2,303 research outputs found

    Path planning for simple wheeled robots : sub-Riemannian and elastic curves on SE(2)

    Get PDF
    This paper presents a motion planning method for a simple wheeled robot in two cases: (i) where translational and rotational speeds are arbitrary and (ii) where the robot is constrained to move forwards at unit speed. The motions are generated by formulating a constrained optimal control problem on the Special Euclidean group SE(2). An application of Pontryagin’s maximum principle for arbitrary speeds yields an optimal Hamiltonian which is completely integrable in terms of Jacobi elliptic functions. In the unit speed case, the rotational velocity is described in terms of elliptic integrals and the expression for the position reduced to quadratures. Reachable sets are defined in the arbitrary speed case and a numerical plot of the time-limited reachable sets presented for the unit speed case. The resulting analytical functions for the position and orientation of the robot can be parametrically optimised to match prescribed target states within the reachable sets. The method is shown to be easily adapted to obstacle avoidance for static obstacles in a known environment

    Optimal path planning for nonholonomic robotics systems via parametric optimisation

    Get PDF
    Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping

    Trajectory generation for the N-trailer problem using Goursat normal form

    Get PDF
    Develops the machinery of exterior differential forms, more particularly the Goursat normal form for a Pfaffian system, for solving nonholonomic motion planning problems, i.e., motion planning for systems with nonintegrable velocity constraints. The authors use this technique to solve the problem of steering a mobile robot with n trailers. The authors present an algorithm for finding a family of transformations which will convert the system of rolling constraints on the wheels of the robot with n trailers into the Goursat canonical form. Two of these transformations are studied in detail. The Goursat normal form for exterior differential systems is dual to the so-called chained-form for vector fields that has been studied previously. Consequently, the authors are able to give the state feedback law and change of coordinates to convert the N-trailer system into chained-form. Three methods for planning trajectories for chained-form systems using sinusoids, piecewise constants, and polynomials as inputs are presented. The motion planning strategy is therefore to first convert the N-trailer system into Goursat form, use this to find the chained-form coordinates, plan a path for the corresponding chained-form system, and then transform the resulting trajectory back into the original coordinates. Simulations and frames of movie animations of the N-trailer system for parallel parking and backing into a loading dock using this strategy are included

    Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction

    Get PDF
    In this paper we establish necessary conditions for optimal control using the ideas of Lagrangian reduction in the sense of reduction under a symmetry group. The techniques developed here are designed for Lagrangian mechanical control systems with symmetry. The benefit of such an approach is that it makes use of the special structure of the system, especially its symmetry structure and thus it leads rather directly to the desired conclusions for such systems. Lagrangian reduction can do in one step what one can alternatively do by applying the Pontryagin Maximum Principle followed by an application of Poisson reduction. The idea of using Lagrangian reduction in the sense of symmetry reduction was also obtained by Bloch and Crouch [1995a,b] in a somewhat different context and the general idea is closely related to those in Montgomery [1990] and Vershik and Gershkovich [1994]. Here we develop this idea further and apply it to some known examples, such as optimal control on Lie groups and principal bundles (such as the ball and plate problem) and reorientation examples with zero angular momentum (such as the satellite with moveable masses). However, one of our main goals is to extend the method to the case of nonholonomic systems with a nontrivial momentum equation in the context of the work of Bloch, Krishnaprasad, Marsden and Murray [1995]. The snakeboard is used to illustrate the method

    Hamilton-Jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints

    Full text link
    We extend Hamilton-Jacobi theory to Lagrange-Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton-Jacobi equation as the Dirac-Hamilton-Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the theory specializes to the recently developed nonholonomic Hamilton-Jacobi theory. We are particularly interested in applications to a certain class of degenerate nonholonomic Lagrangian systems with symmetries, which we refer to as weakly degenerate Chaplygin systems, that arise as simplified models of nonholonomic mechanical systems; these systems are shown to reduce to non-degenerate almost Hamiltonian systems, i.e., generalized Hamiltonian systems defined with non-closed two-forms. Accordingly, the Dirac-Hamilton-Jacobi equation reduces to a variant of the nonholonomic Hamilton-Jacobi equation associated with the reduced system. We illustrate through a few examples how the Dirac-Hamilton-Jacobi equation can be used to exactly integrate the equations of motion.Comment: 44 pages, 3 figure

    The geometric structure of nonholonomic mechanics

    Get PDF
    Many important problems in multibody dynamics, the dynamics of wheeled vehicles and motion generation, involve nonholonomic mechanics. Many of these systems have symmetry, such as the group of Euclidean motions in the plane or in space and this symmetry plays an important role in the theory. Despite considerable advances on both Hamiltonian and Lagrangian sides of the theory, there remains much to do. We report on progress on two of these fronts. The first is a Poisson description of the equations that is equivalent to those given by Lagrangian reduction, and second, a deeper understanding of holonomy for such systems. These results promise to lead to further progress on the stability issues and on locomotion generatio
    corecore