6 research outputs found

    A generic algorithm for layout of biological networks

    Get PDF
    BackgroundBiological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration.ResultsWe present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks.ConclusionThe presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.publishe

    Application of Approximate Pattern Matching in Two Dimensional Spaces to Grid Layout for Biochemical Network Maps

    Get PDF
    Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html

    Constrained Stress Majorization Using Diagonally Scaled Gradient Projection

    No full text

    Constrained stress majorization using diagonally scaled gradient projection

    No full text
    Constrained stress majorization is a promising new technique for integrating application specific layout constraints into forcedirected graph layout. We significantly improve the speed and convergence properties of the constrained stress-majorization technique for graph layout by employing a diagonal scaling of the stress function. Diagonal scaling requires the active-set quadratic programming solver used in the projection step to be extended to handle separation constraints with scaled variables, i.e. of the form siyi + gij ≤ sjyj. The changes, although relatively small, are quite subtle and explained in detail

    visone - Software for the Analysis and Visualization of Social Networks

    Get PDF
    We present the software tool visone which combines graph-theoretic methods for the analysis of social networks with tailored means of visualization. Our main contribution is the design of novel graph-layout algorithms which accurately reflect computed analyses results in well-arranged drawings of the networks under consideration. Besides this, we give a detailed description of the design of the software tool and the provided analysis methods
    corecore