292 research outputs found

    Local Statistical Modeling via Cluster-Weighted Approach with Elliptical Distributions

    Get PDF
    Cluster Weighted Modeling (CWM) is a mixture approach regarding the modelisation of the joint probability of data coming from a heterogeneous population. Under Gaussian assumptions, we investigate statistical properties of CWM from both the theoretical and numerical point of view; in particular, we show that CWM includes as special cases mixtures of distributions and mixtures of regressions. Further, we introduce CWM based on Student-t distributions providing more robust fitting for groups of observations with longer than normal tails or atypical observations. Theoretical results are illustrated using some empirical studies, considering both real and simulated data.Cluster-Weighted Modeling, Mixture Models, Model-Based Clustering

    Constrained Optimization for a Subset of the Gaussian Parsimonious Clustering Models

    Full text link
    The expectation-maximization (EM) algorithm is an iterative method for finding maximum likelihood estimates when data are incomplete or are treated as being incomplete. The EM algorithm and its variants are commonly used for parameter estimation in applications of mixture models for clustering and classification. This despite the fact that even the Gaussian mixture model likelihood surface contains many local maxima and is singularity riddled. Previous work has focused on circumventing this problem by constraining the smallest eigenvalue of the component covariance matrices. In this paper, we consider constraining the smallest eigenvalue, the largest eigenvalue, and both the smallest and largest within the family setting. Specifically, a subset of the GPCM family is considered for model-based clustering, where we use a re-parameterized version of the famous eigenvalue decomposition of the component covariance matrices. Our approach is illustrated using various experiments with simulated and real data

    A data driven equivariant approach to constrained Gaussian mixture modeling

    Full text link
    Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained equivariant approach, where the class conditional covariance matrices are shrunk towards a pre-specified matrix Psi. Data-driven choices of the matrix Psi, when a priori information is not available, and the optimal amount of shrinkage are investigated. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example

    Robust improper maximum likelihood: tuning, computation, and a comparison with other methods for robust Gaussian clustering

    Get PDF
    The two main topics of this paper are the introduction of the "optimally tuned improper maximum likelihood estimator" (OTRIMLE) for robust clustering based on the multivariate Gaussian model for clusters, and a comprehensive simulation study comparing the OTRIMLE to Maximum Likelihood in Gaussian mixtures with and without noise component, mixtures of t-distributions, and the TCLUST approach for trimmed clustering. The OTRIMLE uses an improper constant density for modelling outliers and noise. This can be chosen optimally so that the non-noise part of the data looks as close to a Gaussian mixture as possible. Some deviation from Gaussianity can be traded in for lowering the estimated noise proportion. Covariance matrix constraints and computation of the OTRIMLE are also treated. In the simulation study, all methods are confronted with setups in which their model assumptions are not exactly fulfilled, and in order to evaluate the experiments in a standardized way by misclassification rates, a new model-based definition of "true clusters" is introduced that deviates from the usual identification of mixture components with clusters. In the study, every method turns out to be superior for one or more setups, but the OTRIMLE achieves the most satisfactory overall performance. The methods are also applied to two real datasets, one without and one with known "true" clusters
    corecore