuzzy Rules 

Rule Fuzzy Sets 

di1 di2 F or CR 

1 S S S 

2 S M M 

3 S B B 

4 M S S 

5 M M M 

6 M B B 

7 B S B 

8 B M B 

9 B B B 

Note: S = small; M = middle; B = big, i = 1, 2 the first and second fuzzy logic control 

system. dij = the jth input of the ith fuzzy logic control system. 
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Finally, the adaptive parameters may be found given the supplied information and 

Mamdani’s inference in conjunction with a centroidal defuzzification technique. 

 Defuzzification is mapping from a space of fuzzy output into a space of real output. The 

result is a single number y* which represents the value of the mutation amplification F or 

crossover factor CR. 

2.4 Constraints 

Constrained optimization problems, especially nonlinear optimization problems, where 

objective functions are to be optimized under given constraints, are very important and 

frequently appear in the real world. For this reason, DE has had significant research 

invested into dealing with optimization problems, with inequality constraints, equality 

constraints, as well as upper and lower bound constraints (Chakraborty, 2008; Lampinen 

et al., 2005). Constrained optimization problems are mathematically expressed as  

                           

            

                

                       

                       

 

(2.11)  

Where x = (x1, x2,…,xk) is a k-dimensional vector, f(x) is an objective function, gj(x) ≤ 0 

and hj(x) = 0 are n inequality constraints and m equality constraints, respectively. 

Functions f, gj and hj are linear or nonlinear real-valued functions. Values ui and li are 

upper and lower bounds of xi, respectively. 

Discussed here will be the methodological background on defining constraints for (I) the 

feasible space in which every point satisfies constraint functions denoted by F and (II) the 
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search space in which every point satisfies upper and lower boundary constraints denoted 

by S(F). Fig. 2.1 shows graphically the search space and feasible region. 

 

Figure 2.1. Search space and feasible region. 

  

2.4.1 Search Space Constraint 

After initialization, the algorithm may produce mutated vectors in subsequent generations 

that fall outside of the initial search boundaries. The initial search bounds give 

information on the assumed feasible search space for the problem and thus can be used to 

define the low and high limits put on each individual. In some cases it may be desirable 

for the search to be able to have the freedom to surpass the set bounds. This may be in 

instances where the search space is improperly preset due to a lack of knowledge about 

the problem domain. However, in all other cases this is harmful and non-desirable. For 

example, a negative value for discharge for a reservoir operation problem is absolutely 

inadmissible; as such, the lower bound constraints must be maintained, LBt = 0.   

Two approaches are surveyed here for regularization of infeasible mutant vectors. These 

fall into the hard constraint handling methods, where the infeasible solutions are rejected. 

The first approach is random reinitialization. Any infeasible optimization parameter value 

of the mutant vector, mi,G+1 that does not fall within upper and lower bounds is replaced 

by a value randomly generated with a uniform distribution from the initial bounds. 
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(2.12)  

 

The other approach to regularize infeasible mutant vectors is called bounce-back. 

Bounce-back replaces the offending parameter with another, chosen between the 

boundary and the base vector.  

If the mutated vector exceeds the lower bound: 

                   (        ) 
(2.13)  

If the mutated vector exceeds the upper bound: 

                   (        ) 
(2.14)  

 

Bounce-back may be preferred over random reinitialization as it is able to preserve the 

direction of the current search. As a result, the convergence speed using bounce-back 

may be favorable to random reinitialization. 

2.4.2 Feasible Space Constraint 

Some problems have constraint functions which cannot be dealt with utilizing the search 

space boundary constraints. The penalty function method is widely used for constrained 

optimization problems, not just in differential evolution algorithms but in other 

optimization algorithms as well. The penalty function method transforms the constrained 

problem into an unconstrained one by penalizing infeasible solutions, in which a penalty 

term is added to the objective function for any violation of the constraints (Gen and Chen, 

1997).  

The additional penalties added to the objective function force the solution to fall into the 

feasible space after a few generations. This results from solutions that have the penalty 
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added on to the objective failing in order to compete with solutions without penalty in the 

selection process of DE. It needs to be emphasized that infeasible solutions may not be 

rejected outright in each generation, as they may provide much more useful information 

about optimal solution than some feasible solutions. The major concern is how to 

determine the penalty term so as to strike a balance between keeping some infeasible 

solutions and rejecting others. An overly low penalty term constant may keep too many 

infeasible solutions, whereas a very high penalty constant may reject all the solutions 

preventing the optimization from convergence to an optimal solution.  

Careful selection of the penalty control parameters is required for the proper convergence 

to a feasible optimal solution and is very much problem-dependent. 

The differential evolution algorithm is modified to take account of constraint functions 

using the penalty function method. The fitness function modified for taking account of 

the penalty function may be expressed as follows (Gen and Chen, 1997): 

                   
(2.15)  

where x represents the genes parameter vector, f(x) the objective function of the problem 

and p(x) the penalty function. For an optimization problem, it is required that 

                          

                                 

                                  

(2.16)  

To demonstrate how the function in Eq. (2.16) may be formulated consider the example 

problem where the initial parameter values for x1 and x2 are found to be 5 and 2 

respectively: 
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(2.17)  

The above two constraints would be transformed to an unconstrained problem and 

multiplied by a penalty constant as follows: 

                                 

 

(2.18)  

where P1 and P2 are the user specified penalty constants for each constraint, these values 

for convenience can be chosen the same, let say P1 = P2 = 10. The terms in parentheses in 

the penalty functions are the values of the constraint violations. Evaluating Eq. (2.18) 

yields a fitness value of 99, much less favorable for a minimization problem than if the 

solution were feasible. In such a case, no constraints would be violated which would 

result in a fitness value of 29. 
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2.5 Fuzzy Differential Evolution Algorithm 

The novel fuzzy differential evolution (FDE) algorithm proposed here allows a novel 

approach for additional problem domain information to be communicated to the DE 

algorithm for optimization. Doing so results in better overall performance. 

Differential evolution is fundamentally a stochastic based algorithm. The name FDE may 

suggest a full deviation to the fuzzy domain. However, this is not the case. The proposed 

method may be better described as a stochastic and fuzzy hybrid.  The (I) initialization 

and (II) mutation procedures are modified so that they utilize both, the fuzzy and the 

stochastic theory. 

2.5.1 Initialization 

Initialization is done in order to seed the population NP, D-dimensional parameter vector 

of the algorithm. Traditionally performed through using randi ϵ [0, 1], a uniform 

probabilistic distribution to randomly select within upper (bU) and lower bounds (bL) 

agents is to be carried through subsequent algorithm components: 

                                     (2.19) 

 

Instead, in FDE, initialization is carried out by using two fuzzy concepts; (I) a normal 

continuous-valued fuzzy set characterized by a membership function and (II) alpha-cuts. 

Membership functions in this case are used to describe the convex single-point normal 

fuzzy sets defined on the real line, often termed fuzzy numbers (i.e. vague values such as 

a flow of about 5 m
3
/s) (Ross, 2004). Therefore, the membership functions are used to 

capture the available knowledge and transfer it to the optimization algorithm. The 

membership functions and the alpha-cuts are both used to support the initialization step 

within the optimization algorithm. The use of alpha-cuts allows for the creation of 

multiple unique population vectors from the singular supplied fuzzy set. Through these 

fuzzy concepts, the FDE algorithm initialization is able to take advantage of the available 

domain knowledge, no matter how uncertain. 
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Membership functions describe the degree of membership or truth in each value 

corresponding to a parameter. Many shapes of membership functions may be used. In this 

paper, for illustration and convenience, we are limiting our discussion to the triangular 

membership function.  A fuzzy triangular number A = (a1, a2, a3) can be represented by 

an ordered triplet or by a triangular membership function 
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(2.20) 

 

Fig. 2.2 shows a triangular membership function defined by Eq. (2.20) where a2 holds the 

highest degree of membership in x (membership, µ = 1) comparatively a1 and a3 hold no 

degree of membership (µ = 0). Within the FDE algorithm a1 and a3 are called the initial 

parameter range while a2 is called the focus or target parameter.  

 

Figure 2.2. Triangular fuzzy membership function. 
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Alpha-cuts are mostly used to extract information from a membership function and are 

rarely used for defuzzifying the fuzzy sets (converting fuzzy numbers into crisp form). 

The alpha-cut describes a fuzzy set using a set of sharp sets. The main idea is to fix a 

certain membership degree α and thus to obtain a crisp set, which is defined as the set of 

values that have a membership degree higher or equal to α. Fig. 2.3 illustrates the concept 

of alpha-cuts. The membership function is cut horizontally at a finite number of regular 

α-levels, or cuts, between 0 and 1. This process generates a number of crisp interval sets 

as shown in Fig. 2.4.  

 

Figure 2.3. The alpha-cut method schematic. 
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Figure 2.4. The alpha-cut intervals schematic. 

 

Taking an arbitrary alpha-cut ϵ [0, 1] in A (a triangular fuzzy number), a confidence fuzzy 

interval, Aα is obtained, defined as 

       
    

                                   (2.21) 

 

Relating to FDE, parameters are described using triangular fuzzy numbers in the form of 

inputs for the triangular membership function. To start the algorithm, the initial 

population vector needs to be generated from these membership functions. This is 

achieved by using the alpha-cut method NP times at random α-levels to create alpha-cut 

intervals for each parameter. This allows for a unique individual to be generated NP 

times from the same parameter membership function input (fuzzy number). The alpha-cut 

interval is assumed to belong to a unique fuzzy number. In essence, the initial fuzzy 

number is used to seed NP unique incomplete fuzzy numbers defined only by a single 

discrete alpha-cut level.  

The alpha-cut interval population vector,     
  ,is found by modifying Eq. (2.21).  

µ 

1.0 

 

 α 
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α
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(2.22) 

Where i = 1, 2,…, NP and α is the alpha-cut level such that it is equal to a uniform 

random number generated, randi ϵ[0,1]i.     
   and     

   are the lower and upper interval 

bounds for each alpha-cut. The parameters a1, a2, a3 are the values representing the fuzzy 

number triplet for each individual parameter.  

In singular value form, the alpha-cut intervals are converted to the familiar population 

vector where neutral preference is given to the upper and lower intervals 

 
     

 

 
      

       
    

 

(2.23) 

In order for a unique singular value to be generated, an asymmetrical triangular 

membership function must be used. 

2.5.2 Mutation 

The mutation component of the algorithm allows for new population vectors to be 

generated in order to investigate the feasible region in search for the optimal solutions. 

FDE utilizes the alpha-cut intervals from the initialization stage and performs mutation 

on them by using fuzzy arithmetic. Performing the mutation in the fuzzy domain allows 

for the algorithm to take advantage of the focused search benefits given by the uncertain 

or vague available knowledge from the problem domain. The mutation that is carried out 

is based on a modification of DE/rand/1/bin, a classical, widely used and successful 

strategy. Therefore the full notation for the proposed strategy can be stated as 
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FDE/rand/1/bin. A similar modification to the one presented here could be performed for 

several other DE variants available, but that is beyond the scope of this paper. 

DE/rand/1/bin defines the weighted differential of two different randomly chosen vectors 

and is used to perturb another randomly chosen vector, creating a mutated vector. This 

process is mathematically expressed in Eq. (2.2). 

The mutation vector mathematical expression in Eq. (2.2), transformed using alpha-cut 

intervals (from initialization and subsequently), has the following form:  
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   )             (2.24) 

 

Utilizing fuzzy interval arithmetic properties for addition and subtraction (Bojadziev and 

Bojadziev, 1995), 

 

        
    

      
    

      
    

      
    

   

 

       
    

      
    

      
    

      
    

   

(2.25) 

 

and substituting for Eq.(2.24) yields the lower and upper mutation vector interval bounds: 

 

       
         

            
         

                 

      
         

      (     
         

   )             

 

(2.26) 
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Where i = 1, 2,…, NP. The alpha-cut population vector interval     
 , is represented by 

discrete endpoints (    
   

      
   

) for levels     ,    ,    . These levels may equal to each 

other or they may be different. However, as seen in Eq. (2.25) the alpha-cut level α must 

be the same throughout in order to proceed with interval arithmetic. This is likely not the 

case in the initialization stage where unique alpha-cut intervals are generated. 

Each of the alpha-cuts for the purpose of the FDE algorithm represents a unique fuzzy 

number. These fuzzy numbers are incomplete, because they are defined by a single alpha-

cut level (Bojadziev and Bojadziev, 1995). In order to perform interval arithmetic at the 

same alpha-cut level, redefining of incomplete fuzzy numbers is required. Redefining 

allows incorporating levels not given initially (Bojadziev and Bojadziev, 1995). 

The mutated alpha-cut intervals vector can be expressed in the traditional singular value 

form: 

 
      

  
 

 
      

       
    

(2.27) 

 

2.5.3 Illustrative Example of FDE Algorithm 

The same simple numerical example that was used to illustrate the original DE algorithm 

is presented here to illustrate the FDE algorithm. Let us consider the following objective 

function for optimization: 

                        
(2.28)  

The initial population is chosen by taking NP (defined as 6) random alpha-cuts of a fuzzy 

membership function for each decision variable; in this case x1, x2 and x3 are defined by 

the same triangular fuzzy membership function triplet (0, 1, 3). Therefore, the initial 

parameter range is ϵ[0,3] while the target or focus is 1.   

A sample calculation for initialization of x1, “Individual 1” is shown using Eq. (2.22), 

where the alpha-cut is randomly selected at 0.6. 
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(2.29) 

The fuzzy interval in Eq. (2.29) is transformed to a singleton using Eq. (2.23). 
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(2.30) 

The population along with its respective objective function values is shown in Table 2.9. 

The first member of the population “Individual 1” is set as the target vector. 

In order to generate the mutated vector, three individuals (“Individual 3”, “Individual 5” 

and “Individual 6”) from the population size are selected randomly (ignoring “Individual 

1”, since it is set as the target vector). The weighted difference between “Individual 3” 

and “Individual 5” is added to the third randomly chosen vector “Individual 6” to 

generate the mutated vector. This procedure in FDE is different than in classical DE, in 

that the weighted difference is done on the alpha-cut fuzzy intervals before conversion 

into a single value the algorithm can utilize. The weighting factor F is chosen as 0.80, the 

weighted difference vector is obtained in Table 2.10 and the mutated vector in Table 

2.11. 
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Table 2.9. An illustrative example 

Population Size NP = 6 (user defined), D = 3 

 Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

x1 1.20 0.60,1.80 1.11 0.77,1.46 1.05 0.90,1.20 1.19 0.61,1.77 1.28 0.45,2.11 1.14 0.72,1.67 

x2 1.11 0.79,1.42 1.26 0.48,2.04 1.14 0.73,1.55 1.49 0.03,2.94 1.18 0.63,1.73 1.06 0.89,1.22 

x3 1.44 0.12,2.76 1.12 0.76,1.48 1.02 0.97,1.07 1.30 0.39,2.22 1.09 0.82,1.37 1.16 0.68,1.63 

f(x) 3.74  3.49   3.20   3.98   3.55   3.36   

 

 

Table 2.10. Calculation of the weighted difference vector for the illustrative example 

  Individual 

3 

 

 

Individual 

5 

Difference 

Vector 

 Weighted 

Difference 

Vector 

Fuzzy 

Interval 

Lower Upper  Lower Upper 

x1 
Lower 0.90    2.11 = -1.21  = -0.97 

Upper  1.20  0.45  = 0.75 = 0.60 

x2 Lower 0.73  -  1.73 = -1.00 × F 

(F = 

0.80) 

= -0.80 

Upper  1.55  0.63  = 0.92 = 0.74 

x3 Lower 0.97    1.37 = -0.40  = -0.32 

Upper  1.07  0.82  = 0.25 = 0.20 
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Table 2.11. Calculation of the mutated vector for the illustrative example 

  Weighted 

Difference Vector 

 Individual 

6 

Mutated 

Vector 

Fuzzy 

Interval 

  Lower Upper  

x1 Lower -0.97  0.72  = -0.25 

Upper 0.60   1.67 = 2.27 

x2 Lower -0.80 + 0.89  = 0.09 

Upper 0.74   1.22 = 1.96 

x3 Lower -0.32  0.68  = 0.36 

Upper 0.20   1.63 = 1.83 

The mutated vector fuzzy intervals can be expressed in traditional single value form 

using Eq. (2.27). The mutated vector in single value form is given in Table 2.12. 

Table 2.12. Interval to single value mutated vector calculation 

 Upper Fuzzy 

Interval Bound 

 Lower Fuzzy 

Interval Bound 

Sum  Mutated Vector 

x1 2.27  -0.25 = 2.22  = 1.11 

x2 1.96 + 0.09 = 2.05 ×0.5 = 1.03 

x3 1.83  0.36 = 2.19  = 1.10 
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The mutated vector does a crossover with the target vector to generate the trial vector as 

shown in Table 2.13. This is carried out by (1) generating random numbers equal to the 

dimension of the problem (2) for each of the dimensions: if random number> CR; copy 

the value from the target vector, else copy the value from the mutated vector into the trail 

vector. In this example, the crossover constant CR is chosen as 0.60. 

Table 2.13. Generation of the trial vector for the illustrative example 

 Target Vector  Mutated Vector Trail Vector 

x1 1.20  1.11 = 1.11 

x2 1.11 Crossover 1.03 = 1.03 

x3 1.44 (CR = 0.60) 1.10 = 1.44 

f(x) 3.74  3.24 3.58 

 

The objective function of the trial vector is compared with that of the target vector and 

the vector with the lowest value of the two (minimization problem) becomes “Individual 

1” for the next generation. To evolve “Individual 2” for the next generation, the second 

member of the population is set as target vector and the above process is repeated. This 

process is repeated NP times until the new population set array is filled which completes 

one generation. Once the termination criterion is met, the algorithm ends. 
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Table 2.14. New population for next generation for the illustrative example 

Population Size NP = 6 (user defined), D = 3 

 Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

 Fuzzy 

Interval 

x1 1.11 -0.25,2.27           

x2 1.03 0.09,1.96           

x3 1.44 0.12,2.76           

f(x) 3.58                 
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Chapter 3  

3.1 Decision Support System Software Package 

The DE algorithm has been implemented in the form of a convenient decision support 

system (DSS) called the Differential Evolution Optimizer (DEO). The decision support 

system integrates, alongside the classical algorithm, key differential evolution features 

discussed in the methodology, such as fuzzy differential evolution and the ability to deal 

with constraints. DSS is developed to provide a convenient optimization software 

package with a friendly graphical user interface for the MS Windows operating system. 

DSS provides easy access and all the practical benefits to an efficient optimization 

algorithm for less technical individuals. DEO was programmed in C# and the code, as 

well as the installation files, have been provided electronically with the thesis. Brief 

overviews of the supplementary files included with this thesis are in Appendix C. 

In this chapter, a helpful user guide of DEO is presented to review the key features and 

the process involved in inputting and reading the results from a defined optimization 

problem. In addition to the user guide, an illustrative example problem is used as a step-

by-step guide of the typical procedure towards finding an optimal solution using the DSS. 

3.2 Differential Evolution Optimizer Overview   

Once the Differential Evolution Optimizer DSS is run, an execution window like the one 

shown in Fig. 3.1 should be displayed. Upon starting the DEO decision support system 

the user is greeted with the “Algorithm Inputs” window tab open. As the user fills in the 

appropriate input fields he/she is able to proceed to the “Optimization Inputs” window 

and finally the “Optimization Results” window. These will be reviewed in the 

subsequent sections. 
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Figure 3.1. Interface of DEO menu. 

Fig 3.1. shows the interface of the menu strip in the top left corner of the program 

window with two options “File” and “Help” (the documentation you are now reading).  

Upon clicking “File”, the user is presented with the option for “Inputs”, to “Run” the 

optimization, “Save Results” of the optimization once a problem has been optimized and 

the option to “Quit”, i.e. to close the program.  

Selecting “Inputs” will further open additional menu options: “Reset All” reverts all 

input parameters to default; “Open” automatically fills the input requirements by 

prompting the user to select past saved (.deo extension) input files; and “Save As” saves 

the current inputs and prompts the user to name the file and the file will be saved with a 

.deo extension. 

Selecting “Save Results” will prompt the user to name the file; the file will be saved 

with a .csv extension and may be accessed later in Microsoft Excel for post processing 

and review. 
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3.2.1 Algorithm Inputs 

The main body of the algorithm inputs window contains multiple interface inputs 

pertaining to setting up the differential evolution algorithm. Fig. 3.2 shows the algorithm 

inputs window. The inputs are labeled numerically for reference within this section.  

 

 

Figure 3.2. Algorithm inputs window. 

 

Each number in Figure 3.2 corresponds to a detailed explanation given below. 

1. Included under the main algorithm inputs heading are four user defined control 

parameters for the differential evolution algorithm.  They are detailed below. 

 Generation input is the number of iterations (generations) the algorithm 

will go through to find the optimal solution before termination. The more 

generations given, the greater the accuracy of the final result may be to the 

true optimal solution at the expense of more computation time. 

 NP input is the number of parents which, as a guideline, may be selected 

to be 10 times the number of parameters of the objective function. 

Increasing the number of parents increases the search space, thereby 
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speeding up convergence.   Empirical evidence suggests that increasing 

NP above 40 does not significantly influence the convergence rate. 

 F input, the weighing factor F [0, 2] controls the amplification of 

differential variation; to begin with, a value of 0.8 is suggested. 

 CR input The crossover weight CR [0,1] probabilistically controls the 

amount of recombination; initially a value of 0.9 is suggested. 

 

These parameters are of significance for the accuracy and convergence time required. 

Therefore, a proper selection is very important. Adequate selection of each of the 

parameters may differ from problem to problem and may require some trial and error 

in selection. The user can choose to enter the values directly within the textbox or 

increment the number by clicking either the up or down arrow beside the textbox. 

2. Differential evolution has a specialized nomenclature that describes the selected 

strategy for optimization. The nomenclature and the methodology for the variants 

included within DEO were discussed in detail in Chapter 2.  DEO has 4 available 

strategies that are accessed through a dropdown menu:  

i. DE/rand/1: The classical version of DE. 

ii. DE/best/1: Tailored for small population sizes and fast 

convergence. Dimensionality should not be too high. 

iii. DE/local-to-best/1: A version which has been used by numerous 

scientists. Attempts a balance between robustness and fast 

convergence. 

iv. FDE/rand/1: The classical version of DE transformed into a novel 

fuzzy differential evolution strategy. The parameter initialization is 

in the form of fuzzy triangular membership functions utilizing 

alpha cuts to carry out the mutation and crossover on subsequent 

generations. This strategy mimics the performance of classical 

DE/rand/1 with the addition of knowledge for inputs supplied by 

the decision maker. 
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3. This DSS uses the penalty function method (discussed in Chapter 2) in order to 

deal with constraints on the feasible space for the objective function. The penalty 

function method is comprised of the optimization of the objective function with 

the addition of the constraint violation function (the sum of the violation of all 

constraint functions). The main challenge of the penalty function method lies in 

the difficulty of selecting an appropriate value for the penalty coefficient that 

adjusts the strength of the penalty. The user is required to provide the penalty 

function coefficient to be used for all the objective function constraints; if the user 

does not wish to use any constraints on the objective function, a penalty 

coefficient of zero should be used. When dealing with a minimization problem, 

the penalty coefficient must be a positive value; conversely, when it is a 

maximization problem, the coefficient must be a negative value. This assures that 

any constraint violations will indeed penalize the optimization solution and not 

make it better. 

The user can choose to enter the values directly within the textbox or increment 

the number by clicking either the up or down arrow beside the textbox. 

 

4. One of two boundary (random reinitialization or bounce-back) search space 

constraint methods (discussed in Chapter 2) can be selected for the algorithm 

from the dropdown menu. Random reinitialization occurs if any trial parameter 

exceeds a bound placed on a parameter. The out of bounds parameters values are 

reset into allowed values by randomly choosing a value from within the allowed 

range. Because it radically changes a parameter’s value, reinitialization can 

disrupt the progress towards solutions that lie near the bounds.  Random 

reinitialization, similar to the bounce-back method, replaces a vector that 

exceeded one or more of its bounds by a valid vector that satisfies all boundary 

constraints. In contrast to random reinitialization, the bounce-back strategy takes 

the progress toward the optimum into account. The user may also choose no 

boundary constraints to be used. In such a case there is no guarantee that the 

optimal solution will be within the search space bounds. 
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5. The user is given the option of selecting the seed value used by the random 

generator. This makes it possible to achieve the same results through multiple 

optimization runs, given that the same seed is used. Furthermore, an easier 

comparison between different control inputs can be achieved. If the user wishes 

for the seed to be random, a value of zero should be placed in the input field. The 

user can choose to enter the values directly within the textbox or increment the 

number by clicking either the up or down arrow beside the textbox. 

 

6. The fuzzy settings allow the user to enable the FADE settings by clicking the 

checkbox. FADE stands for fuzzy adaptive differential evolution, as discussed in 

detail in Chapter 2. FADE optimizes the control parameters CR and F for each 

generation to increase accuracy and convergence speed by referencing a database 

corresponding to fuzzy rules based on empirical findings.  As a result, the user 

does not need to spend time selecting appropriate values for CR and F, as these 

values are only used for the initialization of FADE. 

 

7. The termination condition input, VTR, is the value that will terminate the 

algorithm upon achieving. This feature is particularly useful for benchmark 

functions where the optimal objective function solution is known. 

 

8. The output setting allows the user to select how the intermediate results should be 

displayed. For example if the input here is 10, the intermediate result outputs will 

be displayed every 10
th

 iteration (generation). 

 

9. After all the inputs are complete and assured to be accurate, the user should click 

the next arrow button on the interface to proceed to the optimization inputs 

window. 
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3.2.2 Optimization Inputs 

After clicking the next button on the algorithm inputs window the optimization inputs 

tab will open. Here, multiple interface inputs allow for the objective function to be 

defined—the boundary range for each parameter (used for initialization) and objective 

constraints (if any)—before finally proceeding with the optimization.  Fig. 3.3 shows the 

optimization inputs window. Inputs are labeled numerically for reference within this 

section. At any point the user may choose to hit the green arrow to go back to the 

previous algorithm inputs window. 

 

Figure 3.3. Optimization inputs window. 

Each number in Figure 3.3 corresponds to a detailed explanation given below. 

1. The user is required to provide an objective function in the textbox alongside 

“Minimize F(x) = ”. By default, DEO deals with the minimization of the objective 

function; for maximization problems a simple transformation is needed (i.e. 

multiply the whole function by negative one, -1). The input textbox accepts up to 
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30 parameters and they must be defined as x1, x2 and so on. The operations and 

prebuilt functions which are recognizable by DEO are listed in Table 3.1. 

Table 3.1. List of available functions 

 
Symbol Description 

Operator +  -  *  / Four arithmetic 

operations 

^ Power function 

Functions sqrt() Square root function 

pi π (3.14159…) 

abs() Absolute function 

sin() Sine function 

cos() Cosine function 

tan() Tangent function 

 

 

2. Once the objective function is provided, the user is required to define the search 

space used for initialization of the differential evolution algorithm. 

a. If the user selected a traditional DE strategy, the user will be presented 

with this interface and will be required to give upper and lower bounds for 

each parameter defined in the objective function. 

b. If the FDE strategy is selected, then the user will be presented with this 

interface and will need to define the triangular membership function for 

the boundary constraint of each parameter in the objective function. 

Once each parameter is defined, the user needs to click the Add button, this process is 

repeated until all have been defined. If at any point a mistake is made, the reset button 

can be clicked which will restart the search space definition process. 

 

3. In this interface the user may input the constraints (if any) on the objective 

function itself, using the penalty constraint method. The leftmost textbox allows 

for the user to write the appropriate constraint equation, whereas the middle 
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dropdown box enables the user to choose between inequalities to be used for the 

constraint. Available inequalities to choose between are: less than [<], greater 

than [>] or equal [=].  The right textbox accepts only crisp numerical values 

corresponding to the right-hand size of the constraints. Once each constraint is 

defined, the user needs to click the Add button, this process is repeated until all 

have been defined. If at any point a mistake is made the reset button can be 

clicked which will erase all the constraints. 

 

4. Finally, once all the inputs have been provided, clicking the Run button will 

initiate the optimization. When Run is selected, the program may take some time 

to complete the optimization, depending on the complexity of the problem. Once 

the optimization is complete, the user will be presented with the optimization 

results window. 

3.2.3 Optimization Results 

Fig.3.4 details the optimization results window; the outputs are labeled numerically for 

detailed explanation below. 

 

Figure 3.4. Optimization results window. 
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1. The intermediate output is produced at the user defined interval, showing (from 

left to right) the current generation, the NFE (number of function evaluations) and 

the corresponding objective function value. 

 

2. The optimization results are summarized here. These include the optimal 

parameter values, the optimal objective value and the generation and number of 

objective function evaluations it took to achieve the optimal results. The 

computational time needed for optimization is also given in seconds. 

 

3. The user may choose to save these results by clicking this button. Alternatively 

results may be saved through the menu strip as previously mentioned. The saved 

file includes all the outputs seen in the interface, in addition to intermediate 

parameter values to go along with the intermediate objective function values. 
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3.3 Illustrative Example 

The goal of the example below is to familiarize the user with the basic functionality of 

the decision support system by means of a numerical example. 

Consider a minimization problem where D, the number of parameters, is equal to 5 and 

the objective function is given in Eq. (3.1). The additional inputs to be used are bounds of 

[-5.24, 5.24] for each xi, 400 iterations, NP of 100, F of 0.8, CR of 0.9. The remaining 

inputs should be application defaults. In addition, it is reasonable to believe that the 

optimal result of each parameter (i.e. xi) lies at about -0.5. 

Given the above information, use the FDE/rand/1 strategy and confirm that the true 

solution occurs at a global optimum of 0 for each parameter being equal to -0.5. 

 

      ∑         

 

   

 

(3.1) 

Solution: 

First, the algorithm inputs were entered from the givens, as shown in Figure 3.5. A value 

of 3 was chosen for the random generator seed and no feasible space or search space 

constraints were activated. The objective function value to reach was chosen as 0 and the 

intermediate results were chosen to be at increments of 10. 
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Figure 3.5. Algorithm inputs for illustrative example. 

 

After clicking the next arrow in Figure 3.5, the optimization inputs window is opened. 

The objective function is written in addition to the fuzzy triangle membership function 

definition for initialization, as shown in Figure 3.6. 
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Figure 3.6. Optimization inputs for illustrative example. 

Finally, the run button is clicked in the optimization inputs window and subsequently the 

optimization results are presented, as seen in Figure 3.7. 

 

Figure 3.7. Optimization results for illustrative example. 
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From the results in Figure 3.7 it can be confirmed that the global optimal solution is 0 for 

x ϵ -0.5 which was found after only 111 generations. In addition we can conveniently 

observe the convergence progress in the intermediate output interface. 
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Chapter 4  

 

4.1 Application 

This chapter on application of the novel fuzzy differential evolution algorithm explores 

two topics. One is on the theoretical application using benchmark functions and the other 

on practical application using a water resource management case study. The objective of 

benchmark function applications is to evaluate the performance of FDE compared to the 

classic DE strategy. On the other hand, the objective of the case study is to demonstrate a 

real-world example of how FDE can better utilize knowledge previously disregarded in 

other DE strategies due to its “fuzzy” characteristic to achieve more efficient 

optimization. 

4.2 Benchmark Functions  

Benchmark functions, or test functions, are commonly used in order to test optimization 

procedures (Molga and Smutnicki, 2005). The quality of the proposed FDE algorithm is 

evaluated by comparing it with the original DE algorithm variant - DE/rand/1/bin (simply 

referred to as DE from this point on) by utilizing well-known benchmark functions from 

the literature. 

The function testbed contains four functions: (i) first De Jong, (ii) Rosenbrock’s Valley, 

(iii) modified third De Jong, and (iv) Rastrigin’s function (Black, 1996; Molga and 

Smutnicki, 2005). These functions exhibit distinctive difficulties for a global optimization 

algorithm. For all functions, an initial parameter range, IPR, and focus value were 

defined. At the beginning of the optimization, initial parameter values are drawn using 

traditional methodology or FDE initialization. 

IPR for FDE and DE is kept consistent for all functions x  [-5.12, 5.12], while for the 

case of DE with smaller bounds the IPR is changed to x  [-1, 1]. 
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The algorithm settings for each test function are given in Table 4.1; the FDE strategy is 

compared to DE; user-given controls are kept consistent for a fair comparison. 

 

Table 4.1. Algorithm settings 

Method, Parameters Settings for Benchmark Tests 

Strategy DE/rand/1/bin  FDE/rand/1/bin 

Test Problems Min f(X) Min f(X) 

Generations 2000 2000 

Mutation Factor 0.8 0.8 

Crossover Factor 0.9 0.9 

Number of Individuals 10×D 10×D 

Random Generator Seed 3 3 

 

First De Jong Function 

De Jong is one of the pioneers in evolutionary computation. De Jong’s function was 

originally introduced to evaluate genetic algorithms and subsequently has been well 

accepted by the evolutionary optimization community. The First or Sphere De Jong 

function is one of simplest problems for optimization algorithms because it does not 

contain local optima and provides a smooth gradient towards a global optimal solution:  

 

      ∑  
 

 

   

 

(4.1)  

The global minimum is f1(0) = 0. The graph of the function can be seen in Fig. 4.1. 
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Figure 4.1. First De Jong’s function in 2 dimensions (Molga and Smutnicki, 2005).  

Rosenbrock’s Valley Function 

Rosenbrock’s function is a classical optimization problem used as a performance test for 

optimization algorithms. The function may be referred to as the second function of De 

Jong, or Banana function due to its shape as shown in Fig. 4.2.  

 

      ∑            
   

   

   

        
    

(4.2)  

Although f2(x) has just two parameters, it has the reputation of being a difficult 

minimization problem. The global minimum is f2(1)=0. 
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Figure 4.2. Rosenbrock’s function in 2 dimensions (Molga and Smutnicki, 2005). 

 

 

Modified Third De Jong Function (step) 

The step function introduces small plateaus to the topology of an underlying continuous 

function (Back, 1996). Instead of the original linear step function proposed by De Jong, 

shown in Fig.4.3 is the discretization of a sphere model. 

 

      ∑         

 

   

 

(4.3)  
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The modified step function in Eq.4.3 exhibits many plateaus which pose a considerable 

problem for many optimization algorithms as they do not contribute any information on 

the favorable search direction. The global minimum is f3(-0.5) = 0. 

 

Figure 4.3. Modified Third De Jong Function in 2 dimensions (Black, 1996). 
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Rastrigin’s Function 

Rastrigin’s function, as shown in Fig. 4.4, is a highly multimodal test function. This 

function is fairly difficult to optimize due to its large search space and its large number of 

local minima produced by the cosine modulation. For those reasons, it is frequently 

selected for testing the performance of various optimization algorithms: 

 

          ∑    
              

 

   

 

(4.4)  

 

The global minimum is f4(0)=0. 

 

Figure 4.4. Rastrigin’s function in 2 dimensions (Molga and Smutnicki, 2005). 
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4.2.1 Benchmark Function Results and Discussions 

There are several conclusions reached after the comparison of FDE to the original DE 

strategy using the benchmark functions. First, a comparison of DE and FDE is made by 

selecting three arbitrary focusing targets. The focus targets are selected as 1, 3 and 5 for 

the sphere and Rastrigin function while for the step and Rosenbrock function they are 

selected as -1, 1 and 3. The results are shown in Table 4.2. In Table 4.2 the values 

column lists the dimensions of the problem, D and objective function optimal solution. 

Where f(X*) is the known exact solution while fDE and fFDE
(focus)

 are the optimal solutions 

found through the use of the DE and FDE algorithm respectively. The results indicate 

that FDE performs better than classic DE in terms of convergence speed, independently 

of the selected target initialization value. This can be seen especially in the first 400 to 

500 generations. This is attributed mostly to the more focused initialization strategy of 

FDE. Furthermore, the results in Table 4.2 show that the quality of optimal solution 

improves based on the proximity of the initial focus target value to the true solution. For 

example, the convergence speed incrementally improves for the First De Jong function 

(see Table 4.2) as the subjective focus value approaches the true optimal solution of zero. 

The magnitude of the optimal solution differences between the varying targets does not 

directly correlate with the magnitude of the target differences themselves. 
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Table 4.2. Performance comparison of FDE and DE algorithms at various focus targets 

Functions Comparison of DE and FDE 

Values Curves of best solutions 

First De 

Jong 

(Sphere) 
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Modified 

Third De 

Jong(Step) 
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In Table 4.3, the benchmark function optimization comparison is made between DE with 

drastically smaller bounds (DE-SB) and FDE with focusing target of 1.  The values 

column in Table 4.3 lists the initial (f 
i
DE, f 

i
FDE) and final (f

 f
DE, f 

f
FDE)

 
objective function 

values through using the DE and FDE algorithm respectively. Decreasing the 

initialization bounds in DE-SB and keeping FDE bounds wider shows that FDE performs 

similarly to or better than traditional strategies, without limiting the search space by 

imposing more certainty than is available. Additionally, the outcomes shown in Table 4.3 

indicate that the improved results using FDE over DE are not just attributed to the better 

initialization values (due to the more focused smaller initial parameter range) but are 

affected by the novel mutation strategy as well. 
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Table 4.3. Performance comparison between the original DE algorithm with smaller 

bounds and FDE with a focus equal to one 

Function Comparison of FDE and DE-SB 

Values Curves of best solution 
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Modified 
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Jong (Step) 
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The Rosenbrock function in particular appears to perform worse using the FDE algorithm 

then the traditional DE algorithm. It can be seen in Table 4.2 that the Rosenbrock 

function using the FDE algorithm appears to stall due to misconvergance while the 

traditional DE algorithm continues to converge towards the optimal solution. This may be 

a result of the particular control parameters selected (CR and F) not being adequate for 

the FDE algorithm when it comes to this particular function, or it could be that the 

algorithm itself does not cater as well as DE to such a function. In Table 4.3 at first 

glance it appears that the performance of the Rosenbrock function using the FDE 

algorithm is again worse, this may be attributed to the DE algorithm giving a significant 
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head start advantage due to the smaller initialization bounds used(based on the initial 

objective values). Thus the performance of FDE for the Rosenbrock function after 

considering the aforementioned is comparable to DE with smaller initialization bounds as 

shown in Table 4.3. 

Therefore, with some functions FDE may not perform better than the original DE 

scheme. This is due to misconvergence or stalling of the algorithm based on the objective 

function itself and the control parameters selected.  FDE shares this robustness problem 

with many other DE scheme variants. Therefore, care needs to be taken when selecting 

FDE alongside the control parameters for an objective function to ensure that it is the 

correct choice in achieving the best convergence efficiency. Currently, as with most other 

variants, validation of selection may only be confirmed through trial and error procedure. 

Future research may be directed into sensitivity analysis of FDE to a multitude of 

benchmark functions, with the purpose of determining the general set of best handled 

function types. However, the potential reduction in application capacity does not lessen 

the undeniable value of the FDE algorithm in being included in the optimization toolbox. 

4.3 Case Study 

The reservoir operation case study presented in this section demonstrates the practical 

application of the novel fuzzy differential evolution algorithm for optimization in the 

field of water resource management. 

4.3.1 Study Area Background 

This study is focused on the optimization of the operation of the Wildwood reservoir in 

the Upper Thames River basin. The basin is located in the Great Lakes Region, between 

Lake Erie and Lake Huron in Southwestern Ontario, Canada (see Fig. 4.5). The 

watershed encompasses an area of 3,482 square kilometers, with a total population of 

485,000 (UTRCA, 1993). Most of the basin area is rural except for the larger urban 

centers of London, Stratford and Woodstock. 
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Figure 4.5. Location of the Upper Thames basin. 

Seasonal flooding has historically been a major hazard for the Upper Thames River basin. 

Typically, flooding occurs in early March during snowmelt and in the summer seasons as 

a result of extreme rainfall events (UTRCA, 1993). In 1937, the city of London 

experienced a massive flooding event. As a result, this sparked the creation of the Upper 

Thames River Conservation Authority (UTRCA) in 1947. Since the creation of the 

UTRCA three major water management reservoirs were created: Pittock, Wildwood and 

Fanshawe (see Fig. 4.5). 

Wildwood 

Fanshawe 

Pittock 
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Among the aforementioned reservoirs Wildwood was the first major project 

commissioned by UTRCA in 1948 and finally constructed in 1965. The Wildwood 

reservoir is located on Trout Creek, upstream of the Town of St. Mary’s. The reservoir is 

designed to control downstream flooding and to increase summer stream flows. The 

reservoirs also provide a range of recreational opportunities for thousands of people each 

year. The primary goals of the reservoir include flood control during the snowmelt period 

and summer storm season, low flow augmentation during the drier summer months from 

May to October and recreational uses during the summer season. Among these goals, the 

most important one is flood control. Floods in the basin result from a combination of 

snowmelt and intense precipitation during December to April. In addition to the primary 

goals of the reservoir, it is also used for recreational purposes, hydro power generation 

and by local fisheries. 

Wildwood is operated by the Upper Thames Conservation Authority in a coordinated 

manner with reservoirs at Fanshawe (London) and at Pittock (Woodstock) (UTRCA, 

2012). This optimizes flood control and low flow augmentation efforts for the North 

Thames River in St. Mary’s and for the Thames River watershed in general. Operating 

the reservoir involves control of one or more of the three outflow structures. The outflow 

components include: four large sluice gates, three small vales and concrete baffle walls. 

The sluice gates are used to provide coarse control of flows from the dam during peak 

runoff periods. This may include the spring runoff period (March-April) and during the 

fall and early winter when the soil may be frozen or saturated and thus susceptible to 

runoff. Otherwise, the valves provide fine control of outflow during the summer and 

periods of low flows. The valves are located in the core of the dam. As such, they allow 

for maintenance and discharge of cooler water from the bottom of the reservoir. Concrete 

baffle walls above the gates provide some automatic control during the early summer 

months when the reservoir level is at or close to its highest level. Water can spill over the 

walls when the reservoir rises following summer storms. 
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4.3.2 Problem Definition 

A release strategy for the optimal operation of the Wildwood reservoir is required for the 

year 2010. The year 2010 in this study represents the future so that the available historical 

2010 inflow data can be used for problem formulation. The operation of the reservoir 

must be optimized in order to ensure that the reservoir meets the primary requirements of 

flood control and low flow augmentation. In addition to the primary goals, the reservoir 

must be operated keeping in mind constraints put forth by the fisheries industry and 

recreational reservoir use. A simplified schematic of the reservoir is given in Fig. 4.6, 

showing the allocation of storage (maximum reservoir capacity, C; active storage, St; 

minimum storage allowable, Smin) and reservoir flows (inflow, it; release, Rt); the 

notations are consistent with the mathematical formulation. 

 

Figure 4.6. Wildwood reservoir schematic. 

4.3.3 Mathematical Formulation 

Optimization can be defined as a process searching for an optimal solution that provides a 

maximum or minimum value of an objective function (Rao, 1996). Therefore, 

formulation of the objective function is the most important step in solving an 

optimization problem. 
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The objective function is formulated as shown in Eq. (4.5) based on primary flood control 

operation goals and based on some additional constraint descriptions in Table 4.4.  

 

 
                

 ∑   
    

    ∑   
     

    

∑   
   

   

 
(4.5) 

The above is a minimization optimization objective concerning reservoir storage St and a 

t = 12 month time horizon. Where t = 1 corresponds to January and t = 12 to December. It 

can be seen that the objective function, though globally a minimization problem, has a 

dual objective for both minimization and maximization. The months requiring 

minimization of storage (S
min

) are for the purpose of flood control and furthermore 

preventing damage as a result of flood inundation to upstream properties. The 

maximization of storage (S
max

) is required by fisheries and hydro power, based on the 

description given in Table 4.4. This occurs for the month of April or t = 4. 

Table 4.4. Constraints of the Wildwood reservoir (UTRCA, 1993) 

Categories Constraint Description 

Physical Constraints Reservoir maximum capacity 18,470 × 10
3
 

m
3
 and minimum capacity 2,430 × 10

3
 m

3
 

Flood Control The release from reservoir should not 

exceed 10 m
3
/s to avoid significant 

flooding. Release should be less than 3 

m
3
/s to avoid nuisance flooding at St. 

Mary’s golf course. 

Low flow augmentation In the months of May to October the 

release from reservoir should target at least 

1.13 m
3
/s 

Recreation Wide fluctuations should be avoided 
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particularly in the summer time. 

Fisheries Peak storage should be achieved by the 

first week of April and then subsequently 

reduced during spring. The reservoir 

storage level should remain stable at 

summer levels until late fall.  

Hydro Power Peak storage should be achieved by the 

first week of April. 

 

In order to perform the optimization of the proposed objective function, additional 

equations are required to properly model the Wildwood reservoir system. These 

equations and their variables are simplifications of the complex real-world system and as 

such can only approximate the true behavior.  The model is defined in the form of 

constraints of which the continuity constraint is the most important one in that it ensures 

that the reservoir system is balanced with inflow and release, properly accounting for 

changes in reservoir storage. 

Continuity constraint: 

 

                                              (4.6) 

where Rt is the release at the current time step, it is the inflow at the current time step, 

similarly St represents the storage at the current time step, while St-1 is the storage in the 

previous time step. Therefore, in order to utilize the above equation for a 12 month time 

horizon, the initial reservoir storage S0 must be given.  

In addition to the continuity constraint, there are release and storage constraints that are 

governed by the physical capacities of the reservoir given in Table 4.4.  
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Subject to release constraints: 

 

                                             (4.7) 

 

In addition to the reservoir physical release capacity constraints, there is a minimum 

release constraint for low flow augmentation in the summer months, as detailed in Table 

4.4. 

  

                                                

(4.8) 

 

Where Rmax is the maximum physical capacity for the outflow structure (sluice gates, etc.) 

and Raugmented is the minimum target release for low flow augmentation. 

Subject to storage constraints: 

        

 

(4.9) 

This storage constraint is to ensure that the released storage does not exceed the initially 

available one. 

Storage capacity constraint: 

 

                             (4.10) 
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where Smin is the physical minimum capacity of the reservoir (for structural and 

mechanical integrity of the dam components) and C is the maximum physical capacity of 

the reservoir beyond which significant flooding will occur. 

The final constraint that appropriately models the reservoir is intended to ensure that the 

fisheries industry has a stable reservoir level for fishing from late summer to late fall. In 

other words, the August storage levels (S8) are maintained. 

Fisheries stability constraint: 

                        (4.11) 

 

4.3.4 Algorithm and Optimization Inputs 

Having formulated the Wildwood reservoir optimization problem, the fuzzy differential 

evolution algorithm inputs must be assigned. Given in Table 4.5 are the control parameter 

inputs for the FDE algorithm itself. These values were subjectively chosen using trial and 

error, as they produce best results for the problem formulation. In addition to FDE, the 

classical DE/rand/1/bin strategy is also used with the same inputs for comparison. 

 

Table 4.5. DE algorithm inputs 

Number of Generations 1500 

Mutation Factor, F 0.8 

Crossover Factor, CR 0.9 

Random Seed 5 

Penalty Constant 0.0001 

Strategy  DE/rand/1 & FDE/rand/1 
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There are 24 decision variables in the mathematical formulation, divided evenly between 

variables for release and storage. In order for the optimization algorithm to proceed, these 

decision variables/parameters must be initialized. In order for initialization to take place, 

the parameter range and target (focus) values must be established. This may be done by 

utilizing a decision maker’s inherent knowledge to establish the parameter bounds. In this 

case the knowledge was extracted from historical data provided by UTRCA for the 

period of 1985–2011. The parameter range, or the upper and lower bounds for each 

parameter, were determined by analyzing the monthly historical data and selecting the 

maximum and minimum values within the data set. Thus, the feasible range for release 

and storage is established without the need for subjective decision maker inputs. In 

practice, however, the process is not so easy for the selection of the target or focus for 

each parameter. The goal of our optimization problem is, in essence, to find future 

operation optimal release and subsequent storage strategies. To do this, we therefore must 

establish a subjective target for the release and storage that is believed to be an adequate 

representation of where the optimum would be. To establish such a target for each 

parameter, subjective (and likely vague) decision maker knowledge is required. 

Typically, forecasting information from several sources is used to operate the Wildwood 

Dam. Computer models of floods, operating tables, weather data and water level 

information from above and below the dam enable staff to assess and respond to flood 

potential. In practice, combing these existing methods for operation could establish the 

subjective target values required for initialization of the optimization algorithm. In this 

case study we had available historical data of storage and release; based on these values 

we could choose an appropriate target. Conveniently, since we already had operational 

data for the year 2010, we could use these values as the basis for our targets. 

Table 4.6 and Table 4.7 show the storage and release initialization inputs including 

parameter range and target values for the year 2010. However, the target values do not 

initially satisfy some of the reservoir constraints. Consequently, a calibration on the target 

values for release and storage was performed. This adjustment assured that the 

optimization started in the feasible space.  Table 4.8 shows the constraint-satisfying target 
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values for release and storage initialization. When using the classical DE algorithm, the 

same initialization parameter range was used as for FDE. 

Table 4.6. Storage initialization inputs for the year 2010 [10
3
 m

3
] 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Lower 

Bound 

2417 2930 5278 12856 13939 13426 12561 11038 8764 4986 2790 3081 

Upper 

Bound 

9626 10399 15618 17685 18354 18300 17499 16434 14463 13420 10836 9492 

Target 6908 6610 10090 15359 17516 17860 17194 15523 11660 8449 4222 4039 

Table 4.7. Release initialization inputs for the year 2010 [10
3
 m

3
] 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Lower 

Bound 

2605 10147 1426 1743 1714 1607 2000 2426 2766 2807 2677 1423 

Upper 

Bound 

16364 1987 12961 12514 11204 8328 14530 8057 8615 13491 19336 16382 

Target 4345 3463 2387 1763 1966 4596 3180 4719 5786 8511 6153 4940 

Table 4.8. Constraint satisfying release and storage target initialization inputs for the year 

2010 [10
3
 m

3
] 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Storage 

Target 

7000 6000 10000 15000 17000 17000 17000 8000 8000 8000 8000 7000 

Release 

Target 

4000 3500 2500 1500 4000 5000 4000 5000 6000 8000 5000 5000 
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In addition to the initialization inputs given, feasible space constraints and inflow inputs 

were required. The release constraints given in Table 4.4 are converted to corresponding 

monthly equivalent values for convenience in Table 4.9. The monthly inflow data for the 

Wildwood reservoir was provided by UTRCA and is given in Table 4.10.  

Table 4.9. Release constraints [10
3
 m

3
] 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Max 26784 24192 26784 25920 26784 25920 26784 26784 25920 26784 25920 26784 

Min 0 0 0 0 3027 2929 3027 3027 2929 3027 0 0 

 

Storage constraints corresponding to physical reservoir capacity and minimum storage: 

Smin = 2,430 × 10
3
 m

3
 

C = 18,470 × 10
3
 m

3 

Initial Storage (Storage amount in last month of previous year, 2009), S0 = 6,564 × 10
3
 m

3 

Table 4.10. Monthly inflows for the Wildwood reservoir [10
3
 m

3
] 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Inflow 4187 2656 9419 4901 3350 4433 2421 1413 2617 4819 4341 4859 

 

4.3.5 Study Results and Discussions 

The optimization results of combining the mathematical formulation with the algorithm 

and optimization inputs are presented in this section. Three optimization trials were 

performed; one using the classic DE strategy and two trials using the novel FDE strategy. 

The parameter ranges for initialization were kept constant throughout all the trials. The 
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two FDE trials were used to analyze results from variation in initialization inputs. The 

notation of FDE1 was used when the initialization target or focus was outside of the 

feasible space and FDE2 was used when the target was within the feasible space.  

 

 

Figure 4.7. Wildwood reservoir optimization progress. 

Figure 4.7 shows the convergence speed of the objective function combined with the sum 

of all the penalty functions for each of the trials. As expected, FDE performed much 

better than traditional DE. Furthermore, it can be seen that FDE2 outperformed FDE1. 

The difference in performance between the two FDE trials depended primarily on the 

subjective inputs of the additional information provided by the decision maker. If the 

decision maker provides target inputs that do not satisfy the constraints from the outset, 

the algorithm will focus on a search space outside of the feasible region and may thus fail 

to converge as quickly as possible, as is the case with FDE1. If the subjective values 

provided for initialization satisfy the constraints initially, as shown in the case of FDE2, 

then the optimization will result with a more optimal solution. 
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Table 4.11. Wildwood reservoir objective functions and error after optimization 

 Optimization Result 

 DE FDE1 FDE2 

Error 4880 3084 3024 

Objective 

Function 

0.4797 0.5425 0.4361 

The exact values of the objective function separated from the penalty function are given 

in Table 4.11. In this Table, error is the sum of all the constraint violations; based on 

these results, it can be established that constraint violations were prevalent. This 

demonstrates the general difficulty with using the penalty function method for constraint 

handling in a complex problem, because the optimal solution may be one that does not 

satisfy all the constraints as is clearly the case here. This problem may be addressed 

through a very detailed sensitivity analysis of various penalty constants for each 

constraint, a very time consuming trial-and-error process. Here, however, for the sake of 

convenience, just one penalty constant was used for all the constraints, resulting in more 

relaxed but still adequate constraint representation. 

The penalty constant selected had to produce a penalty function of similar magnitude as 

the objective function. With too small a penalty constant, significant constraint violations 

would not be detected by the algorithm, as they would be overshadowed by the objective 

function values. However, if the penalty constant were too large, the objective function 

information provided to the algorithm would be overshadowed and the search would not 

be adequate. Table 4.12 illustrates the importance of selecting the appropriate penalty 

constant value so that the fitness function conveys the objective function and constraint 

violation information to the algorithm. 
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Table 4.12. Penalty constant selection 

Penalty 

Constant 

 

 

Σ Constraint 

Violations 

(Error in 

Table 1) 

 Penalty 

Function 

Value 

 Objective 

Function 

Value 

 Fitness 

Function 

0.0001    0.488    0.968 

1 × 4880 = 4880 + 0.480 = 4880.48 

0.000001    0.00488    0.48488 

  

It can be concluded from the results in Table 4.11 that FDE2 had the best objective 

function solution while still maintaining the least amount of constraint violation when 

compared to the other two trials. DE did have a better objective function solution than 

FDE1; however, when considering the amount of constraint violations, the performance 

of DE is easily eclipsed by the one of FDE1. 
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Figure 4.8. Wildwood reservoir storage for a twelve-month time horizon. 

The Wildwood optimal reservoir storage and release policy for the year 2010 is shown in 

Figures 4.8 and 4.9, respectively. Exact optimal values for each decision variable can be 

found in Table 6.1 of Appendix D. The results follow the problem formulation closely. 

The storage for the month of April is indeed maximized, while the late summer to fall 

storage is indeed kept consistent. Similarly, the release policy meets the minimum release 

requirement for low flow augmentation. Thus, the optimization can be deemed 

satisfactory. 
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Figure 4.9. Wildwood reservoir release for a twelve-month time horizon. 
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Chapter 5  

5.1 Summary 

This thesis proposes a novel method, fuzzy differential evolution algorithm, which 

utilizes fuzzy triangular membership functions for initialization, combined with random 

alpha-cuts to create alpha-cut intervals to be perturbed through mutation by fuzzy interval 

arithmetic. This approach, through the utilization of fuzzy theory concepts, takes 

advantage of all the available domain knowledge. The FDE algorithm has flexibility in 

being used for a wide range of linear and non-linear optimization problems. The novel 

algorithm with fuzzy set theory elements allows the decision makers to provide 

supplementary knowledge needed to define a more focused search space and, 

consequently, a more efficient optimization.  

A decision support system, named the “Differential Evolution Optimizer” (DEO), was 

created to assemble the fundamental tools for optimization using the differential 

evolution algorithm including FDE in a convenient Windows interface. A detailed review 

of the decision support system has been discussed in Chapter 3. All the optimization 

results in this paper have been obtained through the use of DEO. 

As concluded from the experimental results obtained using the benchmark functions, the 

addition of the decision maker’s supplied domain knowledge guided the algorithm in a 

superior way, resulting in faster convergence towards an optimal solution when compared 

with the traditional DE scheme. This was the main benefit of FDE. Alternatively, the 

decision maker can reduce the initialization bounds in the traditional algorithm in an 

attempt to mimic the focusing achieved by FDE. This method incorrectly implies 

certainty that the solution is indeed within such bounds, whereas the FDE strategy allows 

for the benefit of focusing on a certain region, while still searching a wider search space 

to account for uncertainty. 

In addition to the main benefits, the benchmark functions results show that even when 

compared with decreased initial parameter bounds of DE, FDE was still able to 
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outperform DE, or perform comparatively to it. While the benchmark function results 

show instances where the initial search bounds were equal, FDE appeared to outperform 

DE regardless of the focusing target in the search space.  It is clear that focusing was of 

major importance in the search for an optimal solution. However, even in circumstances 

where the focusing target is highly inaccurate, the algorithm still performed better than 

DE. 

Emphasis is placed on the fact that the FDE algorithms, like all evolutionary algorithms, 

make no guarantee that an optimal solution is ever found. Furthermore, misconvergence 

may result using FDE in certain instances. Therefore, FDE may not be better than DE in 

the absolute sense, but it does provide an alternative to be used where more domain 

knowledge is available to provide a more efficient convergence. The use of FDE provides 

more freedom in expressing available domain knowledge without incorrectly claiming 

full certainty or uncertainty because of the limitations of the algorithm itself. 

The FDE algorithm was shown through the Wildwood reservoir case study to be 

applicable in the water resource management field. The addition of subjective targets for 

initialization with FDE led to a focused search, ultimately resulting in FDE 

outperforming the traditional DE algorithm in the convergence towards the optimal 

solution. The case study also demonstrated the use of constraints within the DE and FDE 

algorithm and the associated challenge with setting appropriate penalty constants. 

5.2 Recommendations for Future Work 

The FDE methodology discussed in this paper demonstrates fundamental principles for 

initialization and mutation within a hybrid fuzzy and probabilistic domain. The 

methodological background however can be modified and expanded. Future work is 

recommended to explore additional membership functions for the initialization of FDE. 

Instead of the triangular membership function, other membership functions should be 

investigated, such as the trapezoidal and Gaussian membership functions. These 

membership functions may prove to be more suited for the solution of other types of 
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problems. That is to say, different membership functions may be better representative of 

the vague parameter knowledge. 

An additional recommendation for further research is to investigate how the alpha-cut 

intervals are transformed into singular values. This transformation is essential in order to 

evaluate the objective function or rather the fitness functions, which is indispensable for 

the differential evolution algorithm to proceed. Currently, this is done by taking the 

centroid value of the alpha-cut, this being the preference-neutral way (i.e. given to neither 

extreme).  

Another suggestion is to allow the selection of the singular value from the interval, based 

on a decision maker supplied preference. This would add another control parameter the 

decision makers can interact with and establish their preference favoring parameters, 

greater or smaller than the alpha-cut interval. 

Lastly, the FDE mutation strategy presented in this paper shows the modification of 

DE/rand/1/bin or the classic DE strategy. Similarly, other common DE strategies, such as 

DE/best/1/bin may be modified to work with alpha-cut interval arithmetic. The 

application of other such strategies incorporating the fundamental FDE concepts could 

prove to have similar benefits as the ones shown in this paper, in addition to the benefits 

incorporated by using the new strategy. 
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Appendices 

Appendix A: Fuzzy Set Theory 

The Fuzzy set theory was intentionally developed to try to capture judgmental belief, i.e. 

the uncertainty caused by the lack of knowledge or by ambiguity.  The concept of a fuzzy 

set can be described as a “class” (set) with a continuum of grades of membership (Zadeh, 

1965).  Each object within a fuzzy set is graded in the interval [0, 1]. For example, in the 

class of animals, rocks may be said to have 0 degree of membership in the set of animals 

that is they do not belong, while cats may have full membership and belong. These 

definitions are common to traditional ordinary sets, where the values are crisp either 

belonging or not with no partial degree of belonging (Zadeh, 1965).  Fuzzy sets extend 

the ordinary sets; consider that in the set of animals starfish have an ambiguous status and 

thus hold a degree of membership in the interval [0, 1], i.e. partial membership. 

Therefore, starfish can be properly represented without the need to classify them as either 

belonging or not to the set (class). Fuzziness thus measures the degree to which an event 

occurs, not whether it occurs, a contrast to probability theory. 

A fuzzy set (class) is characterized by a membership (characteristic) function which 

associates each member of the fuzzy set with a real number in the interval [0, 1] (Zadeh, 

1965; Ross, 2004). The membership function essentially embodies all fuzziness for a 

particular fuzzy set; its description is the essence of a fuzzy property or operation. There 

are numerous ways to assign membership values or functions to fuzzy variables; more 

ways than there are to assign probability density functions to random variables. In the 

following sections a sample of the available methods for assigning membership values or 

functions are summarized. For further details the reader is directed to the textbook by 

Ross (2004). 

Intuition 

This method is derived simply from the capacity of humans to develop membership 

functions through their own innate intelligence and understanding (Ross, 2004). In order 

to utilize intuition, contextual and semantic knowledge about an issue is essential. Thus, 
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the membership function development is dependent on the subjectivity of the individual 

or individuals consulted in its development. A single fuzzy variable may have more than 

one membership function, that is, there may be many partitions. An important 

characteristic for the purposes of use in fuzzy operations is that these partitions overlap.  

Inference 

The inference method comes from our ability to perform deductive reasoning. When 

given a body of facts or knowledge, we are able to deduce or infer a conclusion. The 

inference method can take many forms; consider an example of identifying a triangle 

when we possess a formal knowledge of geometry and geometric shapes, Ross (2004).  In 

identifying a triangle, let A, B and C be the inner angles of a triangle in the order 

        and let U be the universe of triangles, such that 

                                 
(6.1)  

 

We can infer membership of different triangle types, because we possess knowledge of 

geometry. We can determine if a triangle is approximately isosceles by developing an 

algorithm for the membership. Meeting the constraints of Eq. (6.1) we have: 

 
            

 

  
              

(6.2)  

 

For example, if A = B or B = C, the membership value of the isosceles triangle is    = 1. 

However, if A = 120°, B = 60°, C = 0°, then   = 0. In the first case we thus have full 

membership or belonging of the fuzzy variable in the fuzzy set for an approximate 

isosceles triangle, while the second case is a total contrast. 
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Rank Ordering 

The approach arises from assessing preferences by a single individual, a committee, a 

poll and other opinion methods that can be used to assign membership values to a fuzzy 

variable (Ross, 2004). Preferences are determined by pairwise comparisons and these 

determine the ordering of the membership. This method is similar to finding relative 

preferences through a questionnaire and developing membership functions as a result. 

Neural Networks 

Neural network is a technique that seeks to build an intelligent program using models that 

try to recreate the working of neurons in the human brain. Neurons are believed to be 

responsible for the humans’ ability to learn; thus, the goal is to implement this to machine 

language as a tool to generate membership functions. The use of neural networks in 

membership function generation is centered on a training process (learning based on 

available data for input) and an unsupervised clustering process (Ross, 2004).  After 

training, the degree of a membership function for a given input value may be estimated 

through network computation. That is to say, each input value has a certain estimated 

degree of belonging to a cluster which is equivalent to the degree of the membership 

function represented by the cluster. 

Genetic Algorithms 

Genetic algorithms use the concept of Darwin’s theory of evolution in searching for the 

best solution of a given set based on the principle of “survival of the fittest” (Ross, 2004). 

Among all possible solutions, a fraction of the good solutions is selected while others are 

eliminated. The selected solutions undergo a process of reproduction, crossover, and 

mutation to create a new generation of possible solution. The process continues until 

there is a convergence within a generation. The genetic algorithms can be used in the 

derivation of membership functions. The process starts by assuming some functional 

mapping for a system (membership functions and their shapes for fuzzy variable/s). The 

membership functions are then converted to a code familiar to the algorithm, bit strings 

(zeros and ones) which can then be connected together to make a longer chain of code for 
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manipulation in the genetic algorithm (i.e. crossover, elimination, reproduction). An 

evaluation function is used to evaluate the fitness of each set of membership functions 

(parameters that define the functional mapping). Based on the fitness value, 

unsatisfactory strings are eliminated and reproduction of satisfactory strings proceeds for 

the next generation. This process of generating and evaluating strings is continued until 

the membership functions with the best fitness value are obtained. 

Inductive Reasoning 

This approach utilizes the inductive reasoning to generate the membership functions by 

deriving a general consensus from the particular (Ross, 2004). Inductive reasoning 

assumes availability of no information other than a set of data (Russell & Kim, 1993). 

The approach is to partition a set of data into classes based on minimizing entropy. The 

entropy, S, where only one outcome is true, is the expected value of the information 

contained in the data set and is given by 

 

    ∑    ln                  

 

   

 

(6.3)  

 

where the probability of the ith sample to be true is pi and N is the number of samples. 

The minus sign in front of the parameter k in Eq. (6.3) ensures that entropy will be a 

positive value, greater than or equal to zero. Through iterative partitioning, the segmented 

data calculation of an estimate for entropy is possible. The result is a solution of points in 

the region of the data interval, used to define the membership function. The choice of 

shape for membership functions is arbitrary, as long as some overlap is present between 

membership functions; therefore simple shapes, like triangles, which exhibit some degree 

of overlap, are often a sensible choice.  
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Appendix B: Mamdani Fuzzy Inference 

The fuzzy approach used for simulation is derived from utilizing the fuzzy inference 

method, based on the representation of human knowledge in IF-THEN rule-based form, 

such that it becomes possible to infer a conclusion or fact (consequent) given an initial 

known fact (premise, hypothesis, antecedent) (Ross, 2004). 

A typical form of the IF-THEN rule-based form, also referred to as the deductive form, is 

shown in the expression below: 

                                                      
(6.4)  

 

The fuzzy simulation (rule-based system) is most useful in modeling complex systems 

that can be observed by humans. Linguistic variables are used as antecedents and 

consequents. These linguistic variables can be naturally represented by fuzzy sets and 

logical connectives of these sets. 

Mamdani's fuzzy inference method is the most commonly seen fuzzy simulation 

methodology and is the methodology presented in this report (Ross, 2004). The method 

was originally proposed as an attempt to control a steam engine and boiler combination 

by synthesizing a set of linguistic control rules obtained from experienced human 

operators. The Mamdani inference method is a graphical technique that follows five main 

steps: (1) development of fuzzy sets and linguistic rules, (2) fuzzification of inputs, (3) 

application of fuzzy operators, (4) aggregation of all outputs, and (5) defuzzification of 

aggregated output. 

Step 1. Development of fuzzy sets and linguistic rules 

To begin, the Mamdani form rules may be described by the collection of r linguistic IF-

THEN expressions.  Equation (6.5) shows the expression for a fuzzy system with two 

non-interactive inputs x1 and x2 (antecedents) and a single output (consequent) y. The 

concept holds for any number of antecedents (inputs) and consequents (outputs). 
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(6.5)  

 

where    
  and   

 
 
 are the fuzzy sets representing the kth antecedent pairs, and     is the 

fuzzy set representing the kth consequent. The membership functions for the fuzzy sets 

may be generated with one of the methods discussed in Appendix A. 

Step 2. Fuzzification of Inputs 

The inputs to the system, x1 and x2, are scalar values. In order to proceed with the 

inference method, the corresponding degrees to which the inputs belong to the 

appropriate fuzzy sets via membership functions need to be found. Fuzzification of the 

input thus requires the membership function of the fuzzy linguistic set to be known; the 

corresponding degree of membership for the scalar input belonging to the universe of 

discourse is found through function evaluation. Figure 6.1 outlines the procedure in a 

graphical form. 

 

Figure 6.1. Fuzzification of scalar input from known membership function. 

It should be noted that the input to any fuzzy system can be a membership function, such 

as gauge reading that has been fuzzified already.  Either way, the methodology is the 

same as the one that employs fuzzy singletons (scalar values) as the input. 
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Step 3. Application of fuzzy operators  

Once the inputs are fuzzified, the degree by which each condition of the antecedent is 

satisfied is known for each rule. If there are multiple antecedent conditions for each rule, 

as in the case of expression (6.5), then a fuzzy operator is used to obtain one number that 

represents the antecedent for that rule. This number is applied to the output function, 

producing a single truth value for the rule. The logical operators commonly employed are 

described. 

The expression in (6.5) has conjunctive antecedents and for illustration shows disjunctive 

antecedents in brackets. 

For conjunctive antecedents, assuming a new fuzzy subset A s as 

   
 
      

     
                                       

(6.6)  

 

expressed by means of the membership function shown in Figure 6.2: 

     
        [    

      
 ]                          

(6.7)  

 

For disjunctive antecedents, a similar procedure follows. This time, the fuzzy set A s is 

defined as 

   
 
      

     
                                       

(6.8)  

expressed by means of the membership function shown in Figure 6.2 

     
        [    

      
 ]                        . 

(6.9)  

 

Given the above, the compound rule may be rewritten as 
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(6.10)  

 

 

Figure 6.2. Fuzzy operator use for the generalized expression (6.5) of a rule. 

 

Step 4. Aggregation of outputs 

It is common for a rule-based system to involve more than one rule.  As such, in order to 

reach a decision or overall conclusion, the aggregation of individual consequents or 

outputs contributed by each rule is required. Thus, all the outputs are combined into a 

single fuzzy set which may be defuzzified in the final step to obtain a scalar solution. 

The aggregation of outputs may be achieved in two ways: (1) max-min truncation, or (2) 

max-product scaling. Only the first case will be discussed here. In the max-min case, 

aggregation is achieved by the minimum or maximum membership function value from 

the antecedents (depending on the logical operator used in the rule), propagating through 

to the consequent, thereby truncating the membership function for the consequent of each 

rule. This procedure is applied for each rule. The truncated membership functions of each 

rule will need to be combined. This may be achieved by disjunctive or conjunctive rules, 

using the same fuzzy operators as in Step 3. 
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If the system of rules needs to be jointly satisfied, the truncated outputs should be 

aggregated as a conjunctive system; the rules are connected by “and” connectives. In the 

case where the objective is to be satisfied for at least one rule, the aggregation of outputs 

may be treated as a disjunctive system, where the rules are connected by “or” 

connectives.  Figure 6.3 illustrates the aggregation of outputs into a single fuzzy 

membership function. Each antecedent is treated as conjunctive and the aggregation of 

outputs of each rule is treated as a disjunctive system. 

 

Figure 6.3. Aggregation of rule outputs into a single fuzzy membership function. 

 

Step 5. Defuzzification of aggregated result 

The final objective of the rule-based system simulation is typically a single value 

obtained from the defuzzification of the aggregated fuzzy set of all outputs. Many 

defuzzification methods are available in the literature: max membership principle, 
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centroid method, weighted average method and numerous others. There is no single most 

suitable defuzzification method. Selection of the best method for defuzzification is 

context or problem-dependent. For the purpose at hand, the centroid method will be used 

because it is well established and physically appealing among all the defuzzification 

methods (Ross, 2004). The centroid method shown in Figure 6.4, may also be referred to 

as the center of gravity or center of an area. Its expression is given as 

 

 
   

∫     d 

∫     d 
 

(6.11)  

 

 

Figure 6.4. Centroid method for defuzzification. 
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Appendix C: Decision Support System for Implementation of DEO 

Included alongside this thesis is the electronic installation file of the DSS, developed to 

solve optimization problems using the differential evolution algorithm. In addition to the 

installation file, the C# source code is also provided in electronic form due to its large 

size. 

With the installation files provided, readers are encouraged to get familiar with the 

features of the DSS. 

The file folder named DEO-install, once opened, contains: 

ReadMe.txt : This file contains installation instructions and other helpful information. 

Setup.exe: This is the main executable installation file that, upon launching, will install 

the DEO software onto the user’s computer. 

DEO-Examples folder: The folder contains convenient example input .deo files and 

documentation to familiarize a new user with the DEO software. 

The file folder DEO-Code, once opened, contains many C# classes, one of which, titled 

Deopt.cs, contains most of the main algorithm code. The other classes include the 

interface, fuzzy inference class for FADE and various classes for parsing of the input 

functions. Opening the C# project file named DeOptimization using Microsoft Visual C# 

would be the most convenient way to access all the associated source code.  
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Appendix D: Wildwood optimization results  

 

Table 6.1. Wildwood decision variables values after optimization [10
3
 m

3
] 

 Optimization Results Target 

Variable DE FDE1 FDE2 FDE1 FDE2 

S1 4706 4352 3088 6908 7000 

S2 4206 6688 4016 6610 6000 

S3 9252 13824 12336 10090 10000 

S4 13765 14880 15804 15359 15000 

S5 13318 14464 16238 17516 17000 

S6 15208 14624 16736 17860 17000 

S7 14019 14208 15736 17194 17000 

S8 11404 11408 12800 15523 8000 

S9 11018 11312 12608 11660 8000 

S10 11245 11776 12576 8449 8000 

S11 11407 11520 12672 4222 8000 

S12 10107 8800 8096 4039 7000 

R1 5999 6400 7568 4345 4000 

R2 3165 512 1248 3463 3500 
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R3 4317 2304 992 2387 2500 

R4 1048 3840 1463 1763 1500 

R5 3850 3328 2996 1966 4000 

R6 2607 3920 4468 4596 5000 

R7 3717 2816 3480 3180 4000 

R8 3480 4352 4388 4719 5000 

R9 3472 6688 3197.5 5786 6000 

R10 5023 13824 5248 8511 8000 

R11 3504 14880 4064 6153 5000 

R12 5268 14464 9376 4940 5000 
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