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Abstract 

A theoretical and experimental study of strain recovery under fast heating of a shape memory 

alloy (SMA) rod preliminarily stretched in the martensitic state is carried out. Two theoretical 

models are considered: instantaneous heating and heating with temperature variation during a 

finite time. In the first case it is supposed that the straight SMA rod experiences an instantaneous 

reverse martensitic transformation, and in the second the transformation is supposed to progress 

at a rate corresponding to the temperature rate. Analytical expression for the time dependence of 

the rod free end displacement is obtained. In the experiment a wire specimen made of titanium-

nickel SMA was heated by a short impulse of electric current. The variation of the specimen 

length in time was registered. Thus, it has been shown that the minimum operation time of an 

SMA actuator (time needed for the strain recovery) can be reduced to 20 µs. Comparison of the 

theoretical results with the experimental ones leads to the conclusion that the displacement 

variation in time is controlled by the rate of heating and the inertial properties of the specimen. 

The incubation time of the martensitic transformation on the micro-scale apparently is estimated 

as less than 1 µs. 

 

Key words: strain recovery, fast heating, tension, incubation time of transformation, solution of 

motion equation 

 

1. Introduction 

For practical use of SMA as materials for active bodies of actuators it is important to be 

able to estimate the time necessary for the strain recovery. The knowledge of the duration of the 

martensitic transformation also presents interest for fundamental science. The problem of rapid 

heating and cooling of actuator wires is discussed in many works. Use of thin SMA wires heated 

by electric current and cooled either in air or in water allowed making the actuator response time 

as short as 0.1 s [1–3]. A brief review of key publications on this problem one can find in [4]. In 

this work it is stated that fast heating and cooling combined with feedback temperature control 

and anti-overload mechanism allow creating an actuator characterized by high force rate, high 

displacement rate, and accurate positioning. In work [5] it is suggested a way to raise the 

frequency of an SMA actuator up to 3 Hz by realizing an incomplete strain recovery. A fast 

release mechanism, which functioning is based on the electric pulse actuation of a SMA wire is 

described in work [6]. It is reported that pulse heating of an SMA wire makes it possible to 

produce the required 6 mm displacement during 1.6 ms. The characteristic incubation time of the 

transformation is estimated at 15–35 μs. 

In work [7] it is shown that the shape recovery of a preliminarily bent wire specimen 

subject to fast heating under zero opposing load can occur in 100 µs. Obviously, this value 

cannot be considered even as an estimate of the duration of the transformation since inertia of the 

specimen plays a significant role in initiating and realizing the wire motion in the bending mode. 

In the experiments carried out in [8] several actuators – Ti-40.8wt%Ni-9.9wt%Cu SMA 
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cylinders with diameter 5 mm and length 50 mm were pre-compressed to the residual strain 4%. 

During the direct Joule heating produced by an electric condenser discharge the shortest response 

time was 4.6 ms and this time for constrained actuators was 6.5 ms. Evidently, this time can be 

related to the characteristic time of the electric current impulse, since the condensers used in this 

experiment had a rather big capacitance from 6 to 3 F. A similar experiment has been carried out 

in work [9]. A Ti-55wt%-Ni SMA wire with diameter 0.2 mm was heated by an impulse of 

electric current produced by a discharge of an electric capacitor. Its rather small capacitance 

0.39 F combined with high initial voltage up to 8 kV allowed obtaining a very short current 

impulse, the main part of which lasted for about 4 µs. The wire contraction caused the 

acceleration of an 8 or 55 g mass. There was a dead time delay between the electric pulse and the 

wire response, which was attributed to the austenite nucleation time. These results allowed 

identifying a characteristic response time as 50–100 μs between the heating pulse and the 

specimen’s response. The authors supposed that this time might be attributed to the austenite 

nucleation process. The results of other very fine and accurate experiments are reported in works 

[10, 11]. Force measurements with high temporal resolution in work [10] revealed the existence 

of a dead time of 18 – 26 μs between the end of the electric pulse and the onset of the stress rise 

in the SMA wire. In work [11], the experiment on the pulse actuation of the wire was altered in a 

way to exclude the inertia of a load attached to one end of the wire with the aim to obtain the true 

kinetics of the martensitic transformation. The wire was fixed at both ends under a pre-defined 

stress. A dead time between the onset of heating pulse and the raise of the stress was from 20 to 

30 µs. Making corrections connected with instrumental delay time the authors conclude that the 

average value of the incubation (characteristic) time of the transformation is 22 µs. In work [12] 

the dependence of the equilibrium stress generated by pulse heating on the maximum 

temperature is studied. The value of this stress is used to estimate the thermodynamic forces 

causing the martensitic transformation. 

Another way to rapidly induce a martensitic transformation together with a related phase 

strain is mechanical loading. In [13] a pseudoelastic deformation of a TiNi plate is studied. A flat 

compression wave is created by impact loading with a projectile at speeds of 50 – 180 m/s. 

When this wave reaches the back side of the target plate, it interacts with a steel ball suspended 

contacting with this plate. As the result, the ball bounces apart at a speed 7-30 m/s. It is shown 

that for the same projectile speed the ball rebound speed is higher when the SMA plate 

temperature corresponds to the pseudoelastic state. Thus, the reverse martensitic transformation 

and the associated pseudoelastic deformation have time to develop and disappear at such loading 

rates. In studies on the shock wave loading of TiNi samples [14] it is found that the martensitic 

transformation can occur in the time interval 0.1–0.2 μs. Similar results are obtained in the 

studies of shock wave loading of titanium alloy samples, which can undergo the  phase 

transformation [15]. In [14, 15] the registered time delays in the movement of the free surface of 

a sample related to the transformation are 0.1–0.7 μs. These delays are due to the difference 

between the velocities of propagation of the elastic and of the transformation waves.Thus, this 

time cannot be identified with the duration of the martensitic transformation but it can be 

considered as an upper estimate of the time needed for causing the martensitic transformation by 

shock-wave loading. A similar conclusion follows from a thorough theoretical and experimental 

study of the propagation of the transformation wave in SMA after an impact loading by the 

Hopkinson bar [16]. To describe the SMA behavior the authors used a model earlier developed 

by D.C. Lagoudas, Z. Bo and M. Qidwai. During the calculation no special assumptions for the 

incubation time of the transformation were made. Still, a very good agreement between the 

calculation and the experiment was reached. 

The present article describes the studies of the recovery of a strain previously imparted to 

an SMA specimen in the martensitic state in the mode of tension. Preliminary results of this 

work were reported in [17]. 

 

 



2. Experiment and presuppositions for calculation  

Installation, which scheme is represented in fig. 1, was used for the experimental study of the 

tensile strain recovery at fast heating. The specimen was an extended equiatomic TiNi wire semi-

loop with length l = 30 mm, rigidly fixed at points A and B. Wire diameter was 0.4 mm. The 

specimen was pre-stretched by 0.6 mm at the room temperature corresponding to the martensitic 

state. Thus, the preliminary deformation was 2%, for which the strain recovery at slow heating 

was almost perfect. Heating of the wire was carried out by an impulse of electric current 

produced by the discharge of an electric condenser C with capacity Cel = 9 F occurring on the 

closure of the circuit by key K. Displacement of the end of the loop P was estimated by the 

degree of shadowing the beam on its way from the incandescent lamp X to the photodiode D. 

The time dependence of the voltage U2 generated by the photodiode was registered by 

oscilloscope O with the bandwidth 100 MHz. A relation between U2 and the displacement  of 

the point P was established by calibration in the static mode. 

 
Fig. 1. The scheme of the experimental setup for measuring the length of a wire loop on its 

heating by an electric current impulse. APB is the TiNi wire loop; C is the electric condenser; 

K is the circuit key; R1 is the auxiliary resistor; O is the oscilloscope; X is the incandescent 

lamp; D is the photodiode;  is the displacement of the ending point of the loop. 

 

To record the current in the sample, an oscilloscope O connected to a small resistance R1 

= 20 m was used. Since the resistance of the SMA wire sample was much bigger (380 m), 

the heat release on the resistance R1 as well as on the leading-in wire was neglected when 

calculating the temperature of the sample. Energy losses for the radiation of the electromagnetic 

wave and for the heat exchange with the environment were also estimated to be negligible. Thus, 

it was assumed that all the energy of the pulse was transformed into heat. During the discharge 

of the condenser, the current in the sample increased to a maximum value I0 (2.36 kA) during the 

time of the order of t0=0.2 μs, and then decreased, so that its time dependence at t > t0 could be 

approximately described by a function 
pttt
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maximum value of the electric current, tp is the constant, depending on the capacity of the 
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where T0 is the temperature in the rod at time instant t = t0. Consider the first stage of heating, 

while T < As (As being the temperature of the start of the reverse martensitic transformation). We 

find the time instant t1, at which the reverse transformation starts by substituting T(t1) = As, 

C = CM into relation (1), (where CM is the heat capacity of the specimen in the martensitic state): 
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After reaching temperature As further heating causes the reverse martensitic transformation 

and absorption of the latent heat, so that the heat capacity of the specimen increases to a value 

CT, which is also assumed to be constant. It is equivalent to the assumption of the linear 

dependence of the volume fraction of martensite on the temperature and its independence on the 

stress. Simplifying assumptions and approximations are often used in simple models aimed at 

describing the deformation behaviour of SMA. Thus, in the model by C.Liang and C.Rogers [18] 

a cosine approximation for the dependence of the martensite volume fraction on the temperature 

is suggested. Work [19] presents a unified approach, in which various types of such a 

dependence are considered. All these assumptions can be used for qualitative and rough 

quantitative simulation of the deformation behaviour of an SMA, the main reason of choosing a 

particular model being the ease of performing the calculations. Within the hypothesis of the 

linear dependence of the volume fraction of martensite on the temperature the heat capacity of 

the specimen can be estimated as CT = CM – mq0/(Af – As), where m is the mass of the specimen 

and q0 is the specific latent heat (enthalpy) of the direct transformation from austenite to 

martensite (note that q0 < 0, since the latent heat is released during the direct and absorbed 

during the reverse transformation). Repeating similar considerations, we find that on the second 

stage of heating at t > t1, the temperature varies according to the law: 
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where I1 = I0 exp(–t1/tp) is the value of the current at time t =t1. Temperature Af of the finish of 

the reverse transformation will be reached at the time instant 
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Suppose that the phase strain 


 is recovered completely in the course of the reverse 

transformation and that during the process of recovery it depends only on the temperature. 

Assuming the piecewise-linear approximation for 


(T) and taking into account dependence of 

the temperature on time, we find the time dependence of the phase strain: 
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From (2) and (3), we find that at ],[ 21 ttt  the phase strain is 
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Relation (4) is used in calculating the displacement of the free end of the sample in the next 

section. 



In the experiment the strain in the wire was not measured. There were no jerks on the 

dependence of the tip of the SMA loop displacement on time, thus no string-like vibrations 

(registered in a more accurate measurement in work [10]) were observed while the wire was in 

conditions of tension (up to the time instant approximately 20 s corresponding to the maximum 

value of the displacement). After this time point the wire lost its stability and no record of the 

displacement was done. The comparison of the experimental and calculated data was done only 

for the displacements until they reached their maxima. 

 

3. Calculation of the strain recovery 

The idealized system is an SMA rod with the initial length l and a cross-section area S, 

one end of which is rigidly fixed and the other end is free. After stretching by l in the 

martensitic state (i.e., at a low temperature), the rod is rapidly heated, whereby the material of 

the rod is transformed into the austenitic state instantaneously or according to a predetermined 

law. 

 

3.1 Instantaneous heating 

In the case of instantaneous heating, the problem is equivalent to the problem of finding 

the deformation of an elastic rod, which was stretched and instantly released. Mathematically, 

the problem reduces to solving the wave equation with respect to the displacement u(x,t) 
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with the following initial and boundary conditions: 

at 
00 ( ,0) , ( ,0) 0;t

l
t u x x x u x

l


         (6) 

at 0 (0, ) 0;x u t         (7) 

at ( , ) ( , ) 0.xx l Eu l t l t          (8) 

 

Here x is the coordinate, t is time; E,  are the Young's modulus and the density of the material; 

0 is the initial strain,  is the stress in the rod. Applying the Laplace transform with respect to 

time t (with the variable of the transform p) to the equation (5) (automatically taking into account 

the initial condition (6)) and the boundary conditions (7), (8), we obtain an ordinary differential 

equation with respect to the image ( , )u x p  of the displacement u(x,t): 
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Thus, we find the image of the displacement of the rod free end: 
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we obtain a solution in the form of the sum of the waves reflected from the ends of the rod: 
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The graph of the dependence (t) = -u(l,t) of the rod free end displacement on time t is a 

sawtooth function (fig. 2) (positive displacement corresponds to shortening of the rod). 

 
Fig.2. Time dependence of the displacement  of the free end of a stretched elastic rod after 

instantaneous removal of the load; 0 is the initial strain; al is the time interval of the elastic 

wave travel along the rod. 

 

In this very much idealized calculation the maximum displacement is reached in the course 

of the time, needed for an elastic wave to travel twice the length of the rod. For titanium-nickel 

alloy we assume the Young's modulus E=80 GPa and density =6500 kg/m
3
. Then for the rod 

length 30 mm we have the actuation time 2al=17 s. Later it will be shown that this is a rather 

good estimate.  

 

3.2 Finite temperature rate heating 

We derive the equation for the strain from the following relations: 
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where  is the stress and , ,e    are respectively the total strain, the elastic strain and the phase 

strain. Substituting these relations into the motion equation ttx u    (where ')( x and ')( t denote 

derivatives on x and on t), and differentiating on x, we obtain the equation for the elastic strain of 

the rod on heating with a finite temperature rate: ttttxx eeE  , where ),(),( txtxe e .  



Mathematically, the problem is reduced to solving the inhomogeneous wave equation with 

respect to the elastic strain e(x,t): 
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Here the boundary condition for the elastic strain at x = 0 is obtained from the boundary 

condition for the displacement u(0,t) = 0, wave equation (9), and Hooke's law. 

After applying the Laplace transform to the equation (9) with respect to time t (with the 

transform variable p) we obtain an ordinary differential equation for the image ),( pxe , of the 

elastic strain e(x,t): 
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Then, for the image of the displacement of the free end of the rod (at x=l) we have: 
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In accordance with the properties of the Laplace transform 
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Using the expansion 
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we  arrive at the solution in the form of the sum of the waves reflected from the ends of the rod: 

 

])1(2,2[),2(2)1(...)4(2)2(2)(),( 0000 alnnaltnaltualtualtututlu n  . 

 

Since the wire loop used in the experiment experiences buckling failure when the stress becomes 

negative, the experimental dependence can be compared with the theoretical one only for t  2al. 

The dependence u(l,t) for 0  t  2al is schematically shown on fig.3.  

 

 

 

 

 

 

 

Fig. 3. Scheme of the variation of the SMA 

rod free end displacement due to the strain 

recovery at fast heating. The time instants t1 

and t2 correspond respectively to the 

temperatures of the start (As) and of the 

finish (Af) of the reverse martensitic 

transformation. 

 

In the time interval t1  t  t2 when the martensitic transformation is in progress the free end 

of the rod moves with acceleration, and after the transformation is complete its movement 

becomes uniform. 

 

4. Comparison of calculation and experimental data 

The registered time dependence of the electric current is shown in fig. 4. From this curve the 

values of the time instant t0 corresponding to the maximum of the current and of the time 

constant tp were estimated at t0 = 0.2 μs and tp = 3.5 μs. The values of the other parameters 

and material constants used in the calculation were the following. Ambient (initial) 

temperature T0= 298 K, temperatures of the start and finish of the reverse martensitic 

transformation As =363 K, Af =378 K, latent heat (direct transformation enthalpy) 

q0 = -23 J/g, density  = 6500 kg/m
3
, specific heat of TiNi c = 500 J/(kgK), semi-loop length 

l = 30 mm, wire diameter 0.4 mm, preliminary elongation 0.6 mm. Fig.5 presents the results 

of calculations by formula (10) together with an experimental curve. Graphs shown in figures 

5 and 6 are obtained by saving pictures from the oscilloscope. A good qualitative agreement 

between the theoretical and the experimental dependences suggests that all the basic 

phenomena responsible for the fast strain recovery have been taken into account. Note that 

no assumptions were made about the incubation time of the martensitic transformation. Thus, 

one can conclude that the characteristic time around 20 μs needed for the strain recovery is 

due to the inertia of the material, while the time needed for the transformation is much 

shorter. An estimate of 20 μs incubation time reported in [11], apparently, can be explained 

by the fact that the reverse transformation in [11] was realized in the constraint conditions 

(both ends of the wire were fixed). Besides, the force sensor could also take some time for its 

operation. 



  
Fig. 4. Experimental dependence of the electric 

current on time under the discharge of the 

capacitor. 

Fig. 5. Time dependence of the specimen 

free end displacement (t) = -u(l,t) at fast 

heating. 

 

5. Conclusions 

The theoretical and experimental results performed in this paper allow formulating the following 

main outcomes.  

1. Fast heating allows obtaining the recovery of the preliminary tensile strain within a time 

of the order of 20 μs. Probably, this is the fastest possible response of an SMA actuator.  

2. The kinetics of the strain recovery is formed by the kinetics of heating rate and by the 

inertia. The displacement of the free end of the heated specimen is zero until the 

temperature reaches the start temperature of the reverse transformation, and then 

gradually increases on overcoming of the inertia of different parts of the specimen. 

3. Apparently, the incubation time of the transformation on the microscale is less than 1 μs. 

4. The kinetics of the strain recovery can be calculated within a simple macroscopic 

phenomenological model of the martensitic transformation and the equations of motion.  

 

There is a possibility to develop a fast SMA actuator provided that no mass acceleration other 

than that of the working body is needed. 
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Fig. 1. The scheme of the experimental setup for measuring the length of a wire loop on its 

heating by an electric current impulse. APB is the TiNi wire loop; C is the electric condenser; 

K is the circuit key; R1 is the auxiliary resistor; O is the oscilloscope; X is the incandescent 

lamp; D is the photodiode;  is the displacement of the ending point of the loop. 

 

 

 

 
Fig.2. Time dependence of the displacement  of the free end of a stretched elastic rod after 

instantaneous removal of the load; 0 is the initial strain; al is the time interval of the elastic 

wave travel along the rod. 
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Fig. 3. Scheme of the SMA rod free end displacement variation due to the strain recovery at 

fast heating. The time instants t1 and t2 correspond respectively to the temperatures of the 

start (As) and of the finish (Af) of the reverse martensitic transformation. 

 

 

 
Fig. 4.Experimental dependence of the electric current on time under the discharge of the 

capacitor. 

 

 

 

 
Fig. 5. Time dependence of the specimen free end displacement (t)=-u(l,t) on fast heating. 


