8 research outputs found

    The design, hysteresis modeling and control of a novel SMA-fishing-line actuator

    Get PDF
    Fishing line can be combined with shape memory alloy (SMA) to form novel artificial muscle actuators which have low cost, are lightweight and soft. They can be applied in bionic, wearable and rehabilitation robots, and can reduce system weight and cost, increase power-to-weight ratio and offer safer physical human-robot interaction. However, these actuators possess several disadvantages, for example fishing line based actuators possess low strength and are complex to drive, and SMA possesses a low percentage contraction and has high hysteresis. This paper presents a novel artificial actuator (known as an SMA-fishing-line) made of fishing line and SMA twisted then coiled together, which can be driven directly by an electrical voltage. Its output force can reach 2.65N at 7.4V drive voltage, and the percentage contraction at 4V driven voltage with a 3N load is 7.53%. An antagonistic bionic joint driven by the novel SMA-fishing-line actuators is presented, and based on an extended unparallel Prandtl-Ishlinskii (EUPI) model, its hysteresis behavior is established, and the error ratio of the EUPI model is determined to be 6.3%. A Joule heat model of the SMA-fishing-line is also presented, and the maximum error of the established model is 0.510mm. Based on this accurate hysteresis model, a composite PID controller consisting of PID and an integral inverse (I-I) compensator is proposed and its performance is compared with a traditional PID controller through simulations and experimentation. These results show that the composite PID controller possesses higher control precision than basic PID, and is feasible for implementation in an SMA-fishing-line driven antagonistic bionic joint

    The interaction between motion and texture in the sense of touch

    Get PDF
    Besides providing information on elementary properties of objects, like texture, roughness, and softness, the sense of touch is also important in building a representation of object movement and the movement of our hands. Neural and behavioral studies shed light on the mechanisms and limits of our sense of touch in the perception of texture and motion, and of its role in the control of movement of our hands. The interplay between the geometrical and mechanical properties of the touched objects, such as shape and texture, the movement of the hand exploring the object, and the motion felt by touch, will be discussed in this article. Interestingly, the interaction between motion and textures can generate perceptual illusions in touch. For example, the orientation and the spacing of the texture elements on a static surface induces the illusion of surface motion when we move our hand on it or can elicit the perception of a curved trajectory during sliding, straight hand movements. In this work we present a multiperspective view that encompasses both the perceptual and the motor aspects, as well as the response of peripheral and central nerve structures, to analyze and better understand the complex mechanisms underpinning the tactile representation of texture and motion. Such a better understanding of the spatiotemporal features of the tactile stimulus can reveal novel transdisciplinary applications in neuroscience and haptics

    Mechanical Design and Analysis of a Discrete Variable Transmission System for Transmission-Based Actuators

    Get PDF
    Over the past few years, replacing the hydraulic servo actuators with their electrical counter parts for robotics and remote handling systems has been an active field of research. These systems are of particular interest for tasks involved with the US Department of Energy, where the level of radiation exposure is high and the tasks are highly repetitive. With the hydraulic servo actuators, one is concerned with the issues like the high complexity, cost of the system and the difficulty of maintenance of the system. For high payload operations, the hydraulic systems provide an order of magnitude increase in the power density, which is almost impossible to achieve using the electrical servo actuators. Hence, for the electrical servo actuators to be used for high payload operations, the fundamental issue concerning the power and torque density must be addressed. Previous research conducted on this front suggested the use of a variable speed transmission system to spread the servomotor’s torque-speed characteristics across a wider output speed range. This has the effect of allowing smaller high power motors to also deliver high torques at low speeds. By using a variable speed transmission, the motor size can be reduced dramatically while increasing the overall actuator power density in the process. This work goes further into the detailed design of the discrete variable transmission system. A three-stage planetary gear transmission system is considered for the analysis and design. With the use of the three-stage planetary gear transmission, there are a complex and varied design issues involved. Selecting a configuration for the transmission is the first question to be answered. With the given configuration, and the ratios required the individual gears have to be sized accordingly. Other design elements involve the design of the shafting, achieving the desired configuration, bearings, housing and the design of a gear shifting mechanism. A detailed kinematic and dynamic analysis of the entire gear system is required for the design of the various components mentioned above. Analytical results are presented along with a computer-aided analysis of the work using the Pro-Engineer design and analysis software. Future work on this will be to turn this into a commercially available system, which comes down to optimizing the current design. Possibilities of optimization for the current design will be identified. A discussion on the prototype evaluation of the transmission system along with a sample test result is presented

    SMA Actuator Priming using Resistance Feedback

    Get PDF
    Shape memory alloys (SMAs) are a group of alloys that demonstrate the unique ability of returning back to a previously defined shape or size if subjected to the appropriate thermal procedure. They have been implemented as actuators in a wide range of applications spanning several fields such as robotics, aeronautics, automotive and even in medicine. Several controllers, linear and nonlinear, have been designed to control these actuators. However, controlling these actuators is no simple task as they are highly nonlinear due to the hysteresis inherent in them. In fact, their control depends on two important factors: the thermal conditions they are subjected to and the stress applied to them. The former can be further divided into air flow and ambient temperatures. These thermal conditions determine the amount of power needed to heat the SMA wire. In the SMA data sheets, manufacturers specify what they refer to as the "safe current" which is the maximum current value that can be applied to the SMA wire indefinitely without burning it. However, they specify this current value at room temperature and under certain convection conditions. In the work presented here, the focus was the control of SMA actuators under different ambient temperatures. Thus, in this research, the main goal was to design and implement a controller that will actuate, or contract, the SMA wire in approximately the same amount of time regardless of the ambient temperatures with a fixed load applied to it

    Flexinol as Actuator for a Humanoid Finger - Possibilities and Challenges

    Get PDF
    Robots become more and more common in our every day lives as technology develops. Robots are normally actuated by pneumatics, hydraulics or servo motors. These technologies are mature and widely used, but other less commonly used actuators are also available. Among these we find the artificial muscle fiber Flexinol which belongs to a class of materials known as Shape Memory Alloys. This thesis aims to implement the artificial muscle fiber Flexinol as actuator for a humanoid finger. The first part of the thesis focuses on testing of single Flexinol wires to determine in what degree these are suitable for long term use as actuators. A test frame is built to investigate contraction speed, force and displacement for wires in different setups. Among these are tests with a small dead weight, a large dead weight, an antagonistic setup and a setup with a spring working as a passive antagonistic force. The second part of the thesis makes use of Flexinol as actuator when designing and prototyping a humanoid finger. The human finger is used as inspiration in this part, applying tendons and muscles in a human-like way. The finger is designed with CAD-software and then printed in plastic. It is then assembled with tendons and actuated with three Flexinol wires. Finally, an attempt to control the humanoid finger is done. Specially designed software and hardware is developed through the thesis to implement working experiments. Software for both a laboratory computer and a microcontroller is written to control the system and to collect sensory data respectively

    The Development of an Antagonistic SMA Actuation Technology for the Active Cancellation of Human Tremor.

    Full text link
    Human Tremor is an unintentional bodily motion that affects muscle control among both healthy individuals and those with movement disorders, occasionally to severe detriment. While assistive devices avoid the risk of side effects from pharmacological or surgical treatments, most devices are impractical for daily use due to limitations inherent in conventional actuators. The goal of this research is to address these limitations by developing an antagonistic Shape Memory Alloy (SMA) actuation technology, enabling a new class of active tremor cancellation devices. This is accomplished through the construction of a model and body of empirical support that provides the necessary design insight and predictive power for an antagonistic actuator that ensures stable amplitude and high frequency motion with low power draw. Actuation frequency and power draw were improved while balancing their competing effects through the development of: 1) a method that accurately measures the convective coefficient of SMA to enhance actuator design, 2) a growth process for carbon nanotube cooling fins to enhance cooling in a fixed medium, and 3) an understanding of the antagonistic architecture to produce increased frequency in a controllable manner. To enable applications requiring predictability for positioning and complex control, a thermodynamic model for antagonistic SMA was derived to account for inertial, slack, boiling, friction, and convective effects. Using the model, a series of simulation studies provided design insight on the effect of operating environment, driving signal, and environmental conditions so that the generic actuation system can be utilized in a wide variety of applications beyond tremor cancellation. If high forces are required in such applications, stability issues can arise, which were addressed in experimental shakedown research that broadens the high-stress SMA design space. The technology enabled by this dissertation was demonstrated in a working Active Cancellation of Tremor (ACT) prototype that produced 71% RMS cancellation of human tremor. The cancellation results show significant improvement over the current state of the art by providing intuitive, lightweight, compact hand-held tremor cancellation that is a promising solution to numerous assistive applications in medical, military, and manufacturing sectors.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/76010/1/apathak_1.pd
    corecore