4 research outputs found

    Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems

    Full text link
    A nonlinear discrete-time control system forced by stochastic disturbances is considered. We study the problem of synthesis of the regulator which stabilizes an equilibrium of the deterministic system and provides required scattering of random states near this equilibrium for the corresponding stochastic system. Our approach is based on the stochastic sensitivity functions technique. The necessary and important part of the examined control problem is an analysis of attainability. For 2D systems, a detailed investigation of attainability domains is given. A parametrical description of the attainability domains for various types of control inputs in a stochastic Henon model is presented. Application of this technique for suppression of noise-induced chaos is demonstrated

    Controllability of Impulsive Neutral Fractional Stochastic Systems

    Get PDF
    The study of dynamic systems appears in various aspects of dynamical structures such as decomposition, decoupling, observability, and controllability. In the present research, we study the controllability of fractional stochastic systems (FSF) and examine the Poisson jumps in finite dimensional space where the fractional impulsive neutral stochastic system is controllable. Sufficient conditions are demonstrated with the aid of fixed point theory. The Mittag-Leffler (ML) matrix function defines the controllability of the Grammian matrix (GM). The relation to symmetry is clear since the controllability Grammian is a hermitian matrix (since the integrand in its definition is hermitian) and this is the complex version of a symmetric matrix. In fact, such a Grammian becomes a symmetric matrix in the specific scenario where the controllability Grammian is a real matrix. Some examples are provided to demonstrate the feasibility of the present theory.This research is funded by the Basque Government through Grant IT1155-22

    Constrained controllability of nonlinear stochastic impulsive systems

    No full text
    This paper is concerned with complete controllability of a class of nonlinear stochastic systems involving impulsive effects in a finite time interval by means of controls whose initial and final values can be assigned in advance. The result is achieved by using a fixed-point argument
    corecore