
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

May 2012

Fuzzy Differential Evolution Algorithm Fuzzy Differential Evolution Algorithm

Dejan Vucetic
The University of Western Ontario

Supervisor

Dr. Slobodan Simonovic

The University of Western Ontario

Graduate Program in Civil and Environmental Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© Dejan Vucetic 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Civil and Environmental Engineering Commons, Electrical and Computer Engineering

Commons, and the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Vucetic, Dejan, "Fuzzy Differential Evolution Algorithm" (2012). Electronic Thesis and Dissertation
Repository. 503.
https://ir.lib.uwo.ca/etd/503

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61632674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=ir.lib.uwo.ca%2Fetd%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Fetd%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Fetd%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ir.lib.uwo.ca%2Fetd%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/503?utm_source=ir.lib.uwo.ca%2Fetd%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

FUZZY DIFFERENTIAL EVOLUTION ALGORITHM

(Spine title: Fuzzy Differential Evolution Algorithm with Application in Water Resource

Systems)

(Thesis format: Monograph)

by

Dejan Vucetic

Graduate Program in Civil and Environmental Engineering

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Dejan Vucetic 2012

ii

THE UNIVERSITY OF WESTERN ONTARIO

School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Slobodan Simonovic

Supervisory Committee

Examiners

Dr. Jagath Samarabandu

Dr. Jason Gerhard

Dr. Ashraf Nassef

The thesis by

Dejan Vucetic

entitled:

Fuzzy Differential Evolution Algorithm

is accepted in partial fulfillment of the

requirements for the degree of

Master of Engineering Science

______________________ _______________________________

 Date Chair of the Thesis Examination Board

iii

Abstract

The Differential Evolution (DE) algorithm is a powerful search technique for solving global

optimization problems over continuous space. The search initialization for this algorithm

does not adequately capture vague preliminary knowledge from the problem domain. This

thesis proposes a novel Fuzzy Differential Evolution (FDE) algorithm, as an alternative

approach, where the vague information of the search space can be represented and used to

deliver a more efficient search. The proposed FDE algorithm utilizes fuzzy set theory

concepts to modify the traditional DE algorithm search initialization and mutation

components. FDE, alongside other key DE features, is implemented in a convenient decision

support system software package. Four benchmark functions are used to demonstrate

performance of the new FDE and its practical utility. Additionally, the application of the

algorithm is illustrated through a water management case study problem. The new algorithm

shows faster convergence for most of the benchmark functions.

Keywords

Fuzzy numbers, Genetic algorithms, Differential Evolution Algorithms, Fuzzy random

variables, Fuzzy Set Theory, Optimization, Water Resource Management

iv

Acknowledgments

I am very grateful for my supervisor, Dr. S.P. Simonovic for giving me the opportunity to do

research in this exciting field. He has generously offered his time and followed my work with

keen interest from its inception. He has shared his infinite knowledge and provided

motivation to increase my own. I consider it a great privilege and honor to call myself one of

his students.

I would also like to extend a special thanks to Mr. Mark Helsten from the Upper Thames

Conservation Authority for contributing water reservoir operations insights and providing

relevant data. In addition, I would like to thank Dr. Joran Velikonja for his detailed editing

assistance. A heartfelt thanks goes out to everyone at FIDS for their pleasant company and

assistance while working on my thesis.

v

Table of Contents

CERTIFICATE OF EXAMINATION ... ii

Abstract .. iii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... viii

List of Figures ... x

List of Appendices .. xii

Chapter 1 ... 1

1 Introduction .. 1

1.1 Organization of the Thesis .. 7

Chapter 2 ... 8

2 Methodology .. 8

2.1 Differential Evolution Algorithm ... 8

2.1.1 DE Population Initialization ... 9

2.1.2 Mutation .. 11

2.1.3 Crossover .. 12

2.1.4 Selection .. 13

2.1.5 Termination ... 13

2.1.6 Illustrative Example of Classic DE Algorithm ... 14

2.2 Selected Differential Evolution Algorithm Variants .. 17

2.2.1 DE/best/1/bin .. 17

2.2.2 DE/local-to-best/1/bin ... 18

http://office.microsoft.com/en-us/word/hp012253721033.aspx

vi

2.3 Setting Control Parameters ... 19

2.3.1 Fuzzy Adaptive Differential Evolution ... 21

2.4 Constraints .. 25

2.4.1 Search Space Constraint ... 26

2.4.2 Feasible Space Constraint ... 27

2.5 Fuzzy Differential Evolution Algorithm ... 30

2.5.1 Initialization .. 30

2.5.2 Mutation .. 34

2.5.3 Illustrative Example of FDE Algorithm ... 36

Chapter 3 ... 42

3.1 Decision Support System Software Package .. 42

3.2 Differential Evolution Optimizer Overview ... 42

3.2.1 Algorithm Inputs ... 44

3.2.2 Optimization Inputs .. 48

3.2.3 Optimization Results ... 50

3.3 Illustrative Example .. 52

Chapter 4 ... 56

4.1 Application .. 56

4.2 Benchmark Functions ... 56

4.2.1 Benchmark Function Results and Discussions ... 62

4.3 Case Study .. 68

4.3.1 Study Area Background .. 68

4.3.2 Problem Definition.. 71

4.3.3 Mathematical Formulation .. 71

4.3.4 Algorithm and Optimization Inputs .. 75

4.3.5 Study Results and Discussions ... 78

vii

Chapter 5 ... 84

5.1 Summary ... 84

5.2 Recommendations for Future Work.. 85

References ... 87

Appendices .. 92

Curriculum Vitae .. 105

viii

List of Tables

Table 2.1. Population vector matrix for each generation .. 11

Table 2.2. An illustrative example .. 15

Table 2.3. Calculation of the weighted difference vector for the illustrative example 15

Table 2.4. Calculation of the mutated vector for the illustrative example 16

Table 2.5. Generation of the trial vector for the illustrative example 16

Table 2.6. New population for the next generation in the illustrative example 17

Table 2.7. Membership Functions .. 23

Table 2.8. The Fuzzy Rules .. 24

Table 2.9. An illustrative example .. 38

Table 2.10. Calculation of the weighted difference vector for the illustrative example 38

Table 2.11. Calculation of the mutated vector for the illustrative example 39

Table 2.12. Interval to single value mutated vector calculation ... 39

Table 2.13. Generation of the trial vector for the illustrative example 40

Table 2.14. New population for next generation for the illustrative example 41

Table 4.1. Algorithm settings.. 57

Table 4.2. Performance comparison of FDE and DE algorithms at various focus targets 63

Table 4.3. Performance comparison between the original DE algorithm with smaller bounds

and FDE with a focus equal to one ... 66

Table 4.4. Constraints of the Wildwood reservoir (UTRCA, 1993) 72

Table 4.5. DE algorithm inputs ... 75

ix

Table 4.6. Storage initialization inputs for the year 2010 [10
3
 m

3
] .. 77

Table 4.7. Release initialization inputs for the year 2010 [10
3
 m

3
] .. 77

Table 4.8. Constraint satisfying release and storage target initialization inputs for the year

2010 [10
3
 m

3
] .. 77

Table 4.9. Release constraints [10
3
 m

3
] .. 78

Table 4.10. Monthly inflows for the Wildwood reservoir [10
3
 m

3
].. 78

Table 4.11. Wildwood reservoir objective functions and error after optimization 78

Table 4.12. Penalty constant selection .. 781

x

List of Figures

Figure 1.1. DE algorithm schematic. .. 5

Figure 2.1. Search space and feasible region. ... 26

Figure 2.2. Triangular fuzzy membership function. ... 31

Figure 2.3. The alpha-cut method schematic. ... 32

Figure 2.4. The alpha-cut intervals schematic. ... 33

Figure 3.1. Interface of DEO menu. ... 43

Figure 3.2. Algorithm inputs window. .. 44

Figure 3.3. Optimization inputs window. ... 48

Figure 3.4. Optimization results window. ... 48

Figure 3.5. Algorithm inputs for illustrative example. ... 53

Figure 3.6. Optimization inputs for illustrative example. ... 54

Figure 3.7. Optimization results for illustrative example. .. 54

Figure 4.1. First De Jong’s function in 2 dimensions (Molga and Smutnicki, 2005). 58

Figure 4.2. Rosenbrock’s function in 2 dimensions (Molga and Smutnicki, 2005). 59

Figure 4.3. Modified Third De Jong Function in 2 dimensions (Black, 1996). 60

Figure 4.4. Rastrigin’s function in 2 dimensions (Molga and Smutnicki, 2005).................... 61

Figure 4.5. Location of the Upper Thames basin.. 69

Figure 4.6. Wildwood reservoir schematic. .. 71

Figure 4.7. Wildwood reservoir optimization progress. ... 71

file:///C:/Users/Dejan/Dropbox/FDE-Thesis_sps%20(corr%20JV%20-%20APPENDICES).docx%23_Toc323397217

xi

Figure 4.8. Wildwood reservoir storage for a twelve-month time horizon. 82

Figure 4.9. Wildwood reservoir release for a twelve-month time horizon. 83

Figure 6.1. Fuzzification of scalar input from known membership function. 97

Figure 6.2. Fuzzy operator use for the generalized expression (6.5) of a rule. 99

Figure 6.3. Aggregation of rule outputs into a single fuzzy membership function. 100

Figure 6.4. Centroid method for defuzzification. ... 101

xii

List of Appendices

Appendix A: Fuzzy Set Theory ………………………………………………………...….91

Appendix B: Mamdani Fuzzy Inference ...95

Appendix C: Decision Support System for Implementation of DEO .………….…….……101

Appendix D: Wildwood Optimization Results ..102

1

Chapter 1

1 Introduction

Water resources systems provide water for agricultural, industrial, household,

recreational and environmental activities. Beside sustaining life, water has a high social,

economic, cultural and aesthetic value for humans. However, water can also become a

potential threat, such as in the event of flooding caused by a sudden abundance of water.

Therefore it is no surprise that there is a great need for water resource systems

management. Through the management activities we can appropriately allocate the water

resources, increasing economic benefits while actively assuring the health and safety of

humans and related environment.

Water-related problems can be addressed through structural measures (dikes, dams,

sewers, etc.), but also through policy and operation decisions. However, before

implementation of these aforementioned measures can take place, utilization of an

approach such as system analysis is required. System analysis is defined as a set of

mathematical planning and design techniques; its introduction has been viewed as the

most important advance in the field of water management in the last century (Hall and

Dracup, 1970; Loucks et al., 1981; Friedman et al., 1984; Yeh, 1985; Rogers and Fiering,

1986; Loucks and da Costa, 1991; Wurbs, 1998; Simonovic, 2009). Systems analysis is

particularly promising when scarce resources must be used effectively. Resource

allocation problems are very common in the field of water management, and affect both

developed and developing countries, which today face increasing pressure to make

efficient use of their resources (Simonovic, 2009).

System analysis techniques, often called operations research, management science and

cybernetics, include simulation and optimization techniques that are used to analyze the

quantitative and qualitative aspects of watershed runoff and stream flow processes,

reservoir system operations, groundwater development and protection, water distribution

2

systems, water use and various other hydrological processes and management activities

(Simonovic, 2009). The latter technique, optimization, is the focus of this thesis.

Optimization is a procedure defined as the selection of a set of decision variables falling

within the feasible region that maximizes/minimizes the objective function (Simonovic,

2009). Optimization is very desirable as it improves efficiency, performance and revenue

which finds application in a broad spectrum of fields, most commonly economics,

engineering and operations research (including water management).

Optimization problems, once formulated through the creation of the objective function

(and sometimes including constraints), may be solved using a wide variety of

computational techniques. Most water resources allocation problems are addressed using

linear programming (LP) solvers introduced in the 1950s (Dantzig, 1963). The objective

function in the context of water management is usually to find the economically efficient

water allocation (water supply, hydropower generation, irrigation, etc.) within a given

time period in complex water systems (Simonovic, 2009). However, neither objective

functions nor constraints are in a linear form in most practical water management

applications. Many modifications have been used in real applications in order to convert

nonlinear problems for the use of LP solvers. Examples include different schemes for the

linearization of nonlinear relationships and constraints, and the use of successive

approximations.

Nonlinear programming is an optimization approach used to solve problems when the

objective function and the constraints are not all in linear form (Bazaraa et al., 2006). In

general, the solution to a nonlinear problem is a vector of decision variables which

optimizes a nonlinear objective function subject to a set of nonlinear constraints. No

single universally applicable algorithm exists, that would solve every specific problem

fitting this description. However, substantial progress has been made for some important

special cases by making various assumptions about these functions. Successful

applications are available for special classes of nonlinear programming problems such as

unconstrained problems, linearly constrained problems, quadratic problems, convex

problems, separable problems, non-convex problems and geometric problems.

3

The main limitation in applying nonlinear programming to water management problems

lies in the fact that nonlinear programming algorithms generally are unable to distinguish

between local optimum and global optimum (except by finding another better local

optimum) (Simonovic, 2009). Therefore, where a global optimum solution is required,

nonlinear programming may prove to be very inefficient due to the duration of

computation.

Dynamic programming (DP) offers advantages over other optimization tools because the

shape of the objective function and constraints do not affect it; hence, it has been used

frequently in water management (Simonovic, 2009; Sniedovich, 2011). DP requires

discretization of the problem into a finite set of stages. At every stage a number of

possible conditions of the system states are identified and an optimal solution is identified

at each individual stage, given that the optimal solution for the next stage is available. An

increase in the number of discretizations and/or state variables would increase the number

of evaluations of the objective function, as well as the core memory requirement per

stage. This problem of rapid growth of computer time and memory requirement

associated with multiple-state-variable DP problems is known as “the curse of

dimensionality” (Sniedovich, 2011). This expression refers to the exponential growth of

the search space volume as a function of dimensionality.

In the very recent past, most optimization practitioners and researchers have been looking

for new approaches that combine efficiency and ability to find the global optimum. One

group of such optimization algorithms, known as evolutionary algorithms (EA) has

received praise for its efficiency and ability to find the global optimum for complex non-

linear systems (Back, 1996; Simonovic, 2009). Evolutionary algorithms are based on the

biological evolutionary process and are therefore inherently stochastic in nature. In this

concept, a population of individuals, each representing a search point in the space of

feasible solutions, is exposed to a collective learning process, which proceeds from

generation to generation. The population is arbitrarily initialized and subjected to the

process of selection, recombination/crossover and mutation through stages known as

generations, such that newly created generations evolve towards more favorable regions

of the search space. The algorithm resembles the Darwinian concept known as “the

4

survival of the fittest”. This group of algorithms includes, among others, evolution

strategies (ES) (Back, 1996), differential evolution (DE) (Storn and Price, 1995),

evolutionary programming (EP) (Fogel et al, 1966; Fogel, 2005), genetic algorithms

(GA) (Holland, 1975), and simulated annealing (Kirkpatrick et al, 1983; Lockwood and

Moore, 1993).

Evolutionary algorithms have significant advantages over the other optimization methods

discussed. Unlike LP, they are able to deal with complex nonlinear problems. Also, they

are very likely to generate several solutions that are very close to the global optimum, as

opposed to nonlinear programming, and, although not immune from the “curse of

dimensionality”, they do not suffer from it to the extent of DP (Yu and Gen, 2010). In

addition, evolutionary algorithms do not need an initial solution, and are able to produce

acceptable results over longer time horizons (Simonovic, 2009). However, despite its

ability to deal with unconstrained optimization problems very efficiently, EA suffers

limitations like most traditional optimization techniques when dealing with constrained

optimization problems. Most commonly, these limitations have been addressed by

integrating additional algorithms with EA, such as the penalty function method, in order

to transform a constrained optimization problem into an unconstrained one (Gen and

Chen, 1997).

One of the above mentioned evolutionary algorithms, the differential evolution (DE)

(Storn and Price, 1995; Storn and Price, 1997; Lampinen et al., 2005), is the main focus

of this thesis. It has gained increasing popularity for solving optimization problems due to

its robustness, simplicity, easy implementation and fast convergence. DE has been

successfully applied to water resource management, mechanical engineering, sensor

networks, scheduling and other domains (Arunachalam, 2008; Ilonen et al, 2003; Joshi

and Sanderson, 1999; Onwubolu, 2008; Pan et al, 2009; Rogalsky et al, 1999; Storn,

1996).

DE utilizes a parallel direct search method for generating population vectors for each

generation G from NP, D-dimensioned parameter vectors, where NP is the number of

members in a population which is fixed throughout the optimization process and D is the

5

number of optimization parameters known as individuals. The population vector is given

as:

(1.1)

Initialization of the algorithm occurs once the initial vector population is chosen at

random from an assumed parameter range (i.e. a range of integers from -10 to 10).

Alternatively, if the preliminary solution is known, the population vector is populated

using a normally distributed random deviation to the nominal solution, Xnom,0. The

initially generated population (Xi,0) is perturbed using mutation and crossover, leading to

the evolution of a new trial population. A selection process takes place to determine the

fittest population of the two. The fittest population is selected as the initial population for

the subsequent generation. This process continues iteratively until a termination

condition is met. Fig 1.1 summarizes the main components of the algorithm.

Iterations

Initialize DE population

Calculate the fitness of

all populations

Mutation

Crossover

Selection

Termination Condition

Met?

Figure 1.1. DE algorithm schematic.

6

The initialization strategies currently used with the DE address two specific scenarios:

certainty or uncertainty. When preliminary information is available with certainty, the

algorithm may be initialized using the nominal solution as discussed (Lampinen et al.,

2005). Otherwise, if preliminary information is not available, the initialization will have

to rely on a range of possible solutions (Lampinen et al., 2005).

However, when vague preliminary knowledge of the problem domain is available, neither

method for initialization is ideal. Using such vague information to assume a nominal

solution incorrectly implies more certainty than available. Alternatively assuming a range

of solutions accounts for the uncertainty but may not utilize all available information to

represent it correctly. The more knowledge one includes, the less uncertain will be the

initialization and, consequently, the optimization.

The fuzzy set theory (Zadeh, 1965) offers a means to address the quantification of

uncertainty from the available vague information. A brief overview of the main concepts

of this theory is given in Appendix A. The fuzzy set theory offers unique possibilities for

modifications of the traditional fundamentally stochastic DE algorithm. Some fuzzy

practitioners have been already involved with evolutionary optimization. Some have

utilized the existing algorithm to develop fuzzy models, like Kisi (2004) who found the

parameters of membership functions for daily suspended sediment modeling. Others

have joined the ongoing research that has resulted in modifications of the classic DE

algorithm, such as Liu and Lampinen (2004). They proposed a fuzzy adaptive parameter

control algorithm, based on feedback from the search behavior, to address the sensitivity

of the DE to control parameter settings.

The objective of this thesis is to create a new DE initialization strategy that will be able to

take advantage of the existing knowledge in the problem domain. The more knowledge is

included, the more likely it becomes for the optimization to converge more efficiently. In

conjunction with the new initialization technique, the mutation scheme will require

modification in order to properly offer valuable guidance to the DE algorithm towards a

7

more efficient search strategy. For convenience, the novel algorithm is implemented into

optimization decision support system software.

1.1 Organization of the Thesis

This thesis is organized into four additional chapters. Chapter Two gives an overview of

the methodological background of the classic differential evolution algorithm strategy, as

well as of several other selected strategies. An illustrative numerical example of the

classic differential evolution algorithm is also presented here. The chapter also contains

guidelines for setting the DE control parameters based on empirical evidence; in addition,

the fuzzy adaptive differential evolution methodology is detailed. Constraint handling

methodologies are also overviewed, including the random and bounce-back

reinitialization approach for dealing with search space constraints and the penalty

function method for dealing with feasible space constraints. Lastly, the methodology for

the novel fuzzy differential evolution (FDE) algorithm for initialization and mutation is

proposed. This approach uses prior knowledge of the problem domain for guiding the

search towards the optimal solution. A numerical example of the fuzzy differential

algorithm is also presented for illustrative purposes.

Chapter Three outlines the optimization decision support system software package

developed by integrating all the features discussed in the methodology. An illustrative

example is used to demonstrate the decision support system and a typical procedure

required to find the optimal solution. Chapter Four details two applications of the novel

fuzzy differential evolution algorithm. Included is the application of a set of standard

benchmark functions, used to compare the performance of the classical DE algorithm (in

terms of convergence speed) with the proposed FDE algorithm. The second example is a

practical application of the proposed algorithm using a reservoir operation case study.

The final Chapter Five is a summary of key contributions/findings with a view into

possible directions for future research aimed at expanding the FDE concept.

8

Chapter 2

2 Methodology

In the following sections of this chapter an overview of the original differential evolution

algorithm is presented, alongside several other common variants. Presented is also an

overview of control parameter selection strategies. Additionally, the approach for

handling constraints is detailed. Lastly, the contribution of this thesis, the novel fuzzy

differential evolution algorithm methodological background is detailed.

2.1 Differential Evolution Algorithm

The DE algorithm after initialization has three main operations: (I) mutation, (II)

crossover and (III) selection before finishing due to a termination condition. The

fundamental idea behind DE is a specific way of generation of trial parameter vectors.

This is achieved using mutation and crossover to generate new trial parameter vectors.

Selection then determines which of the vectors will survive to be used in the next

generation. Through repeated cycles of mutation, crossover and selection, DE is able to

guide the search towards the vicinity of the global optimum.

The original DE algorithm scheme proposed by Storn and Price (1995) gave the working

principles of DE. Subsequently, contributions of other variants or strategies have been

made and continue to be made. Different DE strategies can be adopted in the DE

algorithm depending upon the type of problem to which DE is applied. The strategies can

vary based on the vector to be perturbed, the number of difference vectors considered for

perturbation and the type of crossover used.

In order to differentiate the family of various available strategies for DE, a general

notation convention used is DE/x/y/z (Price and Storn, 1997). DE stands for Differential

Evolution, it distinguishes that the notation presented follows the differential evolution

algorithm principles. The x variable represents a string (rand:random;best), denoting how

the vector is to be perturbed either using the best vector of the previous generation or

9

using any randomly chosen vector. The y variable is the number of difference vectors

considered for the perturbation of x. Hence if it is a single vector difference, three distinct

randomly chosen vectors are required, because the weighted differential of two vectors is

added to the third one. Lastly, z stands for the type of crossover used: either exponential

(exp) or binomial (bin). If exponential crossover is chosen, the crossover is performed on

the D variables in one loop until it is within a given bound represented by the control

parameter CR (crossover rate). The first time a randomly picked number between 0 and 1

exceeds the CR value, crossover is halted and the remaining D variables are left intact. If

the crossover is binomial, it is performed on each of the D variables whenever a

randomly picked number between 0 and 1 is within the CR value. Therefore for high

values of CR, the exponential and binomial crossover methods yield similar results. In

practice, the binomial crossover approach is used more frequently.

The performance of the various DE variants is highly dependent on the given problems,

so that a suitable one for any particular problem may not be as suitable for another. This

assertion is reinforced by the no free lunch theorem (NFL) which states that no single

search algorithm exists that can solve all problems efficiently (Wolpert and Macready,

1997). With that in mind, the importance and amount of research into strategies and

control parameters for the best convergence efficiency is hardly surprising. The strategy

and control parameter selection with best performance for a given problem is typically

unknown, though some guidance exists. The usual approach is trial-and-error. However,

the original DE algorithm strategy, under the notation DE/rand/1/bin by Storn and Price

(1995), appears to be the most successful and the most widely used. The following

presentation is based on the original/classic DE scheme.

2.1.1 DE Population Initialization

A common starting point with implementing any evolutionary algorithm is the

initialization of the population. Initialization has two main issues that need to be decided

upon: (a) “How to initialize each gene of the individual?” and (b) “How many genes

should be used in the population?” (Iba and Noman, 2012). Discussed here is only the

10

first issue. The latter, which is related to population size, a critical parameter of DE, will

be focused on in Section 2.3.

As stated in earlier sections, each gene of each individual is initialized using a uniform

random generator within the search ranges. This concept is the same for all evolutionary

algorithms and DE is no exception. Let us assume that we are working in a D-

dimensional problem. Then each individual of the DE population, PG, would be a D-

dimensional vector which can be initialized as follows:

(2.1)

Such that
 denotes the tth gene (t =1,2,…,D) of the ith individual (i =1,2,…, NP) in

generation G =1. Randt(a,b) denotes the uniform random number generator that returns a

uniformly distributed random number from [a, b]. The subscript in Randt is used to

clarify that a separate random number is drawn for each gene in each individual. LBt and

UBt denote the lower and upper limits of the search ranges for gene j, respectively. It is

critical that the bounds are set sufficiently high enough, so that the initial bounding box

contains the optimum solution. In many cases the existence of natural physical limits or

logical constraints makes prescribing bounds for each parameter straightforward. In

circumstances where the bounds for a specific parameter are not known this may be

particularly difficult.

11

A population vector with its gene and individual components is presented in Table 2.1 for

clarity.

Table 2.1. Population vector matrix for each generation

Gene

 Individual

1 2 D

1 X1,1 X1,2 X1,D

2 X2,1 X2,2 X2,D

NP XNP,1 XNP,2 XNP,D

2.1.2 Mutation

DE derived its name from the mutation operator it applies to mutate its individual.

Mutation is the first of two main operators (the other being crossover) required to alter

the “genetic code” of current individuals to improve diversity of a population. A

mechanism for evolving the population of vectors is essential. There is the possibility that

re-selection of vectors already chosen can occur along with other vectors being omitted

from the search. Vectors that are not chosen are deprived of passing on potential diversity

to the next generation. Re-selection of vectors causes the potential to lose diversity in the

next generation due to over sampling of the same vector. DE ensures that this does not

happen by comparing vectors from competing populations by their index.

The mutation operator is called “differential mutation” and generates the mutated

individual (also known as mutated vector) mi,G+1,for the principal parent (also known as

target vector) xi,G according to the following equation (Storn and Price, 1997):

 ()
(2.2)

12

where F ϵ [0, 2] is a real number that controls the amplification of the difference vector

(xr2, G-xr3, G), while r1, r2, r3 ϵ [1, NP] represent randomly chosen indexes, where r1

corresponds to the base vector. The indexes have to be different from each other and from

the running index i. That way, a parent pool of four individuals is required to breed an

offspring.

2.1.3 Crossover

To complement the differential mutation search strategy, DE then uses a crossover

operation, in which the mutated individual is mated with the principal parent and

generates the offspring or “trial individual”. This crossover operation for classic DE as

reviewed here is known as binomial crossover.

The target vector xi,G is mixed with the mutated vector, mi,G, using the following scheme,

to yield the trial vector (Storn and Price, 1997)

(2.3)

where

 {

(2.4)

CR is the crossover constant ϵ [0, 1] (to be specified by the user), t =1, 2,…, D and randt

is the tth evaluation of a uniform random generator number ϵ [0, 1]. Lastly, to guarantee

that a new altered population vector is produced, a randomly chosen index rni ϵ

[1,2,…,D] is used, ensuring that ui,G+1 gets at least one element from mi,G+1.

13

2.1.4 Selection

DE uses a selection mechanism to ensure that the individuals promoted to the next

generation are strictly those with the best fitness values in the population. A knockout

competition is played between each individual (target vector) and its offspring (trial

vector) . The survival criteria can be described as follows (Storn and Price, 1997):

 {

 () ()

(2.5)

where indicates the objective function that is being optimized (minimized here).

This one-to-one selection mechanism ensures that the selected individuals are strictly

those with the best fitness values in the population. That is to say, the trial vector ui,G+1

must yield a better fitness value than xi,G, for xi,G+1 to be set to ui,G+1; otherwise, the old

value xi,G is retained. Practicing this one-to-one selection mechanism thus enables DE to

exercise elitism on its population. Due to its positional elitism strategy it discards an

offspring which is better than most of the current population but worse than its parent.

However, such rejected individuals could be useful to accelerate the search for the global

optimum (Iba and Noman, 2012).

2.1.5 Termination

Termination of the algorithm ideally takes place after the global optimum is achieved, but

this may not always be the case. Frequently, termination of the algorithm is a user-

defined input and the user can limit the number of iterations of the algorithm. This is a

trial-and-error approach, in that a sufficient number of iterations are required to ensure

the best known results are returned. Another method for termination is when the objective

has been met. In some objective functions, the optimal value can already be known. For

example, some functions such as benchmark functions may have a known minimum

value, meaning as soon as the search algorithm reaches this known minimum value it will

14

terminate. Additionally, feedback provided by the objective function can determine that

no further optimization is possible. For example, if the optimization stalls and thus many

subsequent objective function values are the same, the algorithm may be terminated.

Also, human monitoring can determine when optimization is over.

2.1.6 Illustrative Example of Classic DE Algorithm

A simple numerical example adopted from Arunachalam (2008) is presented to illustrate

the classic DE algorithm. Let us consider the following objective function for

optimization:

(2.6)

The initial population is chosen randomly between the bounds of decision variables, in

this case x1, x2 and x3 ϵ [0, 1]. The population along with its respective objective function

values is shown in Table 2.2. The first member of the population, “Individual 1”, is set as

the target vector.

In order to generate the mutated vector, three individuals (“Individual 2”, “Individual 4”

and “Individual 6”) from the population size are selected randomly (ignoring “Individual

1”, since it is set as the target vector). The weighted difference between “Individual 2”

and “Individual 4” is added to the third randomly chosen vector “Individual 6” to

generate the mutated vector. The weighting factor F is chosen as 0.80 and the weighted

difference vector is obtained in Table 2.3 and the mutated vector in Table 2.4.

15

Table 2.2. An illustrative example

Population Size NP=6 (user defined), D=3

 Individual

1

Individual

2

Individual

3

Individual

4

Individual

5

Individual

6

x1 0.68 0.92 0.22 0.12 0.40 0.94

x2 0.89 0.92 0.14 0.09 0.81 0.63

x3 0.04 0.33 0.40 0.05 0.83 0.13

f(x) 1.61 2.17 0.76 0.26 2.04 1.70

Table 2.3. Calculation of the weighted difference vector for the illustrative example

 Individual

2

Individual

4

Difference

Vector

 Weighted

Difference

Vector

x1 0.92 0.12 = 0.80 = 0.64

x2 0.92 - 0.09 = 0.83 x F

(F= 0.80)

= 0.66

x3 0.33 0.05 = 0.28 = 0.22

16

Table 2.4. Calculation of the mutated vector for the illustrative example

 Weighted

Difference

Vector

 Individual

6

Mutated

 Vector

x1 0.64 0.94 = 1.58

x2 0.66 + 0.63 = 1.29

x3 0.22 0.13 = 0.35

The mutated vector does a crossover with the target vector to generate the trial vector, as

shown in Table 2.5. This is carried out by (1) generating random numbers equal to the

dimension of the problem (2) for each of the dimensions: if random number > CR; copy

the value from the target vector, else copy the value from the mutated vector into the trial

vector. In this example, the crossover constant CR is chosen as 0.50.

Table 2.5. Generation of the trial vector for the illustrative example

 Target Vector Mutated Vector Trial Vector

x1 0.68 1.58 = 1.58

x2 0.89 Crossover 1.29 = 0.89

x3 0.04 (CR= 0.50) 0.35 = 0.04

f(x) 1.61 3.22 2.51

The objective function of the trial vector is compared with that of the target vector and

the vector with the lowest value of the two (minimization problem) becomes “Individual

1” for the next generation. To evolve “Individual 2” for the next generation, the second

member of the population is set as target vector (see Table 2.6) and the above process is

repeated. This process is repeated NP times until the new population set array is filled,

17

which completes one generation. Once the termination criterion is met, the algorithm

ends.

Table 2.6. New population for the next generation in the illustrative example

 New Population for the Next Generation

 Individual

1

Individual

2

Individual

3

Individual

4

Individual

5

Individual

6

x1 0.68

x2 0.89

x3 0.04

f(x) 1.61

2.2 Selected Differential Evolution Algorithm Variants

In addition to the classical DE strategy DE/rand/1/bin, there are many derivative

strategies for perturbation of the population vectors. The motivation to develop such

strategies has come from the fact that no single perturbation method has turned out to be

best for all problems (Chakraborty, 2008). Discussed here is DE/best/1/bin and

DE/current(local)-to-best/1/bin, two very popular mutation strategies for addressing

optimization problems that the original strategy may not perform adequately. These two

strategies benefit in faster convergence by incorporating the best solution information in

the evolutionary search. However the best solution information may also cause problems

such as premature convergence due to the resultant decreased population diversity.

2.2.1 DE/best/1/bin

The strategy DE/best/1/bin is very popular. It was proposed after the initial formulation

of the DE algorithm (Price, 1996). The fundamental difference between the original DE

18

scheme and this variant is based on the perturbation of the vectors. In the DE/best/1/bin

scheme only the mutation component of the algorithm is modified with respect to the

original, incorporating information from the objective function. Instead of randomly

populating the base vector from randomly chosen indexes in the current generation (as in

the original scheme), in DE/best/1/bin the algorithm always selects the best-so-far vector

(best) as the base vector, adds a single scaled vector difference to it, then creates a trial

vector by uniformly crossing the resulting mutant with the target vector. Thus the base

vector always has the best (fittest) objective function value in the current population.

Compared to random base vector selection, using the best-so-far vector lowers the

diversity of the pool of potential trial vectors (Lampinen et al., 2005).

The above description is expressed in the formula below, where for each target vector

xi,G, a mutation vector mi,G is generated according to (Price, 1996)

 ()
(2.7)

where F ϵ [0, 2] is a real number that controls the amplification of the difference vector

(xr1, G-xr2, G) and r1, r2 ϵ [1, NP] represent randomly chosen indexes. The indexes have to

be different from each other and from the running index i so that NP must be at least

three. Xbest,G corresponds to the best vector from the best population solution in the

current generation.

2.2.2 DE/local-to-best/1/bin

This DE variant computes the difference between the ith member (target vector) and the

best-so-far member of the current population (Lampinen et al, 2005). This method

attempts to balance robustness with fast convergence and is a popular choice in most

studies of DE.

 () ()
(2.8)

19

2.3 Setting Control Parameters

Control parameters have already been briefly mentioned, but due to their importance to

the performance of DE algorithms a more detailed explanation is given here. The values

of population size (NP), crossover constant (CR) and weighing factor or mutation scale

factor (F) are fixed empirically, following certain heuristics. Proper tuning of these

parameters is essential for the reliable performance of the algorithm. Trying to tune these

three main control parameters and finding bounds for their values has been a topic of

intensive research (Chakraborty, 2008).

The mutation scale factor F controls the speed and robustness of the search. A lower

value for F increases the convergence rate but it does so at the risk of getting stuck into a

local optimum and therefore failing to find the true global solution. Parameters CR and

NP have a similar effect on the convergence rate as F. High values of CR favor a higher

mutated element crossover to current elements; as a result, the mutation factor F has a

greater impact on the search. As well, an increased value of NP increases the diversity of

the population and with it the potential to find the true optimal solution from the greater

search space but at the cost of longer computation time.

The control parameter selection is a difficult task due to their interdependence with each

other and the fact that some objective functions are sensitive to proper settings (Liu and

Lampinen, 2002). Traditionally, the control parameters have been held fixed during the

whole execution of the algorithm.

The rule-of-thumb values for the control parameters given by Storn and Price (1997) for

F is usually between 0.5 and 1.0 and CR between 0.8 and 1.0. These authors have

proposed that the population size NP should be between 5×D and 10×D and not less than

4 to ensure that the mutation operation can be carried out. If mis-convergence occurs, NP

should be increased; however, beyond a certain limit it is not useful to increase the

population size any more (Iba and Noman, 2012). The suggestions by Storn and Price for

the control parameters are valid for many practical purposes but still lack generality. This

means that, in practice, many time-consuming trial runs are required to find optimal

20

parameters for each problem setting. As a result of the difficulty of setting appropriate

control variables, research has focused on finding parameters such as F and CR settings

automatically (Zhang and Sanderson, 2009).

For example, Brest et al. (2006) proposed a self-adaptive version of DE that

automatically adjusts its control parameters F and CR at an individual level. Likewise, a

feedback update rule for F was proposed by Zaharie (2003), designed to maintain the

population diversity at a given level, thereby reducing a premature convergence of the

search. Fuzzy adaptive differential evolution (FADE), introduced by Liu and Lampinen

(2004), is another example of methods that determine the control parameters

automatically and is discussed in detail in the following section.

21

2.3.1 Fuzzy Adaptive Differential Evolution

Fuzzy logic is a means of transforming linguistic knowledge into a mathematical model.

It has been used extensively in the field of automatic control where it succeeded in the

modeling and control of many systems that cannot be described using classical control

techniques. Therefore fuzzy logic offers a means of rendering control parameters more

adaptive to each optimization problem. The result of implementing fuzzy adaptive

differential evolution (FADE) is a more efficient search (a lesser number of function

evaluations) (Liu and Lampinen, 2004).

FADE uses a fuzzy knowledge-based system to adapt dynamically the control parameters

F and CR for the mutation and crossover operations. It uses a series of fuzzy rules

developed based on existing empirical evidence to infer appropriate values of F and CR

for each generation, based on parameter and objective function difference vector from

subsequent generations. The adaptive parameters using FADE accelerate the convergence

velocity of DE.

FADE uses Mamdani’s inference method to establish the control parameter (Mamdani

and Assilian, 1975). Mamdani’s fuzzy inference method is detailed in Appendix B.

FADE establishes inputs for fuzzy inference by using the mean square root concerning

the change between successive generations over the whole population during the

optimization process:

 √

∑∑(

)

 √

∑(

)

(2.9)

22

and

(2.10)

where PC is called the parameter vector change in magnitude and is transformed into the

range of [0,1] as d11 and the range of [0,2] as d21; FC is called the function value change

and is transformed into [0,1] as d12 and [0,2] as d22;

 is the ith component of the

function value vector for the nth generation, i = 1,2,…,NP;

 is the component in the

ith row and jth column of the parameter matrix XNP×D for the nth generation, i =

1,2,…,NP, j = 1,2,…,D; n is the generation index; NP and D represent the population size

and dimensionality of the problem, respectively.

Actual input values for the fuzzy inference are the numerical values as stated in Eq.

(2.10); output variables are the parameter values for F and CR, whose ranges are sets of

real numbers.

Each of the variables (d11, d12, d21, d22, F, CR) has a corresponding fuzzy membership

function with 3 fuzzy subsets, where S is “small”, M is “middle” and B is “big”. These

membership functions are developed by Lampinen and Liu (2004), based on existing

empirical knowledge. A Gaussian curve membership function, fg is used for every input

and output and is defined in Table 2.7.

23

Table 2.7. Membership Functions

Inputs,

Outputs

Membership Functions

d11

d21

d12

d22

F

CR

24

The values of F and CR are adapted based on d11, d12, d21, d22 and a series of fuzzy rules

used to describe the characteristics of the system. There are a total of 18 rules for

determining F and CR values, 9 each. Each rule has two inputs and one output which

represent the mapping from the input space to the output space. The “9×2” rules are given

in Table 2.8.

Table 2.8. The Fuzzy Rules

Rule Fuzzy Sets

di1 di2 F or CR

1 S S S

2 S M M

3 S B B

4 M S S

5 M M M

6 M B B

7 B S B

8 B M B

9 B B B

Note: S = small; M = middle; B = big, i = 1, 2 the first and second fuzzy logic control

system. dij = the jth input of the ith fuzzy logic control system.

25

Finally, the adaptive parameters may be found given the supplied information and

Mamdani’s inference in conjunction with a centroidal defuzzification technique.

 Defuzzification is mapping from a space of fuzzy output into a space of real output. The

result is a single number y* which represents the value of the mutation amplification F or

crossover factor CR.

2.4 Constraints

Constrained optimization problems, especially nonlinear optimization problems, where

objective functions are to be optimized under given constraints, are very important and

frequently appear in the real world. For this reason, DE has had significant research

invested into dealing with optimization problems, with inequality constraints, equality

constraints, as well as upper and lower bound constraints (Chakraborty, 2008; Lampinen

et al., 2005). Constrained optimization problems are mathematically expressed as

(2.11)

Where x = (x1, x2,…,xk) is a k-dimensional vector, f(x) is an objective function, gj(x) ≤ 0

and hj(x) = 0 are n inequality constraints and m equality constraints, respectively.

Functions f, gj and hj are linear or nonlinear real-valued functions. Values ui and li are

upper and lower bounds of xi, respectively.

Discussed here will be the methodological background on defining constraints for (I) the

feasible space in which every point satisfies constraint functions denoted by F and (II) the

26

search space in which every point satisfies upper and lower boundary constraints denoted

by S(F). Fig. 2.1 shows graphically the search space and feasible region.

Figure 2.1. Search space and feasible region.

2.4.1 Search Space Constraint

After initialization, the algorithm may produce mutated vectors in subsequent generations

that fall outside of the initial search boundaries. The initial search bounds give

information on the assumed feasible search space for the problem and thus can be used to

define the low and high limits put on each individual. In some cases it may be desirable

for the search to be able to have the freedom to surpass the set bounds. This may be in

instances where the search space is improperly preset due to a lack of knowledge about

the problem domain. However, in all other cases this is harmful and non-desirable. For

example, a negative value for discharge for a reservoir operation problem is absolutely

inadmissible; as such, the lower bound constraints must be maintained, LBt = 0.

Two approaches are surveyed here for regularization of infeasible mutant vectors. These

fall into the hard constraint handling methods, where the infeasible solutions are rejected.

The first approach is random reinitialization. Any infeasible optimization parameter value

of the mutant vector, mi,G+1 that does not fall within upper and lower bounds is replaced

by a value randomly generated with a uniform distribution from the initial bounds.

27

 {

(2.12)

The other approach to regularize infeasible mutant vectors is called bounce-back.

Bounce-back replaces the offending parameter with another, chosen between the

boundary and the base vector.

If the mutated vector exceeds the lower bound:

 ()
(2.13)

If the mutated vector exceeds the upper bound:

 ()
(2.14)

Bounce-back may be preferred over random reinitialization as it is able to preserve the

direction of the current search. As a result, the convergence speed using bounce-back

may be favorable to random reinitialization.

2.4.2 Feasible Space Constraint

Some problems have constraint functions which cannot be dealt with utilizing the search

space boundary constraints. The penalty function method is widely used for constrained

optimization problems, not just in differential evolution algorithms but in other

optimization algorithms as well. The penalty function method transforms the constrained

problem into an unconstrained one by penalizing infeasible solutions, in which a penalty

term is added to the objective function for any violation of the constraints (Gen and Chen,

1997).

The additional penalties added to the objective function force the solution to fall into the

feasible space after a few generations. This results from solutions that have the penalty

28

added on to the objective failing in order to compete with solutions without penalty in the

selection process of DE. It needs to be emphasized that infeasible solutions may not be

rejected outright in each generation, as they may provide much more useful information

about optimal solution than some feasible solutions. The major concern is how to

determine the penalty term so as to strike a balance between keeping some infeasible

solutions and rejecting others. An overly low penalty term constant may keep too many

infeasible solutions, whereas a very high penalty constant may reject all the solutions

preventing the optimization from convergence to an optimal solution.

Careful selection of the penalty control parameters is required for the proper convergence

to a feasible optimal solution and is very much problem-dependent.

The differential evolution algorithm is modified to take account of constraint functions

using the penalty function method. The fitness function modified for taking account of

the penalty function may be expressed as follows (Gen and Chen, 1997):

(2.15)

where x represents the genes parameter vector, f(x) the objective function of the problem

and p(x) the penalty function. For an optimization problem, it is required that

(2.16)

To demonstrate how the function in Eq. (2.16) may be formulated consider the example

problem where the initial parameter values for x1 and x2 are found to be 5 and 2

respectively:

29

(2.17)

The above two constraints would be transformed to an unconstrained problem and

multiplied by a penalty constant as follows:

(2.18)

where P1 and P2 are the user specified penalty constants for each constraint, these values

for convenience can be chosen the same, let say P1 = P2 = 10. The terms in parentheses in

the penalty functions are the values of the constraint violations. Evaluating Eq. (2.18)

yields a fitness value of 99, much less favorable for a minimization problem than if the

solution were feasible. In such a case, no constraints would be violated which would

result in a fitness value of 29.

30

2.5 Fuzzy Differential Evolution Algorithm

The novel fuzzy differential evolution (FDE) algorithm proposed here allows a novel

approach for additional problem domain information to be communicated to the DE

algorithm for optimization. Doing so results in better overall performance.

Differential evolution is fundamentally a stochastic based algorithm. The name FDE may

suggest a full deviation to the fuzzy domain. However, this is not the case. The proposed

method may be better described as a stochastic and fuzzy hybrid. The (I) initialization

and (II) mutation procedures are modified so that they utilize both, the fuzzy and the

stochastic theory.

2.5.1 Initialization

Initialization is done in order to seed the population NP, D-dimensional parameter vector

of the algorithm. Traditionally performed through using randi ϵ [0, 1], a uniform

probabilistic distribution to randomly select within upper (bU) and lower bounds (bL)

agents is to be carried through subsequent algorithm components:

 (2.19)

Instead, in FDE, initialization is carried out by using two fuzzy concepts; (I) a normal

continuous-valued fuzzy set characterized by a membership function and (II) alpha-cuts.

Membership functions in this case are used to describe the convex single-point normal

fuzzy sets defined on the real line, often termed fuzzy numbers (i.e. vague values such as

a flow of about 5 m
3
/s) (Ross, 2004). Therefore, the membership functions are used to

capture the available knowledge and transfer it to the optimization algorithm. The

membership functions and the alpha-cuts are both used to support the initialization step

within the optimization algorithm. The use of alpha-cuts allows for the creation of

multiple unique population vectors from the singular supplied fuzzy set. Through these

fuzzy concepts, the FDE algorithm initialization is able to take advantage of the available

domain knowledge, no matter how uncertain.

31

Membership functions describe the degree of membership or truth in each value

corresponding to a parameter. Many shapes of membership functions may be used. In this

paper, for illustration and convenience, we are limiting our discussion to the triangular

membership function. A fuzzy triangular number A = (a1, a2, a3) can be represented by

an ordered triplet or by a triangular membership function

{

(

)

(

)

(2.20)

Fig. 2.2 shows a triangular membership function defined by Eq. (2.20) where a2 holds the

highest degree of membership in x (membership, µ = 1) comparatively a1 and a3 hold no

degree of membership (µ = 0). Within the FDE algorithm a1 and a3 are called the initial

parameter range while a2 is called the focus or target parameter.

Figure 2.2. Triangular fuzzy membership function.

µ

1.0

0.5

0.0

a1 a2 a3 x

32

Alpha-cuts are mostly used to extract information from a membership function and are

rarely used for defuzzifying the fuzzy sets (converting fuzzy numbers into crisp form).

The alpha-cut describes a fuzzy set using a set of sharp sets. The main idea is to fix a

certain membership degree α and thus to obtain a crisp set, which is defined as the set of

values that have a membership degree higher or equal to α. Fig. 2.3 illustrates the concept

of alpha-cuts. The membership function is cut horizontally at a finite number of regular

α-levels, or cuts, between 0 and 1. This process generates a number of crisp interval sets

as shown in Fig. 2.4.

Figure 2.3. The alpha-cut method schematic.

µ

1.0

 α

0.0

x

α – level cut

Aα

A
0

33

Figure 2.4. The alpha-cut intervals schematic.

Taking an arbitrary alpha-cut ϵ [0, 1] in A (a triangular fuzzy number), a confidence fuzzy

interval, Aα is obtained, defined as

 (2.21)

Relating to FDE, parameters are described using triangular fuzzy numbers in the form of

inputs for the triangular membership function. To start the algorithm, the initial

population vector needs to be generated from these membership functions. This is

achieved by using the alpha-cut method NP times at random α-levels to create alpha-cut

intervals for each parameter. This allows for a unique individual to be generated NP

times from the same parameter membership function input (fuzzy number). The alpha-cut

interval is assumed to belong to a unique fuzzy number. In essence, the initial fuzzy

number is used to seed NP unique incomplete fuzzy numbers defined only by a single

discrete alpha-cut level.

The alpha-cut interval population vector,
 ,is found by modifying Eq. (2.21).

µ

1.0

 α

0.0

x

A
α

34

(2.22)

Where i = 1, 2,…, NP and α is the alpha-cut level such that it is equal to a uniform

random number generated, randi ϵ[0,1]i.
 and

 are the lower and upper interval

bounds for each alpha-cut. The parameters a1, a2, a3 are the values representing the fuzzy

number triplet for each individual parameter.

In singular value form, the alpha-cut intervals are converted to the familiar population

vector where neutral preference is given to the upper and lower intervals

(2.23)

In order for a unique singular value to be generated, an asymmetrical triangular

membership function must be used.

2.5.2 Mutation

The mutation component of the algorithm allows for new population vectors to be

generated in order to investigate the feasible region in search for the optimal solutions.

FDE utilizes the alpha-cut intervals from the initialization stage and performs mutation

on them by using fuzzy arithmetic. Performing the mutation in the fuzzy domain allows

for the algorithm to take advantage of the focused search benefits given by the uncertain

or vague available knowledge from the problem domain. The mutation that is carried out

is based on a modification of DE/rand/1/bin, a classical, widely used and successful

strategy. Therefore the full notation for the proposed strategy can be stated as

35

FDE/rand/1/bin. A similar modification to the one presented here could be performed for

several other DE variants available, but that is beyond the scope of this paper.

DE/rand/1/bin defines the weighted differential of two different randomly chosen vectors

and is used to perturb another randomly chosen vector, creating a mutated vector. This

process is mathematically expressed in Eq. (2.2).

The mutation vector mathematical expression in Eq. (2.2), transformed using alpha-cut

intervals (from initialization and subsequently), has the following form:

 (

) (2.24)

Utilizing fuzzy interval arithmetic properties for addition and subtraction (Bojadziev and

Bojadziev, 1995),

(2.25)

and substituting for Eq.(2.24) yields the lower and upper mutation vector interval bounds:

 (

)

(2.26)

36

Where i = 1, 2,…, NP. The alpha-cut population vector interval
 , is represented by

discrete endpoints (

) for levels , , . These levels may equal to each

other or they may be different. However, as seen in Eq. (2.25) the alpha-cut level α must

be the same throughout in order to proceed with interval arithmetic. This is likely not the

case in the initialization stage where unique alpha-cut intervals are generated.

Each of the alpha-cuts for the purpose of the FDE algorithm represents a unique fuzzy

number. These fuzzy numbers are incomplete, because they are defined by a single alpha-

cut level (Bojadziev and Bojadziev, 1995). In order to perform interval arithmetic at the

same alpha-cut level, redefining of incomplete fuzzy numbers is required. Redefining

allows incorporating levels not given initially (Bojadziev and Bojadziev, 1995).

The mutated alpha-cut intervals vector can be expressed in the traditional singular value

form:

(2.27)

2.5.3 Illustrative Example of FDE Algorithm

The same simple numerical example that was used to illustrate the original DE algorithm

is presented here to illustrate the FDE algorithm. Let us consider the following objective

function for optimization:

(2.28)

The initial population is chosen by taking NP (defined as 6) random alpha-cuts of a fuzzy

membership function for each decision variable; in this case x1, x2 and x3 are defined by

the same triangular fuzzy membership function triplet (0, 1, 3). Therefore, the initial

parameter range is ϵ[0,3] while the target or focus is 1.

A sample calculation for initialization of x1, “Individual 1” is shown using Eq. (2.22),

where the alpha-cut is randomly selected at 0.6.

37

 = 1.8

(2.29)

The fuzzy interval in Eq. (2.29) is transformed to a singleton using Eq. (2.23).

 (

)

(2.30)

The population along with its respective objective function values is shown in Table 2.9.

The first member of the population “Individual 1” is set as the target vector.

In order to generate the mutated vector, three individuals (“Individual 3”, “Individual 5”

and “Individual 6”) from the population size are selected randomly (ignoring “Individual

1”, since it is set as the target vector). The weighted difference between “Individual 3”

and “Individual 5” is added to the third randomly chosen vector “Individual 6” to

generate the mutated vector. This procedure in FDE is different than in classical DE, in

that the weighted difference is done on the alpha-cut fuzzy intervals before conversion

into a single value the algorithm can utilize. The weighting factor F is chosen as 0.80, the

weighted difference vector is obtained in Table 2.10 and the mutated vector in Table

2.11.

38

Table 2.9. An illustrative example

Population Size NP = 6 (user defined), D = 3

 Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

x1 1.20 0.60,1.80 1.11 0.77,1.46 1.05 0.90,1.20 1.19 0.61,1.77 1.28 0.45,2.11 1.14 0.72,1.67

x2 1.11 0.79,1.42 1.26 0.48,2.04 1.14 0.73,1.55 1.49 0.03,2.94 1.18 0.63,1.73 1.06 0.89,1.22

x3 1.44 0.12,2.76 1.12 0.76,1.48 1.02 0.97,1.07 1.30 0.39,2.22 1.09 0.82,1.37 1.16 0.68,1.63

f(x) 3.74 3.49 3.20 3.98 3.55 3.36

Table 2.10. Calculation of the weighted difference vector for the illustrative example

 Individual

3

Individual

5

Difference

Vector

 Weighted

Difference

Vector

Fuzzy

Interval

Lower Upper Lower Upper

x1
Lower 0.90 2.11 = -1.21 = -0.97

Upper 1.20 0.45 = 0.75 = 0.60

x2 Lower 0.73 - 1.73 = -1.00 × F

(F =

0.80)

= -0.80

Upper 1.55 0.63 = 0.92 = 0.74

x3 Lower 0.97 1.37 = -0.40 = -0.32

Upper 1.07 0.82 = 0.25 = 0.20

39

Table 2.11. Calculation of the mutated vector for the illustrative example

 Weighted

Difference Vector

 Individual

6

Mutated

Vector

Fuzzy

Interval

 Lower Upper

x1 Lower -0.97 0.72 = -0.25

Upper 0.60 1.67 = 2.27

x2 Lower -0.80 + 0.89 = 0.09

Upper 0.74 1.22 = 1.96

x3 Lower -0.32 0.68 = 0.36

Upper 0.20 1.63 = 1.83

The mutated vector fuzzy intervals can be expressed in traditional single value form

using Eq. (2.27). The mutated vector in single value form is given in Table 2.12.

Table 2.12. Interval to single value mutated vector calculation

 Upper Fuzzy

Interval Bound

 Lower Fuzzy

Interval Bound

Sum Mutated Vector

x1 2.27 -0.25 = 2.22 = 1.11

x2 1.96 + 0.09 = 2.05 ×0.5 = 1.03

x3 1.83 0.36 = 2.19 = 1.10

40

The mutated vector does a crossover with the target vector to generate the trial vector as

shown in Table 2.13. This is carried out by (1) generating random numbers equal to the

dimension of the problem (2) for each of the dimensions: if random number> CR; copy

the value from the target vector, else copy the value from the mutated vector into the trail

vector. In this example, the crossover constant CR is chosen as 0.60.

Table 2.13. Generation of the trial vector for the illustrative example

 Target Vector Mutated Vector Trail Vector

x1 1.20 1.11 = 1.11

x2 1.11 Crossover 1.03 = 1.03

x3 1.44 (CR = 0.60) 1.10 = 1.44

f(x) 3.74 3.24 3.58

The objective function of the trial vector is compared with that of the target vector and

the vector with the lowest value of the two (minimization problem) becomes “Individual

1” for the next generation. To evolve “Individual 2” for the next generation, the second

member of the population is set as target vector and the above process is repeated. This

process is repeated NP times until the new population set array is filled which completes

one generation. Once the termination criterion is met, the algorithm ends.

41

Table 2.14. New population for next generation for the illustrative example

Population Size NP = 6 (user defined), D = 3

 Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

 Fuzzy

Interval

x1 1.11 -0.25,2.27

x2 1.03 0.09,1.96

x3 1.44 0.12,2.76

f(x) 3.58

42

Chapter 3

3.1 Decision Support System Software Package

The DE algorithm has been implemented in the form of a convenient decision support

system (DSS) called the Differential Evolution Optimizer (DEO). The decision support

system integrates, alongside the classical algorithm, key differential evolution features

discussed in the methodology, such as fuzzy differential evolution and the ability to deal

with constraints. DSS is developed to provide a convenient optimization software

package with a friendly graphical user interface for the MS Windows operating system.

DSS provides easy access and all the practical benefits to an efficient optimization

algorithm for less technical individuals. DEO was programmed in C# and the code, as

well as the installation files, have been provided electronically with the thesis. Brief

overviews of the supplementary files included with this thesis are in Appendix C.

In this chapter, a helpful user guide of DEO is presented to review the key features and

the process involved in inputting and reading the results from a defined optimization

problem. In addition to the user guide, an illustrative example problem is used as a step-

by-step guide of the typical procedure towards finding an optimal solution using the DSS.

3.2 Differential Evolution Optimizer Overview

Once the Differential Evolution Optimizer DSS is run, an execution window like the one

shown in Fig. 3.1 should be displayed. Upon starting the DEO decision support system

the user is greeted with the “Algorithm Inputs” window tab open. As the user fills in the

appropriate input fields he/she is able to proceed to the “Optimization Inputs” window

and finally the “Optimization Results” window. These will be reviewed in the

subsequent sections.

43

Figure 3.1. Interface of DEO menu.

Fig 3.1. shows the interface of the menu strip in the top left corner of the program

window with two options “File” and “Help” (the documentation you are now reading).

Upon clicking “File”, the user is presented with the option for “Inputs”, to “Run” the

optimization, “Save Results” of the optimization once a problem has been optimized and

the option to “Quit”, i.e. to close the program.

Selecting “Inputs” will further open additional menu options: “Reset All” reverts all

input parameters to default; “Open” automatically fills the input requirements by

prompting the user to select past saved (.deo extension) input files; and “Save As” saves

the current inputs and prompts the user to name the file and the file will be saved with a

.deo extension.

Selecting “Save Results” will prompt the user to name the file; the file will be saved

with a .csv extension and may be accessed later in Microsoft Excel for post processing

and review.

44

3.2.1 Algorithm Inputs

The main body of the algorithm inputs window contains multiple interface inputs

pertaining to setting up the differential evolution algorithm. Fig. 3.2 shows the algorithm

inputs window. The inputs are labeled numerically for reference within this section.

Figure 3.2. Algorithm inputs window.

Each number in Figure 3.2 corresponds to a detailed explanation given below.

1. Included under the main algorithm inputs heading are four user defined control

parameters for the differential evolution algorithm. They are detailed below.

 Generation input is the number of iterations (generations) the algorithm

will go through to find the optimal solution before termination. The more

generations given, the greater the accuracy of the final result may be to the

true optimal solution at the expense of more computation time.

 NP input is the number of parents which, as a guideline, may be selected

to be 10 times the number of parameters of the objective function.

Increasing the number of parents increases the search space, thereby

45

speeding up convergence. Empirical evidence suggests that increasing

NP above 40 does not significantly influence the convergence rate.

 F input, the weighing factor F [0, 2] controls the amplification of

differential variation; to begin with, a value of 0.8 is suggested.

 CR input The crossover weight CR [0,1] probabilistically controls the

amount of recombination; initially a value of 0.9 is suggested.

These parameters are of significance for the accuracy and convergence time required.

Therefore, a proper selection is very important. Adequate selection of each of the

parameters may differ from problem to problem and may require some trial and error

in selection. The user can choose to enter the values directly within the textbox or

increment the number by clicking either the up or down arrow beside the textbox.

2. Differential evolution has a specialized nomenclature that describes the selected

strategy for optimization. The nomenclature and the methodology for the variants

included within DEO were discussed in detail in Chapter 2. DEO has 4 available

strategies that are accessed through a dropdown menu:

i. DE/rand/1: The classical version of DE.

ii. DE/best/1: Tailored for small population sizes and fast

convergence. Dimensionality should not be too high.

iii. DE/local-to-best/1: A version which has been used by numerous

scientists. Attempts a balance between robustness and fast

convergence.

iv. FDE/rand/1: The classical version of DE transformed into a novel

fuzzy differential evolution strategy. The parameter initialization is

in the form of fuzzy triangular membership functions utilizing

alpha cuts to carry out the mutation and crossover on subsequent

generations. This strategy mimics the performance of classical

DE/rand/1 with the addition of knowledge for inputs supplied by

the decision maker.

46

3. This DSS uses the penalty function method (discussed in Chapter 2) in order to

deal with constraints on the feasible space for the objective function. The penalty

function method is comprised of the optimization of the objective function with

the addition of the constraint violation function (the sum of the violation of all

constraint functions). The main challenge of the penalty function method lies in

the difficulty of selecting an appropriate value for the penalty coefficient that

adjusts the strength of the penalty. The user is required to provide the penalty

function coefficient to be used for all the objective function constraints; if the user

does not wish to use any constraints on the objective function, a penalty

coefficient of zero should be used. When dealing with a minimization problem,

the penalty coefficient must be a positive value; conversely, when it is a

maximization problem, the coefficient must be a negative value. This assures that

any constraint violations will indeed penalize the optimization solution and not

make it better.

The user can choose to enter the values directly within the textbox or increment

the number by clicking either the up or down arrow beside the textbox.

4. One of two boundary (random reinitialization or bounce-back) search space

constraint methods (discussed in Chapter 2) can be selected for the algorithm

from the dropdown menu. Random reinitialization occurs if any trial parameter

exceeds a bound placed on a parameter. The out of bounds parameters values are

reset into allowed values by randomly choosing a value from within the allowed

range. Because it radically changes a parameter’s value, reinitialization can

disrupt the progress towards solutions that lie near the bounds. Random

reinitialization, similar to the bounce-back method, replaces a vector that

exceeded one or more of its bounds by a valid vector that satisfies all boundary

constraints. In contrast to random reinitialization, the bounce-back strategy takes

the progress toward the optimum into account. The user may also choose no

boundary constraints to be used. In such a case there is no guarantee that the

optimal solution will be within the search space bounds.

47

5. The user is given the option of selecting the seed value used by the random

generator. This makes it possible to achieve the same results through multiple

optimization runs, given that the same seed is used. Furthermore, an easier

comparison between different control inputs can be achieved. If the user wishes

for the seed to be random, a value of zero should be placed in the input field. The

user can choose to enter the values directly within the textbox or increment the

number by clicking either the up or down arrow beside the textbox.

6. The fuzzy settings allow the user to enable the FADE settings by clicking the

checkbox. FADE stands for fuzzy adaptive differential evolution, as discussed in

detail in Chapter 2. FADE optimizes the control parameters CR and F for each

generation to increase accuracy and convergence speed by referencing a database

corresponding to fuzzy rules based on empirical findings. As a result, the user

does not need to spend time selecting appropriate values for CR and F, as these

values are only used for the initialization of FADE.

7. The termination condition input, VTR, is the value that will terminate the

algorithm upon achieving. This feature is particularly useful for benchmark

functions where the optimal objective function solution is known.

8. The output setting allows the user to select how the intermediate results should be

displayed. For example if the input here is 10, the intermediate result outputs will

be displayed every 10
th

 iteration (generation).

9. After all the inputs are complete and assured to be accurate, the user should click

the next arrow button on the interface to proceed to the optimization inputs

window.

48

3.2.2 Optimization Inputs

After clicking the next button on the algorithm inputs window the optimization inputs

tab will open. Here, multiple interface inputs allow for the objective function to be

defined—the boundary range for each parameter (used for initialization) and objective

constraints (if any)—before finally proceeding with the optimization. Fig. 3.3 shows the

optimization inputs window. Inputs are labeled numerically for reference within this

section. At any point the user may choose to hit the green arrow to go back to the

previous algorithm inputs window.

Figure 3.3. Optimization inputs window.

Each number in Figure 3.3 corresponds to a detailed explanation given below.

1. The user is required to provide an objective function in the textbox alongside

“Minimize F(x) = ”. By default, DEO deals with the minimization of the objective

function; for maximization problems a simple transformation is needed (i.e.

multiply the whole function by negative one, -1). The input textbox accepts up to

49

30 parameters and they must be defined as x1, x2 and so on. The operations and

prebuilt functions which are recognizable by DEO are listed in Table 3.1.

Table 3.1. List of available functions

Symbol Description

Operator + - * / Four arithmetic

operations

^ Power function

Functions sqrt() Square root function

pi π (3.14159…)

abs() Absolute function

sin() Sine function

cos() Cosine function

tan() Tangent function

2. Once the objective function is provided, the user is required to define the search

space used for initialization of the differential evolution algorithm.

a. If the user selected a traditional DE strategy, the user will be presented

with this interface and will be required to give upper and lower bounds for

each parameter defined in the objective function.

b. If the FDE strategy is selected, then the user will be presented with this

interface and will need to define the triangular membership function for

the boundary constraint of each parameter in the objective function.

Once each parameter is defined, the user needs to click the Add button, this process is

repeated until all have been defined. If at any point a mistake is made, the reset button

can be clicked which will restart the search space definition process.

3. In this interface the user may input the constraints (if any) on the objective

function itself, using the penalty constraint method. The leftmost textbox allows

for the user to write the appropriate constraint equation, whereas the middle

50

dropdown box enables the user to choose between inequalities to be used for the

constraint. Available inequalities to choose between are: less than [<], greater

than [>] or equal [=]. The right textbox accepts only crisp numerical values

corresponding to the right-hand size of the constraints. Once each constraint is

defined, the user needs to click the Add button, this process is repeated until all

have been defined. If at any point a mistake is made the reset button can be

clicked which will erase all the constraints.

4. Finally, once all the inputs have been provided, clicking the Run button will

initiate the optimization. When Run is selected, the program may take some time

to complete the optimization, depending on the complexity of the problem. Once

the optimization is complete, the user will be presented with the optimization

results window.

3.2.3 Optimization Results

Fig.3.4 details the optimization results window; the outputs are labeled numerically for

detailed explanation below.

Figure 3.4. Optimization results window.

51

1. The intermediate output is produced at the user defined interval, showing (from

left to right) the current generation, the NFE (number of function evaluations) and

the corresponding objective function value.

2. The optimization results are summarized here. These include the optimal

parameter values, the optimal objective value and the generation and number of

objective function evaluations it took to achieve the optimal results. The

computational time needed for optimization is also given in seconds.

3. The user may choose to save these results by clicking this button. Alternatively

results may be saved through the menu strip as previously mentioned. The saved

file includes all the outputs seen in the interface, in addition to intermediate

parameter values to go along with the intermediate objective function values.

52

3.3 Illustrative Example

The goal of the example below is to familiarize the user with the basic functionality of

the decision support system by means of a numerical example.

Consider a minimization problem where D, the number of parameters, is equal to 5 and

the objective function is given in Eq. (3.1). The additional inputs to be used are bounds of

[-5.24, 5.24] for each xi, 400 iterations, NP of 100, F of 0.8, CR of 0.9. The remaining

inputs should be application defaults. In addition, it is reasonable to believe that the

optimal result of each parameter (i.e. xi) lies at about -0.5.

Given the above information, use the FDE/rand/1 strategy and confirm that the true

solution occurs at a global optimum of 0 for each parameter being equal to -0.5.

 ∑

(3.1)

Solution:

First, the algorithm inputs were entered from the givens, as shown in Figure 3.5. A value

of 3 was chosen for the random generator seed and no feasible space or search space

constraints were activated. The objective function value to reach was chosen as 0 and the

intermediate results were chosen to be at increments of 10.

53

Figure 3.5. Algorithm inputs for illustrative example.

After clicking the next arrow in Figure 3.5, the optimization inputs window is opened.

The objective function is written in addition to the fuzzy triangle membership function

definition for initialization, as shown in Figure 3.6.

54

Figure 3.6. Optimization inputs for illustrative example.

Finally, the run button is clicked in the optimization inputs window and subsequently the

optimization results are presented, as seen in Figure 3.7.

Figure 3.7. Optimization results for illustrative example.

55

From the results in Figure 3.7 it can be confirmed that the global optimal solution is 0 for

x ϵ -0.5 which was found after only 111 generations. In addition we can conveniently

observe the convergence progress in the intermediate output interface.

56

Chapter 4

4.1 Application

This chapter on application of the novel fuzzy differential evolution algorithm explores

two topics. One is on the theoretical application using benchmark functions and the other

on practical application using a water resource management case study. The objective of

benchmark function applications is to evaluate the performance of FDE compared to the

classic DE strategy. On the other hand, the objective of the case study is to demonstrate a

real-world example of how FDE can better utilize knowledge previously disregarded in

other DE strategies due to its “fuzzy” characteristic to achieve more efficient

optimization.

4.2 Benchmark Functions

Benchmark functions, or test functions, are commonly used in order to test optimization

procedures (Molga and Smutnicki, 2005). The quality of the proposed FDE algorithm is

evaluated by comparing it with the original DE algorithm variant - DE/rand/1/bin (simply

referred to as DE from this point on) by utilizing well-known benchmark functions from

the literature.

The function testbed contains four functions: (i) first De Jong, (ii) Rosenbrock’s Valley,

(iii) modified third De Jong, and (iv) Rastrigin’s function (Black, 1996; Molga and

Smutnicki, 2005). These functions exhibit distinctive difficulties for a global optimization

algorithm. For all functions, an initial parameter range, IPR, and focus value were

defined. At the beginning of the optimization, initial parameter values are drawn using

traditional methodology or FDE initialization.

IPR for FDE and DE is kept consistent for all functions x [-5.12, 5.12], while for the

case of DE with smaller bounds the IPR is changed to x [-1, 1].

57

The algorithm settings for each test function are given in Table 4.1; the FDE strategy is

compared to DE; user-given controls are kept consistent for a fair comparison.

Table 4.1. Algorithm settings

Method, Parameters Settings for Benchmark Tests

Strategy DE/rand/1/bin FDE/rand/1/bin

Test Problems Min f(X) Min f(X)

Generations 2000 2000

Mutation Factor 0.8 0.8

Crossover Factor 0.9 0.9

Number of Individuals 10×D 10×D

Random Generator Seed 3 3

First De Jong Function

De Jong is one of the pioneers in evolutionary computation. De Jong’s function was

originally introduced to evaluate genetic algorithms and subsequently has been well

accepted by the evolutionary optimization community. The First or Sphere De Jong

function is one of simplest problems for optimization algorithms because it does not

contain local optima and provides a smooth gradient towards a global optimal solution:

 ∑

(4.1)

The global minimum is f1(0) = 0. The graph of the function can be seen in Fig. 4.1.

58

Figure 4.1. First De Jong’s function in 2 dimensions (Molga and Smutnicki, 2005).

Rosenbrock’s Valley Function

Rosenbrock’s function is a classical optimization problem used as a performance test for

optimization algorithms. The function may be referred to as the second function of De

Jong, or Banana function due to its shape as shown in Fig. 4.2.

 ∑

(4.2)

Although f2(x) has just two parameters, it has the reputation of being a difficult

minimization problem. The global minimum is f2(1)=0.

59

Figure 4.2. Rosenbrock’s function in 2 dimensions (Molga and Smutnicki, 2005).

Modified Third De Jong Function (step)

The step function introduces small plateaus to the topology of an underlying continuous

function (Back, 1996). Instead of the original linear step function proposed by De Jong,

shown in Fig.4.3 is the discretization of a sphere model.

 ∑

(4.3)

60

The modified step function in Eq.4.3 exhibits many plateaus which pose a considerable

problem for many optimization algorithms as they do not contribute any information on

the favorable search direction. The global minimum is f3(-0.5) = 0.

Figure 4.3. Modified Third De Jong Function in 2 dimensions (Black, 1996).

61

Rastrigin’s Function

Rastrigin’s function, as shown in Fig. 4.4, is a highly multimodal test function. This

function is fairly difficult to optimize due to its large search space and its large number of

local minima produced by the cosine modulation. For those reasons, it is frequently

selected for testing the performance of various optimization algorithms:

 ∑

(4.4)

The global minimum is f4(0)=0.

Figure 4.4. Rastrigin’s function in 2 dimensions (Molga and Smutnicki, 2005).

62

4.2.1 Benchmark Function Results and Discussions

There are several conclusions reached after the comparison of FDE to the original DE

strategy using the benchmark functions. First, a comparison of DE and FDE is made by

selecting three arbitrary focusing targets. The focus targets are selected as 1, 3 and 5 for

the sphere and Rastrigin function while for the step and Rosenbrock function they are

selected as -1, 1 and 3. The results are shown in Table 4.2. In Table 4.2 the values

column lists the dimensions of the problem, D and objective function optimal solution.

Where f(X*) is the known exact solution while fDE and fFDE
(focus)

 are the optimal solutions

found through the use of the DE and FDE algorithm respectively. The results indicate

that FDE performs better than classic DE in terms of convergence speed, independently

of the selected target initialization value. This can be seen especially in the first 400 to

500 generations. This is attributed mostly to the more focused initialization strategy of

FDE. Furthermore, the results in Table 4.2 show that the quality of optimal solution

improves based on the proximity of the initial focus target value to the true solution. For

example, the convergence speed incrementally improves for the First De Jong function

(see Table 4.2) as the subjective focus value approaches the true optimal solution of zero.

The magnitude of the optimal solution differences between the varying targets does not

directly correlate with the magnitude of the target differences themselves.

63

Table 4.2. Performance comparison of FDE and DE algorithms at various focus targets

Functions Comparison of DE and FDE

Values Curves of best solutions

First De

Jong

(Sphere)

Rosenbrock

0

20

40

60

80

100

120

0 500 1000 1500 2000

F(
x)

Generations

Focus=1

Focus=3

Focus=5

DE

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000

F(
x)

Generations

Focus=-1

Focus=1

Focus=3

DE

64

Modified

Third De

Jong(Step)

Rastrigin

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000

F(
x)

Generations

Focus=-
1
Focus=1

Focus=3

DE

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

F(
x)

Generations

Focus=1

Focus=3

Focus=5

DE

65

In Table 4.3, the benchmark function optimization comparison is made between DE with

drastically smaller bounds (DE-SB) and FDE with focusing target of 1. The values

column in Table 4.3 lists the initial (f
i
DE, f

i
FDE) and final (f

 f
DE, f

f
FDE)

objective function

values through using the DE and FDE algorithm respectively. Decreasing the

initialization bounds in DE-SB and keeping FDE bounds wider shows that FDE performs

similarly to or better than traditional strategies, without limiting the search space by

imposing more certainty than is available. Additionally, the outcomes shown in Table 4.3

indicate that the improved results using FDE over DE are not just attributed to the better

initialization values (due to the more focused smaller initial parameter range) but are

affected by the novel mutation strategy as well.

66

Table 4.3. Performance comparison between the original DE algorithm with smaller

bounds and FDE with a focus equal to one

Function Comparison of FDE and DE-SB

Values Curves of best solution

First De

Jong

(Sphere)

Rosenbrock

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000

F(
x)

Generations

DE-SB

FDE

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000

F(
x)

Generations

DE-SB

FDE

67

Modified

Third De

Jong (Step)

Rastrigen

The Rosenbrock function in particular appears to perform worse using the FDE algorithm

then the traditional DE algorithm. It can be seen in Table 4.2 that the Rosenbrock

function using the FDE algorithm appears to stall due to misconvergance while the

traditional DE algorithm continues to converge towards the optimal solution. This may be

a result of the particular control parameters selected (CR and F) not being adequate for

the FDE algorithm when it comes to this particular function, or it could be that the

algorithm itself does not cater as well as DE to such a function. In Table 4.3 at first

glance it appears that the performance of the Rosenbrock function using the FDE

algorithm is again worse, this may be attributed to the DE algorithm giving a significant

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000

F(
x)

Generations

DE-SB

FDE

0

10

20

30

40

50

0 500 1000 1500 2000

F(
x)

Generations

DE-SB

FDE

68

head start advantage due to the smaller initialization bounds used(based on the initial

objective values). Thus the performance of FDE for the Rosenbrock function after

considering the aforementioned is comparable to DE with smaller initialization bounds as

shown in Table 4.3.

Therefore, with some functions FDE may not perform better than the original DE

scheme. This is due to misconvergence or stalling of the algorithm based on the objective

function itself and the control parameters selected. FDE shares this robustness problem

with many other DE scheme variants. Therefore, care needs to be taken when selecting

FDE alongside the control parameters for an objective function to ensure that it is the

correct choice in achieving the best convergence efficiency. Currently, as with most other

variants, validation of selection may only be confirmed through trial and error procedure.

Future research may be directed into sensitivity analysis of FDE to a multitude of

benchmark functions, with the purpose of determining the general set of best handled

function types. However, the potential reduction in application capacity does not lessen

the undeniable value of the FDE algorithm in being included in the optimization toolbox.

4.3 Case Study

The reservoir operation case study presented in this section demonstrates the practical

application of the novel fuzzy differential evolution algorithm for optimization in the

field of water resource management.

4.3.1 Study Area Background

This study is focused on the optimization of the operation of the Wildwood reservoir in

the Upper Thames River basin. The basin is located in the Great Lakes Region, between

Lake Erie and Lake Huron in Southwestern Ontario, Canada (see Fig. 4.5). The

watershed encompasses an area of 3,482 square kilometers, with a total population of

485,000 (UTRCA, 1993). Most of the basin area is rural except for the larger urban

centers of London, Stratford and Woodstock.

69

Figure 4.5. Location of the Upper Thames basin.

Seasonal flooding has historically been a major hazard for the Upper Thames River basin.

Typically, flooding occurs in early March during snowmelt and in the summer seasons as

a result of extreme rainfall events (UTRCA, 1993). In 1937, the city of London

experienced a massive flooding event. As a result, this sparked the creation of the Upper

Thames River Conservation Authority (UTRCA) in 1947. Since the creation of the

UTRCA three major water management reservoirs were created: Pittock, Wildwood and

Fanshawe (see Fig. 4.5).

Wildwood

Fanshawe

Pittock

70

Among the aforementioned reservoirs Wildwood was the first major project

commissioned by UTRCA in 1948 and finally constructed in 1965. The Wildwood

reservoir is located on Trout Creek, upstream of the Town of St. Mary’s. The reservoir is

designed to control downstream flooding and to increase summer stream flows. The

reservoirs also provide a range of recreational opportunities for thousands of people each

year. The primary goals of the reservoir include flood control during the snowmelt period

and summer storm season, low flow augmentation during the drier summer months from

May to October and recreational uses during the summer season. Among these goals, the

most important one is flood control. Floods in the basin result from a combination of

snowmelt and intense precipitation during December to April. In addition to the primary

goals of the reservoir, it is also used for recreational purposes, hydro power generation

and by local fisheries.

Wildwood is operated by the Upper Thames Conservation Authority in a coordinated

manner with reservoirs at Fanshawe (London) and at Pittock (Woodstock) (UTRCA,

2012). This optimizes flood control and low flow augmentation efforts for the North

Thames River in St. Mary’s and for the Thames River watershed in general. Operating

the reservoir involves control of one or more of the three outflow structures. The outflow

components include: four large sluice gates, three small vales and concrete baffle walls.

The sluice gates are used to provide coarse control of flows from the dam during peak

runoff periods. This may include the spring runoff period (March-April) and during the

fall and early winter when the soil may be frozen or saturated and thus susceptible to

runoff. Otherwise, the valves provide fine control of outflow during the summer and

periods of low flows. The valves are located in the core of the dam. As such, they allow

for maintenance and discharge of cooler water from the bottom of the reservoir. Concrete

baffle walls above the gates provide some automatic control during the early summer

months when the reservoir level is at or close to its highest level. Water can spill over the

walls when the reservoir rises following summer storms.

71

4.3.2 Problem Definition

A release strategy for the optimal operation of the Wildwood reservoir is required for the

year 2010. The year 2010 in this study represents the future so that the available historical

2010 inflow data can be used for problem formulation. The operation of the reservoir

must be optimized in order to ensure that the reservoir meets the primary requirements of

flood control and low flow augmentation. In addition to the primary goals, the reservoir

must be operated keeping in mind constraints put forth by the fisheries industry and

recreational reservoir use. A simplified schematic of the reservoir is given in Fig. 4.6,

showing the allocation of storage (maximum reservoir capacity, C; active storage, St;

minimum storage allowable, Smin) and reservoir flows (inflow, it; release, Rt); the

notations are consistent with the mathematical formulation.

Figure 4.6. Wildwood reservoir schematic.

4.3.3 Mathematical Formulation

Optimization can be defined as a process searching for an optimal solution that provides a

maximum or minimum value of an objective function (Rao, 1996). Therefore,

formulation of the objective function is the most important step in solving an

optimization problem.

72

The objective function is formulated as shown in Eq. (4.5) based on primary flood control

operation goals and based on some additional constraint descriptions in Table 4.4.

 ∑

 ∑

∑

(4.5)

The above is a minimization optimization objective concerning reservoir storage St and a

t = 12 month time horizon. Where t = 1 corresponds to January and t = 12 to December. It

can be seen that the objective function, though globally a minimization problem, has a

dual objective for both minimization and maximization. The months requiring

minimization of storage (S
min

) are for the purpose of flood control and furthermore

preventing damage as a result of flood inundation to upstream properties. The

maximization of storage (S
max

) is required by fisheries and hydro power, based on the

description given in Table 4.4. This occurs for the month of April or t = 4.

Table 4.4. Constraints of the Wildwood reservoir (UTRCA, 1993)

Categories Constraint Description

Physical Constraints Reservoir maximum capacity 18,470 × 10
3

m
3
 and minimum capacity 2,430 × 10

3
 m

3

Flood Control The release from reservoir should not

exceed 10 m
3
/s to avoid significant

flooding. Release should be less than 3

m
3
/s to avoid nuisance flooding at St.

Mary’s golf course.

Low flow augmentation In the months of May to October the

release from reservoir should target at least

1.13 m
3
/s

Recreation Wide fluctuations should be avoided

73

particularly in the summer time.

Fisheries Peak storage should be achieved by the

first week of April and then subsequently

reduced during spring. The reservoir

storage level should remain stable at

summer levels until late fall.

Hydro Power Peak storage should be achieved by the

first week of April.

In order to perform the optimization of the proposed objective function, additional

equations are required to properly model the Wildwood reservoir system. These

equations and their variables are simplifications of the complex real-world system and as

such can only approximate the true behavior. The model is defined in the form of

constraints of which the continuity constraint is the most important one in that it ensures

that the reservoir system is balanced with inflow and release, properly accounting for

changes in reservoir storage.

Continuity constraint:

 (4.6)

where Rt is the release at the current time step, it is the inflow at the current time step,

similarly St represents the storage at the current time step, while St-1 is the storage in the

previous time step. Therefore, in order to utilize the above equation for a 12 month time

horizon, the initial reservoir storage S0 must be given.

In addition to the continuity constraint, there are release and storage constraints that are

governed by the physical capacities of the reservoir given in Table 4.4.

74

Subject to release constraints:

 (4.7)

In addition to the reservoir physical release capacity constraints, there is a minimum

release constraint for low flow augmentation in the summer months, as detailed in Table

4.4.

(4.8)

Where Rmax is the maximum physical capacity for the outflow structure (sluice gates, etc.)

and Raugmented is the minimum target release for low flow augmentation.

Subject to storage constraints:

(4.9)

This storage constraint is to ensure that the released storage does not exceed the initially

available one.

Storage capacity constraint:

 (4.10)

75

where Smin is the physical minimum capacity of the reservoir (for structural and

mechanical integrity of the dam components) and C is the maximum physical capacity of

the reservoir beyond which significant flooding will occur.

The final constraint that appropriately models the reservoir is intended to ensure that the

fisheries industry has a stable reservoir level for fishing from late summer to late fall. In

other words, the August storage levels (S8) are maintained.

Fisheries stability constraint:

 (4.11)

4.3.4 Algorithm and Optimization Inputs

Having formulated the Wildwood reservoir optimization problem, the fuzzy differential

evolution algorithm inputs must be assigned. Given in Table 4.5 are the control parameter

inputs for the FDE algorithm itself. These values were subjectively chosen using trial and

error, as they produce best results for the problem formulation. In addition to FDE, the

classical DE/rand/1/bin strategy is also used with the same inputs for comparison.

Table 4.5. DE algorithm inputs

Number of Generations 1500

Mutation Factor, F 0.8

Crossover Factor, CR 0.9

Random Seed 5

Penalty Constant 0.0001

Strategy DE/rand/1 & FDE/rand/1

76

There are 24 decision variables in the mathematical formulation, divided evenly between

variables for release and storage. In order for the optimization algorithm to proceed, these

decision variables/parameters must be initialized. In order for initialization to take place,

the parameter range and target (focus) values must be established. This may be done by

utilizing a decision maker’s inherent knowledge to establish the parameter bounds. In this

case the knowledge was extracted from historical data provided by UTRCA for the

period of 1985–2011. The parameter range, or the upper and lower bounds for each

parameter, were determined by analyzing the monthly historical data and selecting the

maximum and minimum values within the data set. Thus, the feasible range for release

and storage is established without the need for subjective decision maker inputs. In

practice, however, the process is not so easy for the selection of the target or focus for

each parameter. The goal of our optimization problem is, in essence, to find future

operation optimal release and subsequent storage strategies. To do this, we therefore must

establish a subjective target for the release and storage that is believed to be an adequate

representation of where the optimum would be. To establish such a target for each

parameter, subjective (and likely vague) decision maker knowledge is required.

Typically, forecasting information from several sources is used to operate the Wildwood

Dam. Computer models of floods, operating tables, weather data and water level

information from above and below the dam enable staff to assess and respond to flood

potential. In practice, combing these existing methods for operation could establish the

subjective target values required for initialization of the optimization algorithm. In this

case study we had available historical data of storage and release; based on these values

we could choose an appropriate target. Conveniently, since we already had operational

data for the year 2010, we could use these values as the basis for our targets.

Table 4.6 and Table 4.7 show the storage and release initialization inputs including

parameter range and target values for the year 2010. However, the target values do not

initially satisfy some of the reservoir constraints. Consequently, a calibration on the target

values for release and storage was performed. This adjustment assured that the

optimization started in the feasible space. Table 4.8 shows the constraint-satisfying target

77

values for release and storage initialization. When using the classical DE algorithm, the

same initialization parameter range was used as for FDE.

Table 4.6. Storage initialization inputs for the year 2010 [10
3
 m

3
]

Month 1 2 3 4 5 6 7 8 9 10 11 12

Lower

Bound

2417 2930 5278 12856 13939 13426 12561 11038 8764 4986 2790 3081

Upper

Bound

9626 10399 15618 17685 18354 18300 17499 16434 14463 13420 10836 9492

Target 6908 6610 10090 15359 17516 17860 17194 15523 11660 8449 4222 4039

Table 4.7. Release initialization inputs for the year 2010 [10
3
 m

3
]

Month 1 2 3 4 5 6 7 8 9 10 11 12

Lower

Bound

2605 10147 1426 1743 1714 1607 2000 2426 2766 2807 2677 1423

Upper

Bound

16364 1987 12961 12514 11204 8328 14530 8057 8615 13491 19336 16382

Target 4345 3463 2387 1763 1966 4596 3180 4719 5786 8511 6153 4940

Table 4.8. Constraint satisfying release and storage target initialization inputs for the year

2010 [10
3
 m

3
]

Month 1 2 3 4 5 6 7 8 9 10 11 12

Storage

Target

7000 6000 10000 15000 17000 17000 17000 8000 8000 8000 8000 7000

Release

Target

4000 3500 2500 1500 4000 5000 4000 5000 6000 8000 5000 5000

78

In addition to the initialization inputs given, feasible space constraints and inflow inputs

were required. The release constraints given in Table 4.4 are converted to corresponding

monthly equivalent values for convenience in Table 4.9. The monthly inflow data for the

Wildwood reservoir was provided by UTRCA and is given in Table 4.10.

Table 4.9. Release constraints [10
3
 m

3
]

Month 1 2 3 4 5 6 7 8 9 10 11 12

Max 26784 24192 26784 25920 26784 25920 26784 26784 25920 26784 25920 26784

Min 0 0 0 0 3027 2929 3027 3027 2929 3027 0 0

Storage constraints corresponding to physical reservoir capacity and minimum storage:

Smin = 2,430 × 10
3
 m

3

C = 18,470 × 10
3
 m

3

Initial Storage (Storage amount in last month of previous year, 2009), S0 = 6,564 × 10
3
 m

3

Table 4.10. Monthly inflows for the Wildwood reservoir [10
3
 m

3
]

Month 1 2 3 4 5 6 7 8 9 10 11 12

Inflow 4187 2656 9419 4901 3350 4433 2421 1413 2617 4819 4341 4859

4.3.5 Study Results and Discussions

The optimization results of combining the mathematical formulation with the algorithm

and optimization inputs are presented in this section. Three optimization trials were

performed; one using the classic DE strategy and two trials using the novel FDE strategy.

The parameter ranges for initialization were kept constant throughout all the trials. The

79

two FDE trials were used to analyze results from variation in initialization inputs. The

notation of FDE1 was used when the initialization target or focus was outside of the

feasible space and FDE2 was used when the target was within the feasible space.

Figure 4.7. Wildwood reservoir optimization progress.

Figure 4.7 shows the convergence speed of the objective function combined with the sum

of all the penalty functions for each of the trials. As expected, FDE performed much

better than traditional DE. Furthermore, it can be seen that FDE2 outperformed FDE1.

The difference in performance between the two FDE trials depended primarily on the

subjective inputs of the additional information provided by the decision maker. If the

decision maker provides target inputs that do not satisfy the constraints from the outset,

the algorithm will focus on a search space outside of the feasible region and may thus fail

to converge as quickly as possible, as is the case with FDE1. If the subjective values

provided for initialization satisfy the constraints initially, as shown in the case of FDE2,

then the optimization will result with a more optimal solution.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600

F(
x)

+P
e

n
al

ty

Generations

DE

FDE

FDE2

80

Table 4.11. Wildwood reservoir objective functions and error after optimization

 Optimization Result

 DE FDE1 FDE2

Error 4880 3084 3024

Objective

Function

0.4797 0.5425 0.4361

The exact values of the objective function separated from the penalty function are given

in Table 4.11. In this Table, error is the sum of all the constraint violations; based on

these results, it can be established that constraint violations were prevalent. This

demonstrates the general difficulty with using the penalty function method for constraint

handling in a complex problem, because the optimal solution may be one that does not

satisfy all the constraints as is clearly the case here. This problem may be addressed

through a very detailed sensitivity analysis of various penalty constants for each

constraint, a very time consuming trial-and-error process. Here, however, for the sake of

convenience, just one penalty constant was used for all the constraints, resulting in more

relaxed but still adequate constraint representation.

The penalty constant selected had to produce a penalty function of similar magnitude as

the objective function. With too small a penalty constant, significant constraint violations

would not be detected by the algorithm, as they would be overshadowed by the objective

function values. However, if the penalty constant were too large, the objective function

information provided to the algorithm would be overshadowed and the search would not

be adequate. Table 4.12 illustrates the importance of selecting the appropriate penalty

constant value so that the fitness function conveys the objective function and constraint

violation information to the algorithm.

81

Table 4.12. Penalty constant selection

Penalty

Constant

Σ Constraint

Violations

(Error in

Table 1)

 Penalty

Function

Value

 Objective

Function

Value

 Fitness

Function

0.0001 0.488 0.968

1 × 4880 = 4880 + 0.480 = 4880.48

0.000001 0.00488 0.48488

It can be concluded from the results in Table 4.11 that FDE2 had the best objective

function solution while still maintaining the least amount of constraint violation when

compared to the other two trials. DE did have a better objective function solution than

FDE1; however, when considering the amount of constraint violations, the performance

of DE is easily eclipsed by the one of FDE1.

82

Figure 4.8. Wildwood reservoir storage for a twelve-month time horizon.

The Wildwood optimal reservoir storage and release policy for the year 2010 is shown in

Figures 4.8 and 4.9, respectively. Exact optimal values for each decision variable can be

found in Table 6.1 of Appendix D. The results follow the problem formulation closely.

The storage for the month of April is indeed maximized, while the late summer to fall

storage is indeed kept consistent. Similarly, the release policy meets the minimum release

requirement for low flow augmentation. Thus, the optimization can be deemed

satisfactory.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12

St
o

ra
ge

 (
m

3
 x

1
0

^3
)

Month

FDE2 DE FDE1

83

Figure 4.9. Wildwood reservoir release for a twelve-month time horizon.

-2000

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12

R
e

le
as

e
 (

m
3

 x
1

0
^3

)

Month

FDE2 DE FDE1 Release MIN

84

Chapter 5

5.1 Summary

This thesis proposes a novel method, fuzzy differential evolution algorithm, which

utilizes fuzzy triangular membership functions for initialization, combined with random

alpha-cuts to create alpha-cut intervals to be perturbed through mutation by fuzzy interval

arithmetic. This approach, through the utilization of fuzzy theory concepts, takes

advantage of all the available domain knowledge. The FDE algorithm has flexibility in

being used for a wide range of linear and non-linear optimization problems. The novel

algorithm with fuzzy set theory elements allows the decision makers to provide

supplementary knowledge needed to define a more focused search space and,

consequently, a more efficient optimization.

A decision support system, named the “Differential Evolution Optimizer” (DEO), was

created to assemble the fundamental tools for optimization using the differential

evolution algorithm including FDE in a convenient Windows interface. A detailed review

of the decision support system has been discussed in Chapter 3. All the optimization

results in this paper have been obtained through the use of DEO.

As concluded from the experimental results obtained using the benchmark functions, the

addition of the decision maker’s supplied domain knowledge guided the algorithm in a

superior way, resulting in faster convergence towards an optimal solution when compared

with the traditional DE scheme. This was the main benefit of FDE. Alternatively, the

decision maker can reduce the initialization bounds in the traditional algorithm in an

attempt to mimic the focusing achieved by FDE. This method incorrectly implies

certainty that the solution is indeed within such bounds, whereas the FDE strategy allows

for the benefit of focusing on a certain region, while still searching a wider search space

to account for uncertainty.

In addition to the main benefits, the benchmark functions results show that even when

compared with decreased initial parameter bounds of DE, FDE was still able to

85

outperform DE, or perform comparatively to it. While the benchmark function results

show instances where the initial search bounds were equal, FDE appeared to outperform

DE regardless of the focusing target in the search space. It is clear that focusing was of

major importance in the search for an optimal solution. However, even in circumstances

where the focusing target is highly inaccurate, the algorithm still performed better than

DE.

Emphasis is placed on the fact that the FDE algorithms, like all evolutionary algorithms,

make no guarantee that an optimal solution is ever found. Furthermore, misconvergence

may result using FDE in certain instances. Therefore, FDE may not be better than DE in

the absolute sense, but it does provide an alternative to be used where more domain

knowledge is available to provide a more efficient convergence. The use of FDE provides

more freedom in expressing available domain knowledge without incorrectly claiming

full certainty or uncertainty because of the limitations of the algorithm itself.

The FDE algorithm was shown through the Wildwood reservoir case study to be

applicable in the water resource management field. The addition of subjective targets for

initialization with FDE led to a focused search, ultimately resulting in FDE

outperforming the traditional DE algorithm in the convergence towards the optimal

solution. The case study also demonstrated the use of constraints within the DE and FDE

algorithm and the associated challenge with setting appropriate penalty constants.

5.2 Recommendations for Future Work

The FDE methodology discussed in this paper demonstrates fundamental principles for

initialization and mutation within a hybrid fuzzy and probabilistic domain. The

methodological background however can be modified and expanded. Future work is

recommended to explore additional membership functions for the initialization of FDE.

Instead of the triangular membership function, other membership functions should be

investigated, such as the trapezoidal and Gaussian membership functions. These

membership functions may prove to be more suited for the solution of other types of

86

problems. That is to say, different membership functions may be better representative of

the vague parameter knowledge.

An additional recommendation for further research is to investigate how the alpha-cut

intervals are transformed into singular values. This transformation is essential in order to

evaluate the objective function or rather the fitness functions, which is indispensable for

the differential evolution algorithm to proceed. Currently, this is done by taking the

centroid value of the alpha-cut, this being the preference-neutral way (i.e. given to neither

extreme).

Another suggestion is to allow the selection of the singular value from the interval, based

on a decision maker supplied preference. This would add another control parameter the

decision makers can interact with and establish their preference favoring parameters,

greater or smaller than the alpha-cut interval.

Lastly, the FDE mutation strategy presented in this paper shows the modification of

DE/rand/1/bin or the classic DE strategy. Similarly, other common DE strategies, such as

DE/best/1/bin may be modified to work with alpha-cut interval arithmetic. The

application of other such strategies incorporating the fundamental FDE concepts could

prove to have similar benefits as the ones shown in this paper, in addition to the benefits

incorporated by using the new strategy.

87

References

Arunachalam, V. (2008). Optimization Using Differential Evolution. Water Resources

 Research Report No. 060. London, Canada, Facility for Intelligent Decision

 Support: 42.

Bazaraa, S. M., D. S. Hanif, et al. (2006). Nonlinear Programming: Theory and

 Algorithms. New Jersey, John Wiley & Sons, Inc.

Back, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

 Evolutionary Programming, Genetic Algorithms. New York, Oxford University

 Press.

Bojadziev, G. and M. Bojadziev (1995). Fuzzy Sets, Fuzzy Logic, Applications.

 Singapore, World Scientific.

Brest, J., B. Greiner, et al. (2006). "Self-adapting control parameters in differential

 evolution: A comparative study on numerical benchmark problems." IEEE Trans.

 Evolut. Comput. 10: 646-657.

Chakraborty, U. K., Ed. (2008). Advances in Differential Evolution. Studies in

 Computational Intelligence. Berlin, Springer.

Courant, R. (1943). "Variational methods for the solution of problems of equilibrium and

 vibrations." Bulletin of the American Mathematical Society 49: 1-23.

Dantzig, G. B. (1963). Linear Programming and Extension. Princeton, NJ, Princeton

 University Press.

Fogel, D. B. (2006). Evolutionary computation: toward a new philosophy of machine

 intelligence, John Wiley and Sons.

Fogel, L. J., A. J. Owens, et al. (1966). Artificial Intelligence Through Simulated

 Evolution. Chichester, John Wiley.

88

Friendman, R., C. Ansell, et al. (1984). "The Use of Models for Water Resources

 Management, Planning and Policy." Water Resources Research 20(7): 793-802.

 Gamperle, R., S. Muller, et al., Eds. (2002). A Parameter Study for Differential

 Evolution. Advances in Intelligent Systems, Fuzzy Systems, Evolutionary

 Computation, WSEAS PRess.

Gen, M. and R. Chen (1997). Genetic Algorithms and Engineering Design. New York,

 John Wiley& Sons, Inc.

Hall, W. A. and J. A. Dracup (1970). Water Resources Systems Engineering. New York,

 McGraw-Hill.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI,

 University of Michigan Press.

Iba, H. and N. Noman (2012). New Frontier in Evolutionary Algorithms Theory and

 Applications. London, Imperial College Press.

Ilonen, J., J. K. Kamarainen, et al. (2003). "Differential evolution training algorithm for

 feed-forward neural networks." Natural Processing Letters 17: 95-105.

Jiménez, F., J. M. Cadenas, et al. (2003). "Solving fuzzy optimization problems by

 evolutionary algorithms." Information Sciences 152: 303-311.

Joshi, R. and A. C. Sanderson (1999). "Minimal representation multi sensor fusion using

 differential evolution." IEEE Transactions on Systems, Man,and Cybernetics, Part

 A 29: 63–76.

Kirkpatrick, S., C. D. Gelatt, et al. (1983). "Optimization by Simulated Annealing."

 Science 220: 671-680.

Kisi, O. (2004). "Daily suspended sediment modeling using a fuzzy-differential evolution

 approach." Hydrol. Sci. J 49(1): 183-197.

89

Liu, J. and J. Lampinen (2002). On setting the control parameters of the differential

 evolution method. Mendel 8th International Conference on Soft Computing, Brno,

 Czech Republic, pp. 11-18.

Liu, J. and J. Lampinen (2004). "A fuzzy adaptive differential evolution algorithm." Soft

 Comput. Fusion Found. Methodol. 9(6): 448-462.

Lockwood, C. and T. Moore (1993). "Harvesting scheduling with spatial constraints: a

 simulated annealing approach." Canadian Journal of Forest Research 23: 468-478.

Loucks, D. P. and J. R. da Costa (1991). Decision Support Systems: Water Resources

 Planning, Springer.

Loucks, D. P., J. R. Stedinger, et al. (1981). Water resource systems planning and

 analysis, Prentice-Hall.

Mamdani, E.H. and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic

 controller," International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-

13, 1975.

Molga, M. and C. Smutnicki (2005) "Test functions for optimization needs." Available at

 http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.

Onwubolu, G. C. (2008). "Design of hybrid differential evolution and group method of

 data handling networks for modeling and prediction." Information Sciences 178:

 3616-3634.

Pan, Q. K., L. Wang, et al. (2009). "A novel differential evolution algorithm for bi

 criteria no-wait flow shop scheduling problems." Computers and Operations

 Research 36: 2498–2511.

Price, K. (1996). Differential Evolution: A Fast and Simple Numerical Optimizer.

 NAFIPS’96. Berkeley: 524-527.

90

Price, K., R. Storn, et al. (2005). Differential evolution: A practical approach to global

 optimization. New York, Springer.

Qin, A. K. and P. N. Sunganthan (2005). Self-adaptive differential evolution algorithm

 for numerical optimization. 2005 IEEE Congress Evolutionary Computation,

 September 2-5, Edinburgh, UK, pp. 1785-1791.

Rao, S. S. (1996). Engineering Optimization: Theory and Practise. New York, John

 Wiley and Sons.

Rogalsky, T., R. W. Derksen, et al. (1999). Differential evolution in aerodynamic

 optimization. Proceedings of 46th annual conference of Canadian Aeronautics and

 Space Institute, Montreal,Quebec, pp. 29-36.

Rogers, P. P. and M. B. Fiering (1986). "Use of Systems Analysis in Water

 Management." Water Resources Research 22(9): 146s-158s.

Ross, T. J. (2004). Fuzzy logic with engineering applications. UK, John Wiley and Sons.

Russell, D. and C. J. Kim (1993). "Automatic generation of membership function and

 fuzzy rule using inductive reasoning." IEEE Trans paper 0-7803-1485-9/93.

Simonovic, S. P. (2009). Managing Water Resources: Methods and Tools for a Systems

 Approach. London, UNESCO, Paris and Earthscan James & James.

Sniedovich, M. (2011). Dynamic programming: Foundations and Principles. Boca Raton,

 CRC Press.

Storn, R. (1996). On the usage of differential evolution for function optimization.

 Biennial conference of the North American Fuzzy Information Processing Society

 (NAFIPS). Berkeley: 519-523.

Storn, R. and K. Price (1995). Differential Evolution - a simple and efficient adaptive

 scheme for global optimization over continuous spaces. Technical Report TR-95

 012, Berkeley,CA.

91

Storn, R. and K. Price (1997). "Differential evolution-A simple and efficient heuristic for

 global optimization over continuous spaces." Journal of Global Optimization

 11(4): 341-359.

UTRCA. (January 12, 2012). "Wildwood Dam." Retrieved January 22, 2012, 2012,

 from http://www.thamesriver.on.ca/Water_Management/Wildwood_Dam.htm.

UTRCA (1993). Low Flow Hydrology and Operations Optimization Study. Wildwood

 and Pittock Reservoirs. Final Report.

Wolpert, D. H. and W. G. Macready (1997). "No free lunch theorems for optimization."

 IEEE Transactions on evolutionary computation 1(1): 67-82.

Wurbs, R. A. (1998). "Dissemination of Generalized Water Resources Models in the

 United States." Water International 23(3): 190-198.

Yeh, W. W. (1985). "Reservoir Management and Operations Models: A State-of-the-Art

 Review." Water Resources Research 21(12): 1797-1818.

Yu, X. and M. Gen (2010). Introduction to Evolutionary Algorithms, Springer.

Zadeh, L. A. (1965). "Fuzzy sets." Information and control 8: 338-358.

Zaharie, D. (2003). Control of population diversity and adaptation in differential

 evolution algorithms. Proc. of Mendel 2003, 9th Internat. Conference on Soft

 Computing, Brno, pp. 41-46.

Zhang, J. and A. Sanderson (2009). Adaptive Differential Evolution: A Robust Approach

 to Multimodal Problem Optimization. Berlin, Springer.

92

Appendices

Appendix A: Fuzzy Set Theory

The Fuzzy set theory was intentionally developed to try to capture judgmental belief, i.e.

the uncertainty caused by the lack of knowledge or by ambiguity. The concept of a fuzzy

set can be described as a “class” (set) with a continuum of grades of membership (Zadeh,

1965). Each object within a fuzzy set is graded in the interval [0, 1]. For example, in the

class of animals, rocks may be said to have 0 degree of membership in the set of animals

that is they do not belong, while cats may have full membership and belong. These

definitions are common to traditional ordinary sets, where the values are crisp either

belonging or not with no partial degree of belonging (Zadeh, 1965). Fuzzy sets extend

the ordinary sets; consider that in the set of animals starfish have an ambiguous status and

thus hold a degree of membership in the interval [0, 1], i.e. partial membership.

Therefore, starfish can be properly represented without the need to classify them as either

belonging or not to the set (class). Fuzziness thus measures the degree to which an event

occurs, not whether it occurs, a contrast to probability theory.

A fuzzy set (class) is characterized by a membership (characteristic) function which

associates each member of the fuzzy set with a real number in the interval [0, 1] (Zadeh,

1965; Ross, 2004). The membership function essentially embodies all fuzziness for a

particular fuzzy set; its description is the essence of a fuzzy property or operation. There

are numerous ways to assign membership values or functions to fuzzy variables; more

ways than there are to assign probability density functions to random variables. In the

following sections a sample of the available methods for assigning membership values or

functions are summarized. For further details the reader is directed to the textbook by

Ross (2004).

Intuition

This method is derived simply from the capacity of humans to develop membership

functions through their own innate intelligence and understanding (Ross, 2004). In order

to utilize intuition, contextual and semantic knowledge about an issue is essential. Thus,

93

the membership function development is dependent on the subjectivity of the individual

or individuals consulted in its development. A single fuzzy variable may have more than

one membership function, that is, there may be many partitions. An important

characteristic for the purposes of use in fuzzy operations is that these partitions overlap.

Inference

The inference method comes from our ability to perform deductive reasoning. When

given a body of facts or knowledge, we are able to deduce or infer a conclusion. The

inference method can take many forms; consider an example of identifying a triangle

when we possess a formal knowledge of geometry and geometric shapes, Ross (2004). In

identifying a triangle, let A, B and C be the inner angles of a triangle in the order

 and let U be the universe of triangles, such that

(6.1)

We can infer membership of different triangle types, because we possess knowledge of

geometry. We can determine if a triangle is approximately isosceles by developing an

algorithm for the membership. Meeting the constraints of Eq. (6.1) we have:

(6.2)

For example, if A = B or B = C, the membership value of the isosceles triangle is = 1.

However, if A = 120°, B = 60°, C = 0°, then = 0. In the first case we thus have full

membership or belonging of the fuzzy variable in the fuzzy set for an approximate

isosceles triangle, while the second case is a total contrast.

94

Rank Ordering

The approach arises from assessing preferences by a single individual, a committee, a

poll and other opinion methods that can be used to assign membership values to a fuzzy

variable (Ross, 2004). Preferences are determined by pairwise comparisons and these

determine the ordering of the membership. This method is similar to finding relative

preferences through a questionnaire and developing membership functions as a result.

Neural Networks

Neural network is a technique that seeks to build an intelligent program using models that

try to recreate the working of neurons in the human brain. Neurons are believed to be

responsible for the humans’ ability to learn; thus, the goal is to implement this to machine

language as a tool to generate membership functions. The use of neural networks in

membership function generation is centered on a training process (learning based on

available data for input) and an unsupervised clustering process (Ross, 2004). After

training, the degree of a membership function for a given input value may be estimated

through network computation. That is to say, each input value has a certain estimated

degree of belonging to a cluster which is equivalent to the degree of the membership

function represented by the cluster.

Genetic Algorithms

Genetic algorithms use the concept of Darwin’s theory of evolution in searching for the

best solution of a given set based on the principle of “survival of the fittest” (Ross, 2004).

Among all possible solutions, a fraction of the good solutions is selected while others are

eliminated. The selected solutions undergo a process of reproduction, crossover, and

mutation to create a new generation of possible solution. The process continues until

there is a convergence within a generation. The genetic algorithms can be used in the

derivation of membership functions. The process starts by assuming some functional

mapping for a system (membership functions and their shapes for fuzzy variable/s). The

membership functions are then converted to a code familiar to the algorithm, bit strings

(zeros and ones) which can then be connected together to make a longer chain of code for

95

manipulation in the genetic algorithm (i.e. crossover, elimination, reproduction). An

evaluation function is used to evaluate the fitness of each set of membership functions

(parameters that define the functional mapping). Based on the fitness value,

unsatisfactory strings are eliminated and reproduction of satisfactory strings proceeds for

the next generation. This process of generating and evaluating strings is continued until

the membership functions with the best fitness value are obtained.

Inductive Reasoning

This approach utilizes the inductive reasoning to generate the membership functions by

deriving a general consensus from the particular (Ross, 2004). Inductive reasoning

assumes availability of no information other than a set of data (Russell & Kim, 1993).

The approach is to partition a set of data into classes based on minimizing entropy. The

entropy, S, where only one outcome is true, is the expected value of the information

contained in the data set and is given by

 ∑ ln

(6.3)

where the probability of the ith sample to be true is pi and N is the number of samples.

The minus sign in front of the parameter k in Eq. (6.3) ensures that entropy will be a

positive value, greater than or equal to zero. Through iterative partitioning, the segmented

data calculation of an estimate for entropy is possible. The result is a solution of points in

the region of the data interval, used to define the membership function. The choice of

shape for membership functions is arbitrary, as long as some overlap is present between

membership functions; therefore simple shapes, like triangles, which exhibit some degree

of overlap, are often a sensible choice.

96

Appendix B: Mamdani Fuzzy Inference

The fuzzy approach used for simulation is derived from utilizing the fuzzy inference

method, based on the representation of human knowledge in IF-THEN rule-based form,

such that it becomes possible to infer a conclusion or fact (consequent) given an initial

known fact (premise, hypothesis, antecedent) (Ross, 2004).

A typical form of the IF-THEN rule-based form, also referred to as the deductive form, is

shown in the expression below:

(6.4)

The fuzzy simulation (rule-based system) is most useful in modeling complex systems

that can be observed by humans. Linguistic variables are used as antecedents and

consequents. These linguistic variables can be naturally represented by fuzzy sets and

logical connectives of these sets.

Mamdani's fuzzy inference method is the most commonly seen fuzzy simulation

methodology and is the methodology presented in this report (Ross, 2004). The method

was originally proposed as an attempt to control a steam engine and boiler combination

by synthesizing a set of linguistic control rules obtained from experienced human

operators. The Mamdani inference method is a graphical technique that follows five main

steps: (1) development of fuzzy sets and linguistic rules, (2) fuzzification of inputs, (3)

application of fuzzy operators, (4) aggregation of all outputs, and (5) defuzzification of

aggregated output.

Step 1. Development of fuzzy sets and linguistic rules

To begin, the Mamdani form rules may be described by the collection of r linguistic IF-

THEN expressions. Equation (6.5) shows the expression for a fuzzy system with two

non-interactive inputs x1 and x2 (antecedents) and a single output (consequent) y. The

concept holds for any number of antecedents (inputs) and consequents (outputs).

97

(6.5)

where
 and

 are the fuzzy sets representing the kth antecedent pairs, and is the

fuzzy set representing the kth consequent. The membership functions for the fuzzy sets

may be generated with one of the methods discussed in Appendix A.

Step 2. Fuzzification of Inputs

The inputs to the system, x1 and x2, are scalar values. In order to proceed with the

inference method, the corresponding degrees to which the inputs belong to the

appropriate fuzzy sets via membership functions need to be found. Fuzzification of the

input thus requires the membership function of the fuzzy linguistic set to be known; the

corresponding degree of membership for the scalar input belonging to the universe of

discourse is found through function evaluation. Figure 6.1 outlines the procedure in a

graphical form.

Figure 6.1. Fuzzification of scalar input from known membership function.

It should be noted that the input to any fuzzy system can be a membership function, such

as gauge reading that has been fuzzified already. Either way, the methodology is the

same as the one that employs fuzzy singletons (scalar values) as the input.

98

Step 3. Application of fuzzy operators

Once the inputs are fuzzified, the degree by which each condition of the antecedent is

satisfied is known for each rule. If there are multiple antecedent conditions for each rule,

as in the case of expression (6.5), then a fuzzy operator is used to obtain one number that

represents the antecedent for that rule. This number is applied to the output function,

producing a single truth value for the rule. The logical operators commonly employed are

described.

The expression in (6.5) has conjunctive antecedents and for illustration shows disjunctive

antecedents in brackets.

For conjunctive antecedents, assuming a new fuzzy subset A s as

(6.6)

expressed by means of the membership function shown in Figure 6.2:

 [

]

(6.7)

For disjunctive antecedents, a similar procedure follows. This time, the fuzzy set A s is

defined as

(6.8)

expressed by means of the membership function shown in Figure 6.2

 [

] .

(6.9)

Given the above, the compound rule may be rewritten as

99

(6.10)

Figure 6.2. Fuzzy operator use for the generalized expression (6.5) of a rule.

Step 4. Aggregation of outputs

It is common for a rule-based system to involve more than one rule. As such, in order to

reach a decision or overall conclusion, the aggregation of individual consequents or

outputs contributed by each rule is required. Thus, all the outputs are combined into a

single fuzzy set which may be defuzzified in the final step to obtain a scalar solution.

The aggregation of outputs may be achieved in two ways: (1) max-min truncation, or (2)

max-product scaling. Only the first case will be discussed here. In the max-min case,

aggregation is achieved by the minimum or maximum membership function value from

the antecedents (depending on the logical operator used in the rule), propagating through

to the consequent, thereby truncating the membership function for the consequent of each

rule. This procedure is applied for each rule. The truncated membership functions of each

rule will need to be combined. This may be achieved by disjunctive or conjunctive rules,

using the same fuzzy operators as in Step 3.

100

If the system of rules needs to be jointly satisfied, the truncated outputs should be

aggregated as a conjunctive system; the rules are connected by “and” connectives. In the

case where the objective is to be satisfied for at least one rule, the aggregation of outputs

may be treated as a disjunctive system, where the rules are connected by “or”

connectives. Figure 6.3 illustrates the aggregation of outputs into a single fuzzy

membership function. Each antecedent is treated as conjunctive and the aggregation of

outputs of each rule is treated as a disjunctive system.

Figure 6.3. Aggregation of rule outputs into a single fuzzy membership function.

Step 5. Defuzzification of aggregated result

The final objective of the rule-based system simulation is typically a single value

obtained from the defuzzification of the aggregated fuzzy set of all outputs. Many

defuzzification methods are available in the literature: max membership principle,

101

centroid method, weighted average method and numerous others. There is no single most

suitable defuzzification method. Selection of the best method for defuzzification is

context or problem-dependent. For the purpose at hand, the centroid method will be used

because it is well established and physically appealing among all the defuzzification

methods (Ross, 2004). The centroid method shown in Figure 6.4, may also be referred to

as the center of gravity or center of an area. Its expression is given as

∫ d

∫ d

(6.11)

Figure 6.4. Centroid method for defuzzification.

µ

y

y
*

102

Appendix C: Decision Support System for Implementation of DEO

Included alongside this thesis is the electronic installation file of the DSS, developed to

solve optimization problems using the differential evolution algorithm. In addition to the

installation file, the C# source code is also provided in electronic form due to its large

size.

With the installation files provided, readers are encouraged to get familiar with the

features of the DSS.

The file folder named DEO-install, once opened, contains:

ReadMe.txt : This file contains installation instructions and other helpful information.

Setup.exe: This is the main executable installation file that, upon launching, will install

the DEO software onto the user’s computer.

DEO-Examples folder: The folder contains convenient example input .deo files and

documentation to familiarize a new user with the DEO software.

The file folder DEO-Code, once opened, contains many C# classes, one of which, titled

Deopt.cs, contains most of the main algorithm code. The other classes include the

interface, fuzzy inference class for FADE and various classes for parsing of the input

functions. Opening the C# project file named DeOptimization using Microsoft Visual C#

would be the most convenient way to access all the associated source code.

103

Appendix D: Wildwood optimization results

Table 6.1. Wildwood decision variables values after optimization [10
3
 m

3
]

 Optimization Results Target

Variable DE FDE1 FDE2 FDE1 FDE2

S1 4706 4352 3088 6908 7000

S2 4206 6688 4016 6610 6000

S3 9252 13824 12336 10090 10000

S4 13765 14880 15804 15359 15000

S5 13318 14464 16238 17516 17000

S6 15208 14624 16736 17860 17000

S7 14019 14208 15736 17194 17000

S8 11404 11408 12800 15523 8000

S9 11018 11312 12608 11660 8000

S10 11245 11776 12576 8449 8000

S11 11407 11520 12672 4222 8000

S12 10107 8800 8096 4039 7000

R1 5999 6400 7568 4345 4000

R2 3165 512 1248 3463 3500

104

R3 4317 2304 992 2387 2500

R4 1048 3840 1463 1763 1500

R5 3850 3328 2996 1966 4000

R6 2607 3920 4468 4596 5000

R7 3717 2816 3480 3180 4000

R8 3480 4352 4388 4719 5000

R9 3472 6688 3197.5 5786 6000

R10 5023 13824 5248 8511 8000

R11 3504 14880 4064 6153 5000

R12 5268 14464 9376 4940 5000

105

Curriculum Vitae

Name: Dejan Vucetic

Post-secondary The University of Western Ontario

Education and London, Ontario, Canada

Degrees: 2006-2010 B.A.

Honours and Graduated with distinction

Awards: 2010

Related Work Teaching Assistant

Experience The University of Western Ontario

2010-2012

Publications:

Vucetic, D. and S.P. Simonovic (2011). Water Resources Decision Making Under

Uncertainty. Water Resources Research Report No. 073. London, Canada:

Facility for Intelligent Decision Support, pp. 143.

Vucetic, D. and S. P. Simonovic (2012). "Fuzzy Differential Evolution Algorithm."

Fuzzy Sets and Systems. (Under review)

	Fuzzy Differential Evolution Algorithm
	Recommended Citation

	Fuzzy Differential Evolution Algorithm

