
Strathprints Institutional Repository

Maclean, Craig David and Biggs, James (2013) Path planning for simple wheeled robots : sub-
Riemannian and elastic curves on SE(2). Robotica, 31 (08). pp. 1285-1297. ISSN 0263-5747

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9844396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Path planning for simple wheeled robots: Sub-Riemannian and

elastic curves on SE(2)

Craig Maclean∗ James D. Biggs

Advanced Space Concepts Laboratory, Department of Mechanical & Aerospace Engineering,

University of Strathclyde, Glasgow, G4 0LT, UK

ABSTRACT

This paper presents a motion planning method for a

simple wheeled robot in two cases: (i) where transla-

tional and rotational speeds are arbitrary and (ii) where

the robot is constrained to move forwards at unit speed.

The motions are generated by formulating a constrained

optimal control problem on the Special Euclidean group

SE(2). An application of Pontryagin’s maximum prin-

ciple for arbitrary speeds yields an optimal Hamiltonian

which is completely integrable in terms of Jacobi elliptic

functions. In the unit speed case, the rotational veloc-

ity is described in terms of elliptic integrals and the ex-

pression for the position reduced to quadratures. Reach-

able sets are defined in the arbitrary speed case and a nu-

merical plot of the time-limited reachable sets presented

for the unit speed case. The resulting analytical func-

tions for the position and orientation of the robot can be

parametrically optimised to match prescribed target states

within the reachable sets. The method is shown to be eas-

ily adapted to obstacle avoidance for static obstacles in a

known environment.

∗Corresponding author. E-mail: craig.maclean@strath.ac.uk

1 Introduction

The task of computing a suitable trajectory from a

given initial condition to a desired final point is funda-

mental in robotics. However for some robotic systems,

such as wheeled robots, motion planning is challenging

due to their inherent nonholonomic constraints. Subse-

quently, many methods use linearisation or introduce lo-

cal co-ordinates in order to tackle the motion planning

problem (MPP). Nevertheless, motion planning is essen-

tially a global problem and ideally requires a global ap-

proach.

In the context of optimisation the optimal path between

the start and end points is often selected via the use of a

numerical optimisation procedure. Despite the numerous

optimisation tools available, the use of optimal control

theory to tackle the MPP has had little impact on practical

applications, presumably because the delicate numerical

treatment of optimal control problems is often less suited

to practical implementation than other methods.

However, since the development of geometric control

theory1, new approaches have arisen which exploit the

underlying analytic structure of the system. When the

configuration space can be represented by a Lie group,
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as in the case of the wheeled robot on the Special Eu-

clidean group SE(2)2, motion planning algorithms can

be designed based on this global representation3–5. For

nonholonomic systems defined on Lie groups the motion

planning problem methodologies are naturally based on

Lie-algebraic techniques. The control functions are de-

signed such that motions are generated in the direction of

the iterated Lie bracket i.e. in the direction which is not

directly controlled. By application of the maximum prin-

ciple of optimal control6, and by specifying an appropri-

ate quadratic cost function, the optimal Hamiltonian for

nonholonomic systems such as a wheeled robot can be

obtained. If the Hamiltonian is integrable then the opti-

mal control problem can be reduced to quadratures and

often solved analytically. Moreover, for wheeled robots

whose configuration space is SE(2), the Hamiltonian is

always integrable1.

The problem of motion planning for simple wheeled

robots has been widely studied. In early work on the

subject Dubins7 derived a method for generating trajec-

tories for a car like robot, termed Dubins’ car8, which

is constrained to move forwards at unit speed. In this

method the paths are constructed from straight line seg-

ments and arcs of constant curvature, and are referred to

as Dubins’ curves or paths8. Dubins’ curves are short-

est length curves in Euclidean space, whose curvature is

uniformly bounded for all points along the curve, which

connect two arbitrary points9. It was shown that Dubins’

car is capable of arriving at any state (assuming no obsta-

cles) using a combination of no more than three motion

primitives - left turn, right turn or straight ahead. Reeds

and Shepp10 extended the work of Dubins by defining the

shortest paths for a car capable additionally of reversing

at unit speed. Dubins’ curves have been used extensively

in motion planning for a range of systems, including un-

manned air vehicles11 and underwater vehicles12.

Scheuer and Fraichard13 developed a motion planning

method to overcome an inherent limitation of Dubins’

curves - that the wheeled robots are required to stop to

reorientate at each section of the path. This method, de-

rived from Dubins’ curves, generates continuous curva-

ture curves which do not require the robot to stop and

reorientate, and was extended to include obstacle avoid-

ance14,15.

Murray and Sastry16 extended the work of Brockett17 on

steering drift free nonholonomic systems, and showed

that for certain classes of system the optimal controls

take the form of sinusoids. A particular benefit of this

method is the ability to satisfy orientation constraints by

exploiting the periodicity of the controls. Other methods

for motion planning of wheeled robots include the use of

polynomial spiral trajectories18, in which the path is de-

scribed by a continuous control function.

Murray, Canny and Latombe19–21 pay particular attention

to the nonholonomic motion planning problem for sim-

ple robots, while Brockett22 showed that for a particular

nonholonomic system the optimal controls were elliptic

functions.

In this paper a simple analytical motion planning method

is derived via the framework of geometric control the-

ory that seeks to define a general class of curves for the

wheeled robot in two cases (i) where translational and

rotational speeds are arbitrary and (ii) where the robot is

constrained to move forwards at unit speed. The opti-

mal Hamiltonian is shown to be completely solvable in

the arbitrary speed case, where the position and orienta-

tion can be described analytically using elliptic functions.

These elliptic functions have special cases which include
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hyperbolic functions and the sinusoids commonly used

in motion planning16. As a result, a wide range of pos-

sible curves are obtained. In the unit speed case the rota-

tional velocity is described in terms of elliptic integrals

and the expression for the position can be reduced to

quadratures. A truncated approximation is then used to

describe the position analytically. It is interesting to note

that the motion planning formulation of a wheeled robot

with arbitrary and unit speed is analogous to the defini-

tion of sub-Riemannian and elastic curves on SE(2) re-

spectively. Therefore, when tracking these motions the

robotic vehicles will trace a sub-Riemannian or elastic

curve.

Reachable sets are defined exactly in the arbitrary speed

case, and time-limited reachable sets presented in the

unit speed case. A method for parametrically optimising

the analytical equations describing the motion to match

prescribed boundary conditions and produce reference

tracks is presented. The completely analytical expres-

sions enable the references to be generated rapidly and

at low computational cost. Finally it is shown that the

set of feasible curves can be probed to create a simple

obstacle avoidance algorithm in a static and known en-

vironment. This enables a range of single curves to be

generated which match boundary conditions on the final

position while avoiding forbidden areas.

The paper is organised as follows. In Section 2 we intro-

duce the model of the wheeled robot and explain some

preliminary concepts concerning the framework of geo-

metric control theory. In Section 3 we explain how the

optimal controls are derived from the optimal Hamilto-

nian. In Section 4 we solve explicitly for the completely

analytical optimal controls in the arbitrary speed and unit

speed cases. Reachable sets are defined in Section 5. In

Section 6 we describe the parametric optimisation proce-

dure to find the optimal curve which satisfies the bound-

ary conditions, and show how the procedure can be ex-

tended to provide simple obstacle avoidance for static and

known obstacles. Finally we summarise the findings of

the paper and present future work in Section 7.

2 Problem Statement on SE(2)

In this section the motion planning problem for a sim-

ple wheeled robot is framed in the context of an optimal

control problem on a matrix Lie group. The general def-

initions of a Lie group, Lie algebra and the dual of the

Lie algebra are introduced, and these concepts are related

to the specific problem of motion planning for a wheeled

robot.

2.1 Model

The wheeled robot model under consideration is

shown in Figure 1. The distance between the front and

Figure 1: Wheeled robot model. Body axis is placed at
centre of rear axle with x-axis lying along centre line of
robot.

rear axles is given by L. The angle between the body

fixed x− y frame and the inertial X −Y frame is denoted

by θ . A sliding constraint is imposed by the assumption

that in a small time interval dt the wheeled robot moves

in approximately the direction that the rear wheels are

pointing8. This condition can be written as the Pfaffian
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constraint:

−Ẋ sinθ + Ẏ cosθ = 0 (1)

As in Choset23 we choose to focus on the position and

orientation of the wheeled robot. Therefore we eliminate

the steering angle φ from the representation of the con-

figuration and treat it as part of the control. The control

system is then described by:

Ẋ = u1 cosθ

Ẏ = u1 sinθ

θ̇ = u3;

(2)

where u1 and u3 are the controls in translation and rota-

tion respectively.

2.2 Preliminary Concepts

We begin with some general definitions of matrix Lie

groups, the Lie algebra and it’s dual from Bloch2:

Definition 1 A matrix Lie group is a set of invertible

n× n matrices that are closed under matrix multiplica-

tion and that are a submanifold of Rn×n.

An example of a matrix Lie group is the Special Eu-

clidean group, SE(2), whose elements represent the con-

figuration described by an orthonormal frame attached to

a Euclidean plane.

Definition 2 A Lie algebra g is a set of n× n matrices

that is a vector space with respect to the usual operations

of matrix addition and multiplication by real numbers

(scalars) and that is closed under the matrix Lie bracket

operation [·, ·].

Definition 3 Let G be a Lie group and g its Lie algebra

with [·, ·] the associated Lie bracket. The dual space g∗

is a Poisson manifold with Poisson bracket {p̂(·), p̂(·)}=

−p̂([·, ·]) where (·) ∈ g.

We will now relate these concepts to the optimal con-

trol of a nonholonomic wheeled robot. The configuration

space of the wheeled robot in Figure 1 can be described

by a curve g(t) ∈ SE(2) and expressed in matrix form as:

g(t) =

 R(t) γ

0 1

 (3)

where R(t) ∈ SO(2) (the Special Orthogonal group) rep-

resents the rotational component of the motion, and

γ ∈ℜ2 (the Euclidean plane) the translational compo-

nent. The rotation matrix R(t) is given by:

R(t) =

 cosθ −sinθ

sinθ cosθ

 (4)

and γ = [X Y ]T .

The tangent space at the identity is the Lie algebra de-

noted se(2). It follows that the kinematics of the simple

wheeled robot can be expressed as a left invariant control

system on SE(2) as:

dg(t)
dt

= g(t)(
s

∑
i=1

ui(t)Ai) (5)

where ui with i = 1, ...,s are controls and A1, ...,A3 ∈

se(2) are the basis of the Lie algebra se(2). The Lie

algebra se(2) is a vector space together with the matrix

commutator, the Lie bracket:

[X ,Y ] = XY −Y X (6)
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where X ,Y ∈ se(2). The basis are defined by:

A1 =


0 0 1

0 0 0

0 0 0



A2 =


0 0 0

0 0 1

0 0 0



A3 =


0 −1 0

1 0 0

0 0 0



(7)

satisfying the commutative table shown in Table 1.

Table 1: Commutative table for basis on se(2)

A1 A2 A3

A1 0 0 −A2

A2 0 0 A1

A3 A2 −A1 0

Note that the lateral direction, represented by the basis

A2, is not directly controlled (u2 = 0) due to the sliding

constraint expressed in (1). However the Lie bracket en-

ables motions to be generated in the A2 direction despite

not having a control directly associated with it.

By differentiating (3) and substituting into (5) we obtain

the control system defined in (2). Note also that the drift-

less system in (5) can be augmented to include systems

with drift by setting one of the controls ui to a constant a

priori without loss of generality.

Subject to the kinematic nonholonomic constraint given

by (5) and given that the system is controllable the prob-

lem is then to find a trajectory g(t)∈ SE(2) from an initial

position and orientation g(0) ∈ SE(2) to a final position

and orientation g(T )∈ SE(2), where T is some fixed final

time, that minimises the functional:

J =
1
2

∫ T

0

s

∑
i=1

ciu2
i dt (8)

where i = 1, ...,s and ci are constant weights. In addi-

tion it enables the MPP to be formulated in the context

of geometric optimal control and this enables us to ask

questions of integrability and in some cases solve the sys-

tem in closed form. Furthermore, obtaining a closed form

solution essentially reduces the MPP to a problem of op-

timising the available parameters to match the prescribed

boundary conditions.

3 Methodology

The methodology for the MPP comprises the following

phases:

1. Lifting the optimal control problem on SE(2) to a

Hamiltonian setting via the maximum principle of

optimal control.

2. Solving integrable cases of the Hamiltonian vector

fields analytically in the most general form of the

cost function (8).

3. Given the optimal velocities derive the correspond-

ing motions in SE(2) analytically, reducing the MPP

to a parameter optimisation problem.

4. Defining the reachable sets of the optimal motions.

5. As the boundary conditions are not contained in

the cost function, optimise the available parame-

ters of the analytic solutions to match the prescribed

boundary conditions.

The application of the coordinate free maximum prin-

ciple to left-invariant optimal control problems is well
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known, see Jurdjevic1 and Sussman24. As the Hamil-

tonian is left-invariant the cotangent bundle T ∗SE(2) can

be realised as the direct product SE(2)× se(2)∗ where

se(2)∗ is the dual of the Lie algebra se(2) of SE(2).

Therefore, the original Hamiltonian defined on T ∗SE(2)

can be expressed as a reduced Hamiltonian on the dual

of the Lie algebra se(2)∗ as T ∗SE(2)/SE(2) ∼= se(2)∗.

Essentially this means that the translational and rota-

tional symmetry of the wheeled robot problem enables

the Hamiltonian to be defined independently of configu-

ration co-ordinates on the dual of the Lie algebra. This

means that the Hamiltonian is highly simplified, and

makes the process of solving for the optimal controls sim-

pler.

The appropriate Hamiltonian for the constraint (5) with

respect to minimizing the cost function (8) is given by

(see Jurdjevic1 for details):

H(p,u,g) =
s

∑
i=1

ui p(g(t)Ai)−ρ0
1
2

s

∑
i=1

ciu2
i (9)

where s ≤ 3, p ∈ T ∗SE(2) and ρ0 = 1 for regular ex-

tremals and ρ0 = 0 for abnormal extremals. Jurdjevic1

showed that abnormal extremals are a subset of regular

extremals, therefore in this paper we consider only the

regular extremals, setting ρ0 = 1. As stated the Hamil-

tonian (9) defined on T ∗SE(2) is expressed as a reduced

Hamiltonian on the dual of the Lie algebra se(2)∗. It fol-

lows that p(g(t)Ai) = p̂(Ai) for any p = (g(t), p̂) and any

Ai ∈ se(2). Defining the extremal (linear) functions ex-

plicitly as λi = p̂(Ai), where p̂ ∈ se∗(2) the Hamiltonian

(9) can be expressed on se(2)∗ as:

H =
s

∑
i=1

uiλi−
1
2

s

∑
i=1

ciu2
i (10)

Through the maximum principle and the fact that the con-

trol Hamiltonian (10) is a concave function of the control

functions ui, it follows by calculating ∂H
∂ui

= 0 that the op-

timal kinematic control inputs are:

u∗i =
1
ci

λi, (11)

where i = 1, ...,s and λi are the extremal curves. Sub-

stituting (11) back into (10) gives the appropriate left-

invariant quadratic Hamiltonian:

H =
1
2
(

s

∑
i=1

λ 2
i

ci
) (12)

For each quadratic Hamiltonian (12), the correspond-

ing vector fields are calculated using the Poisson bracket

{p̂(·), p̂(·)} = −p̂([·, ·]) where (·) ∈ se(n). Then the

Hamiltonian vector fields are given by:

d(·)
dt

= {·,H} (13)

where (·) ∈ se(2)∗. Finally, substituting (11) into (5)

yields:
dg(t)

dt
= g(t)∇H (14)

where ∇H is the gradient of the Hamiltonian and g(t) ∈

SE(2) are the corresponding paths. The MPP is thus re-

duced to solving for g(t) ∈ SE(2) such that the boundary

conditions g(0) ∈ SE(2) and g(T ) ∈ SE(2) in some final

time T are matched. Equations (13) and (14) are inte-

grable with the three integrals of motion: (i) the Hamil-

tonian H; (ii) the Casimir function M = λ 2
1 + λ 2

2 and ;

(iii) the integral of motion ϕ3 corresponding to a right-

invariant vector field. The corresponding Hamiltonian

vector-fields (13) which describe the extremal curves are

3-dimensional with the Hamiltonian and Casimir provid-

ing two integrals of motion. Therefore each extremal can

be decoupled and described by a 1 degree of freedom or-

dinary differential equation. In addition integrability is

an intrinsic property of the system as it implies that all

motions will be regular.
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4 Extremal Curves

In this section we derive the optimal Hamiltonians in

the arbitrary speed and unit speed cases through applica-

tion of Pontryagin’s maximum principle, before solving

explicitly for the optimal controls.

4.1 Arbitrary Translational and Rotational Speed

We assume that the wheeled robot can move backward

or forwards at a velocity v which can be controlled. This

sliding constraint (1) can be expressed as:

dγ

dt
= R(t)

 v

0

 (15)

where γ = [X Y ]T . Furthermore, the robot can rotate at an

angular velocity ω = θ̇ which can also be controlled. Dif-

ferentiating equation (3) and taking into the account the

constraint (15) it is easily shown that the nonholonomic

kinematic constraint can be expressed as a left-invariant

differential equation:

g(t)−1 dg(t)
dt

=


0 −ω v

ω 0 0

0 0 0

 (16)

This can be expressed in the form:

g(t)−1 dg(t)
dt

= vA1 +ωA3 (17)

where the Lie algebra is given by (7) and the cost function

(8) is given by:

J =
1
2

1∫
0

v2 + cω
2dt (18)

where c is a constant weight. The time t is scaled such

that in real time τ with final fixed time T is t = τ/T .

In relation to the general form (8) u1 = v,c1 = 1,u3 =

ω,c3 = c. This cost function minimises steering effort

and forward velocity. Together, the kinematic constraints

(16) and the cost (18) are analogous to a sub-Riemannian

curve on SE(2)25. That is, while we constrain the mo-

tion planning problem to a fixed time T , a curve would

be constrained by a fixed length. Therefore the Hamil-

tonian function corresponding to the constraint (16) that

minimises the cost function (18) is:

H = vλ1 +ωλ3−
1
2
(v2 + cω

2) (19)

Then Pontryagin’s maximum principle says that if:

∂H
∂v

= 0,
∂H
∂ω

= 0,
∂ 2H
∂v2 < 0,

∂ 2H
∂ω2 < 0, (20)

then the functions v and ω are optimal. These conditions

are satisfied if:

v = λ1, ω = λ3
c

(21)

Substituting these values into (19) yields the optimal

Hamiltonian H∗:

H∗ =
1
2

(
λ

2
1 +

λ 2
3
c

)
(22)

The corresponding Hamiltonian vector fields which im-

plicitly define the extremal solutions are given by the

Poisson bracket dλi
dt = {λi,H} where i = 1, ...,3. This

yields the differential equations:

λ̇1 =
λ2λ3

c

λ̇2 =−λ1λ3
c

λ̇3 =−λ1λ2

(23)

In addition observe that the Casimir function:

M = λ
2
1 +λ

2
2 (24)

is constant along the Hamiltonian flow i.e. {M,H∗}= 0.

The integrability of the system can be confirmed geomet-

rically by plotting the intersection of the integrals of the

system, the Hamiltonian (22) and the Casimir function

(24), as shown in Figure 2.
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Figure 2: Plot of intersection between the Hamiltonian
function (light) and Casimir (dark) in arbitrary speed
case. In this case m = M/2H∗ < 1

It is known that the intersection of two quadratic sur-

faces define elliptic curves which in turn are parame-

terised by elliptic functions, see Husemoller26. Therefore

the extremal curves can be solved via elliptic functions as

shown in the following Lemma:

Lemma 1 The optimal velocity v in the surge direction

and angular velocity ω that minimise the cost function

(18) subject to the kinematic constraint (16) are Jacobi

elliptic functions sn(·, ·),dn(·, ·) of the form:

v =
√

Msn
(√

2H∗√
cH∗

t, M
2H∗

)
ω =

√
2H∗

c dn
(√

2H∗√
cH∗

t, M
2H∗

) (25)

where H∗ and M are constants defined by (22) and (24)

respectively and c is the constant weight in the cost func-

tion (18) with the corresponding path:

X =−
√

2
√

cH∗√
M

dnΦ+
√

2H∗c
M

Y = 2H∗t√
M
−
√

2H∗cE(amΦ, M
2H∗ )

(26)

where E(·, ·) is the elliptic integral of the second kind and

am(·) is the Jacobi amplitude and where the rotation of

the body along the path is:

R(t) =

 cnΦ −snΦ

snΦ cnΦ

 (27)

with Φ =
(√

2H∗√
cH∗

t, M
2H∗

)
, and:

θ = am(Φ). (28)

Proof.

The conserved quantity (24) can be parameterised by the

Jacobi elliptic functions:

λ1 = rsn(αt,m) , λ2 = rcn(αt,m) (29)

Substituting (29) into (24) yields r =
√

M. Then (22) can

be parameterised by defining:

λ3 = adn(αt,m) (30)

Substituting (29) and (30) into (22) we find that a =
√

2H∗c. From this we can derive that m = M/2H∗ and

so:

λ1 = rsn
(
αt, M

2H∗
)

λ2 = rcn
(
αt, M

2H∗
)

λ3 =
√

2H∗cdn
(
αt, M

2H∗
)

(31)

Finally to obtain α substitute (31) into (23), giving α =
√

2H∗/
√

cH∗ and enabling the complete expressions for

the extremal functions to be written as:

λ1 = rsn
(√

2H∗√
cH∗

t, M
2H∗

)

λ2 = rcn
(√

2H∗√
cH∗

t, M
2H∗

)

λ3 =
√

2H∗cdn
(√

2H∗√
cH∗

t, M
2H∗

)
(32)

The relationship between the optimal velocities and the

extremals (21) then enables us to derive (25). As ω = θ̇
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it follows from (25) that:

θ = am(Φ)+C1 (33)

where C1 is a constant of integration. For simplicity we

set C1 = 0 such that the rotation matrix R(t) emanates

from the origin. This yields (27). Substituting (27) and

(25) into equation (15) we find that:

dγ

dt
=

 √MsnΦcnΦ

√
Msn2Φ

 (34)

These can be integrated analytically to give the expres-

sions for the evolution of the robot’s path (26). �

Remark 1 It is interesting to note the change in be-

haviour of the elliptic functions as the parameter m =

M/2H∗ changes. For 0 < m < 1 the optimal controls are

described by (25), and the Casimir and Hamiltonian in-

tersect as in Figure 2.

As m = M/2H∗ → 0 in (25), the velocity in translation

tends to a sinusoid and the velocity in rotation tends to a

constant, viz:

v =
√

Msin(
√

2H∗√
cH∗

t)

ω =
√

2H∗
c

(35)

Note also that the elliptic functions in the expression (34)

tend to sine and cosine. As sine and cosine are special

cases of the elliptic functions described above, this sug-

gests that it may be possible to derive a more general

form of the control using sinusoids described by Murray

and Sastry16.

As m = M/2H∗ → 1, the equations (25) tend to hyper-

bolic functions:

v =
√

Mtanh(
√

2H∗√
cH∗

t)

ω =
√

2H∗
c sech(

√
2H∗√
cH∗

t)
(36)

This case is shown in Figure 3a).

Figure 3: Plot of intersection between the Hamiltonian
function (light) and Casimir (dark) in arbitrary speed case
defining the extremal curves for a) m = M/2H∗ = 1 and
b) m = M/2H∗ > 1

Finally when m = M/2H∗ > 1, the equations (25) are

transformed using the Jacobi transformation27 which

gives:

v =
√

2H∗sn
(√

M
c t, 2H∗

M

)
ω =

√
2H∗

c cn
(√

M
c t, 2H∗

M

) (37)

This case is shown in Figure 3b). The behaviour of the el-

liptic functions can be further explained by analogy with

the simple pendulum28. Plotting the curves in Figures 2

and 3 in 2D we obtain Figure 4.

Figure 4: 2D plot of intersection between the Hamilto-
nian function and Casimir (solid shaded area) in arbitrary
speed case for different values of m

The case where m> 1 can be thought of as corresponding

to oscillatory solutions in the phase plane of the pendu-

lum where it is swinging back and forth, while m = 1 de-
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fines a heteroclinic connection and m < 1 the case where

the pendulum has high energy.

4.2 Unit Speed

We now assume that the wheeled robot is constrained

to move forward at fixed unit speed (v = 1). This corre-

sponds to the case where the system has drift. The veloc-

ity constraint can be expressed as:

dγ

dt
= R(t)

 1

0

 (38)

Furthermore, the robot can rotate at an angular velocity

ω = θ̇ which is controllable. Differentiating equation (3)

and taking into the account the constraint (38) the non-

holonomic kinematic constraint can be expressed as the

left-invariant differential equation:

g(t)−1 dg(t)
dt

=


0 −ω 1

ω 0 0

0 0 0

 (39)

This can be written in the form:

g(t)−1 dg(t)
dt

= A1 +ωA3 (40)

where the Lie algebra is given by (7) and the cost function

(8) is expressed as:

J =
1
2

1∫
0

ω
2dt (41)

The time t is scaled such that in real time τ with final

fixed time T is t = τ/T . In relation to the general form

(8) u1 = 1,c1 = 1,u3 =ω,c3 = 1. Together, the kinematic

constraint (39) and the cost function (41) are analogous

to the definition of an elastic curve on SE(2), where ω

is analogous to curvature. Jurdjevic29 reduced the ex-

tremals of this problem to quadratures. However, this pa-

per extends this by solving explicitly the optimal steering

control in terms of an elliptic function.

The Hamiltonian function corresponding to the constraint

(39) that minimises the cost function (41) is:

H = λ1 +ωλ3−
1
2
(ω2) (42)

Then, Pontryagin’s maximum principle says that if:

∂H
∂ω

= 0,
∂ 2H
∂ω2 < 0, (43)

then the function u is optimal. These conditions are sat-

isfied if:

ω = λ3 (44)

Substituting these values into (42) yields the optimal

Hamiltonian H∗:

H∗ =
1
2
(λ 2

3 )+λ1 (45)

The corresponding Hamiltonian vector fields which im-

plicitly define the extremal solutions are given by the

Poisson bracket dλi
dt = {λi,H∗}. This yields the differ-

ential equations:

λ̇1 = λ2λ3,

λ̇2 =−λ1λ3,

λ̇3 =−λ2

(46)

In addition the Casimir function (24) is again constant

along the Hamiltonian flow.

Note that by setting λ1,λ2 = 0 in (46) we find that λ̇3 = 0

and λ3 = const. Therefore this corresponds to the curves

of constant curvature commonly used in motion planning.

In addition, setting λ1,λ2,λ3 = 0 yields straight line seg-

ments. Therefore (46) can be manipulated to obtain the

motion primitives which comprise Dubins’ curves.

As for the arbitrary speed case, the integrability of the

unit speed system can be confirmed geometrically by

plotting the intersection of the integrals of the system, the

Hamiltonian (45) and the Casimir function (24) as shown

in Figure 5. The two quadratic surfaces intersect and de-

10



Figure 5: Plot of the Hamiltonian function (light) and
Casimir (dark) in unit speed case.

fine elliptic curves which can again be parameterised by

elliptic functions26. Therefore the system is integrable,

and the extremal curves can be solved analytically via the

use of Jacobi elliptic functions and Taylor expansions as

stated in the following Lemma:

Lemma 2 The optimal angular velocity ω that min-

imises the cost function (41) subject to the kinematic con-

straint (39) is a Jacobi elliptic function of the form:

ω =
√

s1sn(
√

αs2t +K,
s1

s2
) (47)

where the constant K is defined by:

K = sn−1(
λ3(0)√

s1
,

s1

s2
) (48)

with:

s1 =
−β+
√

β 2−4αχ

2α

s2 =
−β−
√

β 2−4αχ

2α

(49)

and:

α =− 1
4

β = H∗

χ = M−H∗2

(50)

Proof. By combining the conserved quantities (45) and

(24) it can be found that:

λ2 =

√
M− (H∗− 1

2
λ 2

3 )
2 (51)

Then, squaring the expressions for λ̇1 and λ̇3 in (46) and

combining with (51) gives:

λ̇
2
3 =−1

4
λ

4
3 +H∗λ 2

3 +(M−H∗2) (52)

This expression can be written in the form:

λ̇
2
3 = α(s1−λ

2
3 )(s2−λ

2
3 ) (53)

and then rewritten as the integral:

t∫
0

dt =

λ3(t)∫
λ3(0)

1√
α(s1−λ 2

3 )(s2−λ 2
3 )

dλ3 (54)

In order to simplify the integration, we use the substitu-

tion:

λ3 =
√

s1sn(u,m) (55)

Note that m = s1
s2

. Differentiating gives:

dλ3 =
√

s1cn(u,m)dn(u,m) (56)

Substituting (55) and (56) into (54) leads to an equation
of the form:

t∫
0

dt =

u2∫
u1

√
s1cn(u,m)dn(u,m)

√
α

√
s1s2− s2

1sn2(u,m)− s1s2sn2(u,m)+ s2
1sn4(u,m)

du (57)

where:

u1 = sn−1(λ3(0)√
s1
, s1

s2
)

u2 = sn−1(λ3(t)√
s1
, s1

s2
)

(58)

With some manipulation equation (57) reduces to:

t∫
0

dt =

u2∫
u1

1
√

αs2
du (59)

Integrating and rearranging leads to the equation for

λ3(t):

λ3(t) =
√

s1sn(
√

αs2t +K,
s1

s2
) (60)

where the constant K is given in (48). Remembering that
ω = λ3(t) yields the expression for the rotational angular
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velocity (47).� The orientation of the wheeled robot is
given by θ =

∫
ωdt, therefore:

θ =
2
√

s1√
m
√
−s2

log(−
√

mcn(K+
1
2
√
−s2t,m)+dn(K+

1
2
√
−s2t,m))+C1 (61)

where:

C1 =−
2
√

s1√
m
√
−s2

log(−
√

mcn(K,m)+dn(K,m)) (62)

Substituting (61) into Equation (38) yields:

dγ

dt
=

 cos(θ)

sin(θ)

 (63)

These expressions cannot be integrated analytically for X

and Y . However Taylor expanding (63) in t about t = 0

and integrating enables approximate analytical expres-

sions for X and Y to be found. Note that as a result of the

Taylor expansion these expressions will only be conver-

gent for t in [0,1), however the references can be easily

scaled to the desired time.

5 Reachable Sets

In this paper, we define reachable sets as the states

in the wheeled robot’s configuration space which are

achievable via a single trajectory from the starting point

at the origin. The robot’s environment is assumed to be

obstacle free when defining reachable sets.

5.1 Arbitrary Translational and Rotational Speed

Since the magnitudes of the forward and rotational

speeds are unconstrained, the reachable sets in the X −Y

plane which can be reached via a single manoeuvre are

limited only by the parameter space and the physical con-

straints of the robot (e.g. turning radius). All other X−Y

positions are reachable in time t in the interval (0,∞). Re-

arranging (28) leads to an expression for the orientation

θ f which is reached after some final time T :

T =
F(θ f ,m)

α
(64)

where F is an elliptic integral of the first kind30, with

m = M/2H∗ and α =
√

2H∗/
√

cH∗ as in Section 4.1.

Therefore for some final orientation θ f and some values

of the free parameters H∗,M and c, we have the time re-

quired to reach this orientation. The final position X f ,Yf

can be found from (26) at t = T . Then for θ f ∈ [0,2π]

and H∗,M,c ∈ (0,∞] the complete reachable sets for the

arbitrary speed case are defined.

5.2 Unit Speed

The expression for θ (61) in the unit speed case can-

not be solved explicitly for t and so the reachable sets

are difficult to analytically define. Therefore in this case

it is useful to numerically evaluate time-limited reach-

able sets. Constraining H∗,M,λ3(0) ∈ (0,1], manoeuvre

time to T = 1 and running random Monte Carlo simula-

tions we can numerically evaluate the time-limited reach-

able sets. This can be seen in Figure 6. In this case

Figure 6: Time limited subset of reachable sets deter-
mined numerically for T=1, H∗,M,λ3(0) ∈ (0,1]. 1000
trajectories plotted.

the reachable sets for the wheeled robot constrained to

move at unit speed but with arbitrary rotational velocity
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are similar to the time-limited reachable sets for Dubins’

car, which is constrained to move at unit speed on arcs

of fixed curvature8. This is to be expected as the paths

which mark the upper and lower bounds of the graph are

those in which the steering angle and hence curvature are

at the maximum allowable value, and so the bounds are

similar to those of Dubins’ car.

6 Motion Planning and Obstacle Avoidance

In this section we introduce a method of matching pre-

scribed boundary conditions on the final position and ori-

entation by parametrically optimising the free parameters

in the equations derived in Section 4. We then show how

the parametric optimisation can be adapted to create a

simple obstacle avoidance algorithm for static obstacles

in a known environment.

6.1 Parametric Optimisation

As the analytical expressions for the angular and trans-

lational displacements of the wheeled robot are functions

of several free parameters, a parametric optimisation can

be utilised in order to drive the robot to the desired tar-

get (provided the target is within the reachable sets of

the planner.) However as noted by LaValle8, no natu-

ral performance metric exists on SE(2) as the rotational

and translational components do not have matching units.

Therefore difficulties can occur when targeting both final

position (X ,Y ) and orientation (θ ) using the standard Eu-

clidean metric:

(X−Xd)
2 +(Y −Yd)

2 +(θ −θd)
2 (65)

However, by using the complex representation of the an-

gular displacement θ = a+ ib, greater accuracy can be

achieved. Therefore a performance metric of the form:

min
H∗,M,Ω

{(X−Xd)
2 +(Y −Yd)

2 +(a−ad)
2 +(b−bd)

2}

(66)

was used where H∗,M and Ω are the free parameters to be

optimised. H∗ is the optimal Hamiltonian, M the Casimir

function and Ω = c is a weight in the arbitrary speed case

and Ω = λ3(0) is the initial angular velocity in the unit

speed case. The subscript d denotes the desired or tar-

get value of the parameters X ,Y and θ . A parametric

optimisation can then be carried out to minimise the er-

ror between the current and target position in SE(2) by

changing the values of the free parameters. Formally this

involves finding the curve g(t) ∈ SE(2) that matches the

boundary conditions g(0) ∈ SE(2) and g(T ) ∈ SE(2) in

some final time T .

The optimal values of the free parameters obtained as a

result of the parametric optimisation are then input into

the analytical expressions for the angular and transla-

tional displacements of the wheeled robot to give X-Y

position and orientation reference tracks for the robot’s

path. This is demonstrated in Section 6.2.

6.2 Motion Planning and Obstacle Avoidance for Arbi-

trary Translational and Rotational Speed

In this subsection we demonstrate the planning of mo-

tions for the wheeled robot in the case of arbitrary trans-

lational and rotational speed. In the absence of obstacles,

any motion which meets the prescribed boundary con-

ditions is sufficient. Figure 7 shows position tracks for

the wheeled robot, generated using the equations derived

in Section 4.1, from the origin to the randomly selected

points [0.18,2.5, π

2 ], [0.4,2,
π

2 ] and [1,3, π

3 ] in 1 second.

We see that the paths are smooth, and that the elliptic

functions lead to a variety of different curves being pro-
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Figure 7: Smooth paths of wheeled robot in X −Y space
for manoeuvres to (from left to right) - [0.18,2.5, π

2 ],
[0.4,2, π

2 ], [1,3,
π

3 ]

duced as the free parameters are varied.

In reality, the configuration space may contain obstacles.

In this case the set of all curves which match the bound-

ary conditions on X and Y can be probed to determine if

a suitable curve exists which avoids the obstacle. Figure

8 shows a subset of the curves which match a target posi-

tion of [1,3] in a time of 1 second. It is obvious that there

are multiple curves which satisfy the position constraint.

In the simplest case, where the obstacle is considered to

be a point mass, the curves must not violate the condition:√
(X−Xo)2 +(Y −Yo)2 = χ (67)

where the subscript o refers to the position of the obsta-

cle and χ 6= 0 for obstacle avoidance. In reality, a for-

Figure 8: Illustration of a subset of curves which match
[1,3] boundary conditions

bidden “zone” is created in the configuration space, and

so a range of positions must be avoided during the ma-

noeuvre. Considering the obstacle to be stationary and

represented by a circle of radius χo in the X−Y configu-

ration space, the condition for obstacle avoidance is then

given by (67) where χ > χo. Given the proposed method

outlined in Section 6.1 for the analytical expressions de-

fined in Section 4.1, the parametric optimisation will re-

turn the optimal values of the free parameters H∗,M∗,c∗

which satisfy the target position. In the case that this ma-

noeuvre violates χ > χo∀t, a simple algorithm can be de-

vised to overcome this. Defining the forbidden region

as a circle in SE(2) with radius χo and centre [Xo Yo]
T ,

provided χ > χo∀t the trajectory will avoid the forbidden

region. If χ < χo for H∗,M∗,c∗ for any t in the inter-

val (0,T ) then we further optimise parameters p1, p2, p3

such that p2
1 > η , p2

2 > η , , p2
3 > η , where η > 0 is a small
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parameter. This leads to a new set of free parameters

H∗∗ = H∗+ p1,M∗∗ = M∗+ p2,c∗∗ = c∗+ p3 being ob-

tained, with the objective function:

min
p1,p2,p3

{(X−Xo)
2 +(Y −Yo)

2} (68)

such that χ > χo∀t. Note that η can be tuned until

χ > χo∀t is satisfied. We follow with an example.

For a manoeuvre from the origin to [1,3] with a static

obstacle centred at [Xo,Yo] = [0.66,1.52] and with radius

χ f = 0.3, the following approach could be employed.

First, generate a manoeuvre using the motion planning

method described in Section 6.1 above. Then, check to

see if the condition χ > χo∀t is violated at any time step.

For instance, for the 1 second repointing manoeuvre to

[1,3, Π

3 ] shown in Figure 7 we find that the wheeled robot

collides with the obstacle at t = 0.56 seconds. Figure 9 il-

lustrates this. Now, a new trajectory can be generated by

Figure 9: Error between current position and centre of
forbidden zone of radius χo (solid line). Horizontal
(dashed) line marks radius of obstacle. Constraint is vio-
lated.

using the parameters pi (where i = 1, ...,3) to produce a

new set of free parameters which drive the wheeled robot

to the target via (68). This process is repeated, tuning

the value of the parameter η until an appropriate solution

is found which does not violate the constraint and still

meets the desired final position to high precision. One

such solution for a constrained manoeuvre from the ori-

gin to [1,3] is shown in Figures 10 and 11.

Figure 10: Alternative smooth trajectory for manoeuvre
to [1,3] (solid line). Also shown is the original path
(dashed line) intersecting with the obstacle (shaded cir-
cle).

Figure 11: Error between current position and centre
of forbidden zone of radius χo (solid line). Horizontal
(dashed) line marks radius of obstacle. Constraint is not
violated since χ > χo∀t.
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It is evident that the constraint χ > χo∀t is respected and

therefore the wheeled robot would not collide with the

specified obstacle.

Note that while the obstacle avoidance algorithm has

been demonstrated here using the arbitrary speed case,

the analytical expressions for position yielded via Tay-

lor expansion in the unit speed case enable the obstacle

avoidance algorithm to be applied in this case also. How-

ever the forward speed constraint in this case limits the

number of alternative trajectories to the same position.

Also note that while the obstacle avoidance algorithm

was implemented for static obstacles in a known envi-

ronment, the analytical curves can be generated swiftly

and efficiently and so an extension to dynamic obstacles

in uncertain environments may be feasible in future.

The main limitation of the obstacle avoidance method de-

tailed above is that while alternative trajectories can be

generated to a specified position in the X −Y plane, it

is not always possible to generate an alternative curve

which does not collide with the obstacle and which sat-

isfies both a position (X ,Y ) and an orientation (θ ) con-

straint. For example in Figure 10 the position constraint

[1,3] is respected, but the final orientation differs from

that of the original curve.

In the case where an alternative curve has been generated

in the presence of an obstacle and a desired final orienta-

tion is not achievable via a single curve, or indeed if a de-

sired final state cannot be reached due to sliding and turn-

ing constraints, a more complex motion planning algo-

rithm is required. For example while a single curve gen-

erated via the motion planner described in this paper may

not be sufficient in all cases, a combination of curves gen-

erated by the motion planner and straight line segments

may enable the desired final state to be reached. The mo-

tion planning methodology can then be summarised in

the following stages:

1. Use the motion planning method described in Sec-

tion 6.1 to minimise the error between the actual and

desired final state (Xd ,Yd ,θd) by changing the values

of the free parameters in the analytical expressions

derived in Sections 4.1 and 4.2. If the accuracy of

the solution is sufficiently high, and it does not in-

tersect with any obstacles in the configuration space,

the trajectory is suitable.

2. In the case where the trajectory intersects with a

static, known obstacle, and where final orientation

is not of paramount importance, further optimise the

parameters pi as described above to generate an al-

ternative trajectory which does not collide with the

obstacle and which sufficiently satisfies the desired

final position constraint (Xd ,Yd).

3. If no single suitable trajectory is found use a com-

bination of curves generated by motion planner and

straight lines to achieve the desired final state.

The difficulty in piecing together motions lies in en-

suring that the transition between segments is smooth (as

in the work of Scheuer and Fraichard13) and that there

are no infeasible increases in translational and rotational

speeds between sections. Several methods for achieving

this have been proposed31–34. These methods consider

the workspace of the robot and any obstacles therein, and

then query the reachable sets to create feasible paths for

the robot by concatenation of different motion primitives.

However this process is outwith the scope of this paper.
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7 Conclusions

In this paper a motion planning method for simple

wheeled robots with a sliding constraint was derived us-

ing optimal control theory for systems defined on Lie

groups. Two cases were considered: (i) the case where

translational and rotational speeds are arbitrary and; (ii)

the case where the robot is constrained to move forwards

at unit speed.

It was found that in the arbitrary speed case the optimal

controls take the form of elliptic functions. This class

of function degenerates to simple trigonometric functions

under certain conditions, and so a wide range of curve

types are available for motion planning.

In the unit speed case the rotational velocity was de-

scribed in terms of elliptic integrals and the expression

for the position reduced to quadratures. A truncated ap-

proximation was then used to describe the position ana-

lytically, resulting in paths which trace elastic curves.

Reachable sets were defined analytically in the arbitrary

speed case by expressing the final manoeuvre time as an

elliptic integral of the first kind, and were illustrated nu-

merically in the unit speed case where the time-limited

reachable sets resembled those of Dubins’ car over short

time spans. It was shown that the analytical expressions

for position and orientation can be exploited to efficiently

generate smooth and feasible paths for the wheeled robots

via parametric optimisation. Finally an algorithm for in-

troducing obstacle avoidance into the parametric optimi-

sation procedure was presented for static obstacles in a

known environment. In this procedure a further paramet-

ric optimisation probes the reachable sets to find a curve

which avoids the static obstacle while satisfying a posi-

tion constraint.

Future work will see the implementation of a concatena-

tion method to feasibly piece together the curves of the

motion planner to give a more complete motion planning

algorithm. This will include amending the motion plan-

ning method to have non-zero initial speeds, and develop-

ing an algorithm to choose the paths most suited to being

pieced together. In addition the possibility of extending

the simple obstacle avoidance algorithm described above

to dynamic and unknown environments will be explored.
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